PROVING IMPLICATIONS

In the assertions below, $\mathcal N$ denotes the natural numbers, $\{1,2,3,\ldots\}$, and $\mathcal Z$ denotes the integers. Prove the following assertions:

- 1. $((p \lor r) \Rightarrow q) \equiv ((p \Rightarrow q) \land (r \Rightarrow q))$.
- 2. The cube of any integer is either of the form 9n, 9n + 1, or 9n + 8.
- 3. The equation $x^3 117y^3 = 5$ has no integer solutions.
- 4. $\forall n \in \mathcal{N}, n(n+1)(2n+1)/6$ is an integer.
- 5. If n is a 2-digit decimal number and 5n is a 2-digit decimal number, then n's first digit is a 1.
- 6. $\forall m, n \in \mathcal{Z}, ((m > 2 \land n > 2) \Rightarrow mn > m + n).$
- 7. $f(x) = x^2 x a$ has no integral roots for odd a.