
Chapter 12: Limits of Algorithmic

Computation∗

Peter Cappello

Department of Computer Science

University of California, Santa Barbara

Santa Barbara, CA 93106

cappello@cs.ucsb.edu

• Please read the corresponding chapter before attending this lecture.

• These notes are supplemented with figures, and material that arises during the lecture in

response to questions.

• Please report any errors in these notes to cappello@cs.ucsb.edu. I’ll fix them immediately.

∗Based on An Introduction to Formal Languages and Automata, 3rd Ed., Peter Linz, Jones and Bartlett

Publishers, Inc.

1

12.1 Some Problems That Cannot Be Solved by TMs

Computability & Decidability

• Def. 9.4: A function f with domain D is called computable if

there is a TM M = (Q, Σ, Γ, δ, q0, 2, F), such that

∀w ∈ D ⊆ Σ+, q0 w `∗
M qf f (w), qf ∈ F.

• The “for all” part of the definition is crucial.

• Therefore, a precise statement of the domain is crucial.

• For decidability, the range of f is of size 2 (e.g., yes or no, true or

false, 0 or 1).

• A problem is a set of related statements, each of which is true

exclusive-or false.

2

• If such a problem is computable, we say it is decidable; otherwise,

we say it is undecidable.

Example: “For CFG G, L(G) is ambiguous.”

The domain is the set of all CFGs.

Example: “The Chicago Cubs will win the World Series in 2007.”

Is this a decidable problem?

3

• Yes: The domain has only 1 instance, which is either true or false.

• If the Cubs will win, then a TM that returns “true” correctly decides

this problem;

otherwise a TM that returns “false” correctly decides this problem.

• We do not need to prove which TM correctly decides the problem,

only that one exists.

• Of course, Cub fans “know” which TM correctly decides this problem:

The “false” TM.

4

The Turing Machine Halting Problem

Def. 12.1: Let

• wM be a binary string that encodes a TM M = (Q, Σ, Γ, δ, q0, 2, F),

• w ∈ Σ+,

• wM and w are encoded as binary strings, as suggested in §10.4.

A solution to the halting problem is a TM H that, for all wM and w,

performs the computation

q0 wMw `∗
H x1 qY x2,

if M halts on w, and

q0 wMw `∗
H y1 qN y2,

if M does not halt on w, for qY , qN ∈ FH .

5

Thm. 12.1: The halting problem is undecidable.

Proof: We show that there is no TM H that solves the halting problem.

1. Assume there is a TM H that solves the halting problem.

2. We require that:

• H ’s input is wMw

• H halt in either qY or qN appropriately (illustrate):

q0 wMw `∗
H x1 qY x2,

if M halts on w, and

q0 wMw `∗
H y1 qN y2,

if M does not halt on w.

6

3. Modify H , producing H ′, where qY is not final (illustrate):

q0 wMw `∗
H ′ ∞,

if M halts on w, and

q0 wMw `∗
H ′ y1 qN y2,

if M does not halt on w.

7

4. Modify H ′, producing ̂H , which:

(a) copies wM : Make M ’s input a description of itself

(b) behaves like H ′ thereafter:

q0 wM `∗
̂H

q0 wMwM `∗
̂H
∞,

if M halts on wM , and

q0 wM `∗
̂H

q0 wMwM `∗
̂H

y1 qN y2,

if M does not halt on wM .

5. If ̂H ’s input is a description of itself, then

q0 ŵH `∗
̂H
∞,

if ̂H halts on ŵH (a contradiction), and

q0 ŵH `∗
̂H

y1 qN y2,

if ̂H does not halts on ŵH (a contradiction).

8

6. Conclusion: Our assumption that H exists is false.

The proof above is given because it uses a classic argument.

A shorter proof follows from previous results, as we now show.

9

Thm. 12.2: The halting problem is undecidable.

Proof:

1. Assume there is a TM H that solves the halting problem.

2. Let L be recursively enumerable but not recursive.

3. Then, there is a TM M such that L = L(M).

4. Then, the following procedure always halts and accepts L:

Given input w:

(a) If (H(wMw) == “no”) then reject & halt;

(b) If (M(w) == accept) then accept & halt; // M must halt on w.

(c) Reject and halt.

5. Thus, L is recursive, a contradiction.

6. Conclusion: The assumption that H exists is false.

10

Reducing One Undecidable Problem to Another

• A problem A is reduced to a problem B when

(B is decidable) ⇒ (A is decidable).

• If we know that A is undecidable, and we want to show that B is

undecidable, it suffices to show:

(B is decidable) ⇒ (A is decidable).

because, the contrapositive of

(B is decidable) ⇒ (A is decidable).

is

(A is undecidable) ⇒ (B is undecidable).

and since A is undecidable, by modus ponens, B is undecidable.

11

Example 12.1: The state-entry problem:

Given a TM M = (Q, Σ, Γ, δ, q0, 2, F), q ∈ Q, and w ∈ Σ+, decide

whether or not the state q is ever entered when M is applied to w.

We show that this problem is undecidable by reducing the halting prob-

lem to it.

1. Assume we have a TM A that solves the state-entry problem.

2. If M halts, it enters a state, (p, a), from which there is no transition.

3. We use A to construct a TM H that solves the halting problem.

• Construct M ′ so that (M ′ enters state q) ⇔ (M halts on w).

For each (p, a) ∈ QM × ΓM ,

If (δM(p, a) is defined) then set δM ′(p, a) = δM(p, a);

else δM ′(p, a) = (q, a, R), for a new state q ∈ QM ′.

12

4. When H is given M and w, it invokes the following procedure:

(a) Construct M ′ from M ;

(b) Invoke A with input M ′, q, and w;

(c) If A returns “yes”, then H returns “yes”; // M halts on w

Else return “no”; // M does not halt on w.

5. But, the halting problem is undecidable.

6. Conclusion: The assumption that TM A exists is false.

13

Example 12.2: The blank-tape halting problem:

Given a TM M , decide whether or not M halts on a blank tape.

• We reduce the halting problem to the blank-tape halting problem.

• Assume that a TM A solves the blank tape problem.

• Construct a TM H that solves the halting problem (illustrate):

1. Given (M, w), construct Mw that, given a blank tape:

(a) writes w onto the tape;

(b) puts itself in the configuration q0 w;

(c) behaves like M thereafter.

2. If (A(Mw) == “yes”) then return “yes”; // M halts on w

Else return “no”; // M does not halt on w

• But, the halting problem is undecidable.

• Conclusion: Our assumption that A exists is false.

14

Example 12.3: Let f (n) be the maximum number of moves that can

be made by any halting n-state TM with Γ = {0, 1, 2}, when started on

a blank tape.

• |Q| = n.

• |Γ| = 3.

• Thus, the number of distinct δ functions—TMs—is finite.

• Only some of these halt on a blank tape.

• f (n) : the largest number of moves made by these TMs on a blank

tape.

15

• Reduce the blank tape halting problem to the computation of f .

• Assume that a TM Mf computes f (n).

• Construct a TM that solves the blank-tape halting problem (illus-

trate):

1. Given M , invoke Mf with |QM |, computing m = f (|QM |).

2. Construct TM CM,m such that:

– It simulates M on a blank tape for at most m moves;

– If (M halts in ≤ m moves) then return true;

else return false;

3. If (CM,m) then return true; // M halts on a blank tape

Else return false; // M does not halt on a blank tape

• But, the blank-tape halting problem is undecidable.

• Conclusion: Our assumption that f (n) is computable is false.

16

