CS 138: MID-QUARTER EXAMINATION 2

Department of Computer Science University of California, Santa Barbara Closed-Book, 75 minutes

Fall 2004

INSTRUCTIONS

- Before you answer any questions, print your name and perm number.
- Read each question carefully. Make sure that you clearly understand each question before answering it.
- Put your answer to each question on its own page.
- You may wish to work out an answer on scratch paper before writing it on your answer page; answers that are difficult to read may lose points for that reason.
- You may not leave the room during the examination, even to go to the bathroom.
- You may not use any personal devices, such as calculators, PDAs, or cell phones.

- 1. (15 points) Prove or disprove the following statement: If $M = (Q, \Sigma, \delta, q_0, F)$ is a minimal DFA for a regular language L, then $\overline{M} = (Q, \Sigma, \delta, q_0, Q F)$ is a minimal DFA for \overline{L} . Answer

 - (a) Assume M is a a minimal DFA for L and \overline{M} is not a minimal DFA for \overline{L} .
 - (b) Let $M' = (Q', \Sigma, \delta', q'_0, F')$ be a minimal DFA for \overline{L} .
 - (c) |Q'| < |Q|.
 - (d) Let $M'' = (Q', \Sigma, \delta', q'_0, Q' F').$
 - (e) L(M'') = L, contradicting the assumption that M was a minimal DFA accepting L.

2. (10 points) The symmetric difference of 2 sets S_1 and S_2 is defined as

 $S_1 \ominus S_2 = \{x : x \in S_1 \text{ or } x \in S_2, \text{ and } x \text{ is not in both } S_1 \text{ and } S_2\}.$

Prove that the family of regular languages is closed under symmetric difference or give a counterexample.

Answer

It is closed under symmetric difference.

- (a) Let S_1 and S_2 be regular sets.
- (b) Then

 $(S_1 \text{ or } S_2) \text{ and } (\text{ not } (S_1 \text{ and } S_2)) = (S_1 \cup S_2) \cap \overline{(S_1 \cap S_2)} = S_1 \ominus S_2$

is regular, since regular sets are closed under union, intersection, and complement.

3. (15 points) Is there an algorithm for determining if $L_1 \subseteq L_2$, for any regular languages L_1 and L_2 ? Prove your answer.

Answer

Yes, there is. If $L_1 \subseteq L_2$ then $L_1 - L_2 = \emptyset$. An algorithm follows.

- (a) Construct regular set $L_1 L_2 = L_1 \cap \overline{L_2} = L$. This can be done since there are constructive proofs that regular sets are closed under intersection and complement.
- (b) Apply the algorithm for determining if $L = \emptyset$.

4. (15 points) Is the language $L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\}$ regular? Prove your answer.

Answer

Since

- regular languages are closed under intersection
- $L \cap a^*b^* = \{a^nb^n : n \ge 0\}$ is irregular

L is irregular.

An alternate proof that uses the Pumping Lemma follows.

- (a) Assume L is regular. Then, by the Pumping Lemma, there is a natural number m such that any $w \in L$ with $|w| \ge m$ can be factored as w = xyz with $|xy| \le m$ and |y| > 0, and $xy^iz \in L$, for i = 0, 1, ...
- (b) Pick $w = a^m b^m$.
- (c) Then, $a^m b^m = xyz$, where $y = a^k$, for k > 0.
- (d) By the Pumping Lemma, $xz \in L$.
- (e) But, $n_a(xz) \neq n_b(xz)$.
- (f) The assumption that L is regular thus is false.

5. (15 points) Prove that the following statement is true or prove that it is false.

If L_1 and $L_1 \cup L_2$ are regular languages, then L_2 is a regular language.

Answer

The statement is false.

Let $L_1 = \{a, b\}^*$ and $L_2 = \{a^n b^n : n \ge 0\}.$

Then L_1 and $L_1 \cup L_2$ are regular, but L_2 is irregular.

6. (10 points) Let $L = \{a^n b^n : n \ge 0\}$. Is L^2 context-free? Prove your answer.

Answer

Yes, it is.

A CFG that recognizes L^2 is $G_2 = (\{S_2, S\}, \{a, b\}, S_2, P)$, where P has the following productions

$$\begin{array}{rccc} S_2 & \to & SS, \\ S & \to & aSb \mid \lambda. \end{array}$$

7. (10 points) Is the following grammar ambiguous? Prove your answer.

$$\begin{array}{rrrr} S & \to & AB \mid aaB, \\ A & \to & a \mid Aa, \\ B & \to & b. \end{array}$$

Answer

Yes, it is.

The word *aab* has 2 different leftmost derivations:

$$S \Rightarrow AB \Rightarrow AaB \Rightarrow aaB \Rightarrow aab$$
$$S \Rightarrow aaB \Rightarrow aab$$

8. (10 points) Construct a NPDA that accepts $\{a^n b^{2n} : n \ge 0\}$ over input alphabet $\{a, b, c\}$. Answer

 $M=(\{q_0,q_1,q_2\},\{a,b,c\},\{z,b\},\delta,q_0,z,\{q_2\}), \, \text{where} \, \delta \text{ is given by the following diagram}.$

