To prove: If R is a symmetric relation, then $R \cap R^{-1} = R$.

- 1. Let $R \subseteq S \times S$ be symmetric, for arbitrary set S.
- 2. Assume that $R \cap R^{-1} \neq R$. (Proof by contradiction)
- 3. $\exists (x,y) \in R \land (x,y) \notin R^{-1}$. (Step 2 and defn. of \cap)
- 4. $(y, x) \in R$. (Steps 1 and 3)
- 5. $(x,y) \in \mathbb{R}^{-1}$, contradicting step 3. (Step 4 and defn. of \mathbb{R}^{-1})
- 6. The assumption of step 2 is false: $R \cap R^{-1} = R$.