CS 138: Mid-quarter Examination 2

Department of Computer Science
University of California, Santa Barbara
Closed-Book, 75 minutes

Fall 2004

Instructions

- Before you answer any questions, print your name and perm number.
- Read each question carefully. Make sure that you clearly understand each question before answering it.
- Put your answer to each question on its own page.
- You may wish to work out an answer on scratch paper before writing it on your answer page; answers that are difficult to read may lose points for that reason.
- You may not leave the room during the examination, even to go to the bathroom.
- You may not use any personal devices, such as calculators, PDAs, or cell phones.

1. (15 points) Prove or disprove the following statement: If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a minimal DFA for a regular language L, then $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$ is a minimal DFA for \bar{L}.

Answer

(a) Assume M is a a minimal DFA for L and \bar{M} is not a minimal DFA for \bar{L}.
(b) Let $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be a minimal DFA for \bar{L}.
(c) $\left|Q^{\prime}\right|<|Q|$.
(d) Let $M^{\prime \prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, Q^{\prime}-F^{\prime}\right)$.
(e) $L\left(M^{\prime \prime}\right)=L$, contradicting the assumption that M was a minimal DFA accepting L.
2. (10 points) The symmetric difference of 2 sets S_{1} and S_{2} is defined as

$$
S_{1} \ominus S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}, \text { and } x \text { is not in both } S_{1} \text { and } S_{2}\right\} .
$$

Prove that the family of regular languages is closed under symmetric difference or give a counterexample.

Answer

It is closed under symmetric difference.
(a) Let S_{1} and S_{2} be regular sets.
(b) Then

$$
\left(S_{1} \text { or } S_{2}\right) \text { and }\left(\operatorname{not}\left(S_{1} \text { and } S_{2}\right)\right)=\left(S_{1} \cup S_{2}\right) \cap \overline{\left(S_{1} \cap S_{2}\right)}=S_{1} \ominus S_{2}
$$

is regular, since regular sets are closed under union, intersection, and complement.
3. (15 points) Is there an algorithm for determining if $L_{1} \subseteq L_{2}$, for any regular languages L_{1} and L_{2} ? Prove your answer.

Answer

Yes, there is. If $L_{1} \subseteq L_{2}$ then $L_{1}-L_{2}=\emptyset$. An algorithm follows.
(a) Construct regular set $L_{1}-L_{2}=L_{1} \cap \overline{L_{2}}=L$. This can be done since there are constructive proofs that regular sets are closed under intersection and complement.
(b) Apply the algorithm for determining if $L=\emptyset$.
4. (15 points) Is the language $L=\left\{w \in\{a, b\}^{*}: n_{a}(w)=n_{b}(w)\right\}$ regular? Prove your answer.

Answer
Since

- regular languages are closed under intersection
- $L \cap a^{*} b^{*}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is irregular
L is irregular.
An alternate proof that uses the Pumping Lemma follows.
(a) Assume L is regular. Then, by the Pumping Lemma, there is a natural number m such that any $w \in L$ with $|w| \geq m$ can be factored as $w=x y z$ with $|x y| \leq m$ and $|y|>0$, and $x y^{i} z \in L$, for $i=0,1, \ldots$.
(b) Pick $w=a^{m} b^{m}$.
(c) Then, $a^{m} b^{m}=x y z$, where $y=a^{k}$, for $k>0$.
(d) By the Pumping Lemma, $x z \in L$.
(e) But, $n_{a}(x z) \neq n_{b}(x z)$.
(f) The assumption that L is regular thus is false.

5. (15 points) Prove that the following statement is true or prove that it is false.

If L_{1} and $L_{1} \cup L_{2}$ are regular languages, then L_{2} is a regular language.

Answer

The statement is false.
Let $L_{1}=\{a, b\}^{*}$ and $L_{2}=\left\{a^{n} b^{n}: n \geq 0\right\}$.
Then L_{1} and $L_{1} \cup L_{2}$ are regular, but L_{2} is irregular.
6. (10 points) Let $L=\left\{a^{n} b^{n}: n \geq 0\right\}$. Is L^{2} context-free? Prove your answer.

Answer

Yes, it is.
A CFG that recognizes L^{2} is $G_{2}=\left(\left\{S_{2}, S\right\},\{a, b\}, S_{2}, P\right)$, where P has the following productions

$$
\begin{aligned}
S_{2} & \rightarrow S S \\
S & \rightarrow a S b \mid \lambda .
\end{aligned}
$$

7. (10 points) Is the following grammar ambiguous? Prove your answer.

$$
\begin{aligned}
& S \rightarrow A B \mid a a B, \\
& A \rightarrow a \mid A a, \\
& B \rightarrow b .
\end{aligned}
$$

Answer

Yes, it is.
The word aab has 2 different leftmost derivations:

$$
\begin{aligned}
& S \Rightarrow A B \Rightarrow A a B \Rightarrow a a B \Rightarrow a a b \\
& S \Rightarrow a a B \Rightarrow a a b
\end{aligned}
$$

8. (10 points) Construct a NPDA that accepts $\left\{a^{n} b^{2 n}: n \geq 0\right\}$ over input alphabet $\{a, b, c\}$.

Answer

$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b, c\},\{z, b\}, \delta, q_{0}, z,\left\{q_{2}\right\}\right)$, where δ is given by the following diagram.

