CHAPTER 12: LIMITS OF ALGORITHMIC
COMPUTATION*

Peter Cappello
Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106
cappello@cs.ucsb.edu

e Please read the corresponding chapter before attending this lecture.

e These notes are supplemented with figures, and material that arises during the lecture in
response to questions.

e Please report any errors in these notes to cappello@cs.ucsb.edu. I'll fix them immediately.

*Based on An Introduction to Formal Languages and Automata, 3rd Ed., Peter Linz, Jones and Bartlett
Publishers, Inc.

12.1 SOME PROBLEMS THAT CANNOT BE SOLVED BY TMS

COMPUTABILITY & DECIDABILITY

e Def. 9.4: A function f with domain D is called computable if
there isa TM M = (Q, X, T, 9, qo, O, F), such that

Ywe DCYT, qowhyyqr f(w), ¢ € F.

e The “for all” part of the definition is crucial.
e Therefore, a precise statement of the domain is crucial.

e For decidability, the range of f is of size 2 (e.g., yes or no, true or
false, 0 or 1).

e A problem is a set of related statements, each of which is true
exclusive-or false.

e If such a problem is computable, we say it is decidable; otherwise,
we say it is undecidable.

Example: “For CFG G, L(G) is ambiguous.”

The domain is the set of all CFGs.

Example: “The Chicago Cubs will win the World Series in 2007.”
Is this a decidable problem?

e Yes: The domain has only 1 instance, which is either true or false.

e [f the Cubs will win, then a TM that returns “true” correctly decides
this problem;
otherwise a TM that returns “false” correctly decides this problem.

e We do not need to prove which TM correctly decides the problem,
only that one exists.

e Of course, Cub fans “know” which TM correctly decides this problem:
The “false” TM.

THE TURING MACHINE HALTING PROBLEM

Def. 12.1: Let
e w), be a binary string that encodes a TM M = (Q, >, 1,6, qp, 0, F),
oweE Nt
e w)s and w are encoded as binary strings, as suggested in §10.4.

A solution to the halting problem is a TM H that, for all w;; and w,
performs the computation

Qo wyw g T1 Gy T2,
if M halts on w, and

qo Wprw Fr Y1 gy Yo,

if M does not halt on w, for gy, gy € Fy.

Thm. 12.1: The halting problem is undecidable.
Proof: We show that there is no TM H that solves the halting problem.

1. Assume there is a TM H that solves the halting problem.
2. We require that:
e H’s input is wy,w
e H halt in either qy or gy appropriately (illustrate):
Qo wyw Fp T gy T2,

if M halts on w, and

qo Waprw F 1 gy Yo,

if M does not halt on w.

3. Modify H, producing H', where gy is not final (illustrate):
qo wyw 00,
if M halts on w, and

Qo Warw Frp y1 g Yo,

if M does not halt on w.

4. Modify H', producing H, which:
(a) copies wyr: Make M’s input a description of itself
(b) behaves like H' thereafter:
qo war 7 qo wayrwyr 00,
if M halts on wj;, and
qo war 5 qo warwar F5 y1 gy Yo,
if M does not halt on wyy.
5. If H’s input is a description of itself. then
qo Wz F5 00,
if H halts on w7 (a contradiction), and
g Wz =5 Y1 an Yo,

if H does not halts on w4 (a contradiction).

6. Conclusion: Our assumption that H exists is false.

The proof above is given because it uses a classic argument.
A shorter proof follows from previous results, as we now show.

Thm. 12.2: The halting problem is undecidable.
Proof:

L.
2.
3.

Assume there is a TM H that solves the halting problem.
Let L be recursively enumerable but not recursive.

Then, there is a TM M such that L = L(M).

. Then, the following procedure always halts and accepts L:

Given input w:

(a) If (H(wpyw) == “no”) then reject & halt;

(b) If (M (w) == accept) then accept & halt; // M must halt on w.
(c) Reject and halt.

. Thus, L is recursive, a contradiction.

. Conclusion: The assumption that H exists is false.

10

REDUCING ONE UNDECIDABLE PROBLEM TO ANOTHER
e A problem A is reduced to a problem B when
(B is decidable) = (A is decidable).

e If we know that A is undecidable, and we want to show that B is
undecidable, it suffices to show:

(B is decidable) = (A is decidable).
because, the contrapositive of

(B is decidable) = (A is decidable).

IS
(A is undecidable) = (B is undecidable).

and since A is undecidable, by modus ponens, B is undecidable.

11

Example 12.1: The state-entry problem:
Given a TM M = (Q,>,1,0,q9,0,F),q € @, and w € X, decide
whether or not the state ¢ is ever entered when M is applied to w.

We show that this problem is undecidable by reducing the halting prob-
lem to it.

1. Assume we have a TM A that solves the state-entry problem.
2. If M halts, it enters a state, (p, a), from which there is no transition.
3. We use A to construct a TM H that solves the halting problem.

e Construct M’ so that (M’ enters state q) < (M halts on w).
For each (p,a) € Qar x Ty,
If (0ar(p, a) is defined) then set 0y (p, a) = dar(p, a);
else 0 (p,a) = (q, a, R), for a new state q € Q.

12

4. When H is given M and w, it invokes the following procedure:

(a) Construct M’ from M;
(b) Invoke A with input M’ q, and w;

(c) If A returns “yes”, then H returns “yes”; // M halts on w
Else return “no”; // M does not halt on w.

5. But, the halting problem is undecidable.

6. Conclusion: The assumption that TM A exists is false.

13

Example 12.2: The blank-tape halting problem:
Given a TM M, decide whether or not M halts on a blank tape.

e We reduce the halting problem to the blank-tape halting problem.
e Assume that a TM A solves the blank tape problem.
e Construct a TM H that solves the halting problem (illustrate):

1. Given (M, w), construct M, that, given a blank tape:
a) writes w onto the tape;

(
(b) puts itself in the configuration gy w;
(c) behaves like M thereafter.

2. If (A(M,) == “yes”) then return “yes”; // M halts on w
Else return “no”; // M does not halt on w

e But, the halting problem is undecidable.

e Conclusion: Our assumption that A exists is false.

14

Example 12.3: Let f(n) be the maximum number of moves that can
be made by any halting n-state TM with I' = {0, 1, O}, when started on
a blank tape.

. 1Ql=n
o ' =3.

e Thus, the number of distinct ¢ functions—TMs—is finite.
e Only some of these halt on a blank tape.

e f(n) : the largest number of moves made by these TMs on a blank
tape.

15

e Reduce the blank tape halting problem to the computation of f.
e Assume that a TM My computes f(n).

e Construct a TM that solves the blank-tape halting problem (illus-
trate):
1. Given M, invoke My with |Qas|, computing m = f(|Qar])-
2. Construct TM C'ys, such that:

— It simulates M on a blank tape for at most m moves;

— If (M halts in < m moves) then return true;
else return false;

3. It (Cprn) then return true; // M halts on a blank tape
Else return false; // M does not halt on a blank tape

e But, the blank-tape halting problem is undecidable.

e Conclusion: Our assumption that f(n) is computable is false.

16

