Chapter 7: Pushdown Automata (PDA)*

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

- Please read the corresponding chapter before attending this lecture.
- These notes are supplemented with figures, and material that arises during the lecture in response to questions.
- Please report any errors in these notes to cappello@cs.ucsb.edu. I'll fix them immediately.

^{*}Based on **An Introduction to Formal Languages and Automata**, 3rd Ed., Peter Linz, Jones and Bartlett Publishers, Inc.

7.1 Nondeterministic Pushdown Automata

DEFINITION OF A PUSHDOWN AUTOMATON (ILLUSTRATE SCHEMATIC OF PDA.)

Def. 7.1: A nondeterministic pushdown acceptor (NPDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where

Q is a finite set of states of the control unit,

 Σ is a finite input alphabet,

 Γ is a finite **stack alphabet**,

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \mapsto finite \text{ subsets of } Q \times \Gamma^* \text{ is the transition function,}$ $q_0 \text{ is the initial state,}$

 $z \in \Gamma$ is the stack start symbol,

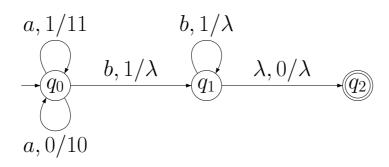
 $F \subseteq Q$ is the set of final states.

- \bullet The range of δ is a set of ordered pairs.
- The 1st component of these ordered pairs is the successor state.
- The second component is a sequence of stack symbols that replace the top stack symbol.

For example, if the current stack symbol is α and the ordered pair specified $(q, \alpha\beta\gamma)$, then, in effect, we execute the following sequence:

```
pop
push(\gamma)
push(\beta)
push(\alpha).
```

• The set $Q \times \Gamma^*$ is infinite, and hence has infinite subsets. We disallow the set of successor pairs to be infinite. **Example**: Let $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, 1\}, \delta, q_0, 0, \{q_3\})$ be a NPDA with δ indicated diagrammatically below.



- Does M accept λ ?
- Does M accept a?
- Does M accept ab?
- \bullet What language does M accept?

- An **instantaneous description (ID)** gives all the relevant information about the current state of an NPDA:
 - The current state;
 - The unread portion of the input;
 - The current contents of the stack.
- The operation of an NPDA can be depicted as a sequence of IDs, starting from the initial ID: (q_0, w, z_0) , where the input is w and z_0 is the start stack symbol.
- A move from ID (q_i, aw, bx) to ID (q_j, w, yx) is denoted $(q_i, aw, bx) \vdash (q_j, w, yx),$ and is possible if and only if $(q_j, y) \in \delta(q_i, a, b)$.
- The notation $ID_i \vdash^* ID_j$ denotes a sequence of moves from ID_i to ID_j .

THE LANGUAGE ACCEPTED BY A PDA

Def. 7.2: Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be a NPDA.

The language accepted by M is

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash_M^* (p, \lambda, u), p \in F, u \in \Gamma^* \}.$$

The final stack content, u, is irrelevant.

Example 7.4:

- $L = \{ww^R : w \in \{a, b\}^+\}.$
- The algorithm:
 - 1. Read the symbols of w; push them onto the stack;
 - 2. Guess that the last symbol of w has been read/pushed.
 - 3. Read the remainder of the input, checking that each symbol matches the top of the stack, which is then popped.
- Illustrate the NPDA diagrammatically.