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PREFACE

Bitte ein Bit!
— Slogan of Bitburger Brauerei (1951)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is so vast, I cannot hope to have surrounded it enough to corral
it completely. Therefore I beg you to let me know about any deficiencies you
discover.

To put the material in context, this pre-fascicle contains Section 7.1.1 of a
long, long chapter on combinatorial algorithms. Chapter 7 will eventually fill
at least three volumes (namely Volumes 4A, 4B, and 4C), assuming that I'm
able to remain healthy. It will begin with a short review of graph theory, with
emphasis on some highlights of significant graphs in the Stanford GraphBase,
from which I will be drawing many examples. Then comes Section 7.1: Boolean
Functions and Bit Manipulation, beginning with the stuff you're about to read
here. Section 7.1.2 will deal with efficient Boolean function evaluation; Section
7.1.3 will deal with tricks and techniques of bitwise calculation; and Section 7.1.4
will discuss the representation of Boolean functions.

The next section, 7.2, is about generating all possibilities, and it begins
with Section 7.2.1: Generating Basic Combinatorial Patterns. Fascicles for this
section have already appeared on the Web and/or in print. Section 7.2.2 will
deal with backtracking in general. And so it will go on, if all goes well; an outline
of the entire Chapter 7 as currently envisaged appears on the taocp webpage
that is cited on page ii.

The topic of Boolean functions and bit manipulation can of course be in-
terpreted so broadly that it encompasses the entire subject of computer pro-
gramming. My original title for Section 7.1 — “Bit Fiddling” — was much more
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iv PREFACE

modest; I decided, however, that that was a bit too low-brow. The real goal of
this fascicle is to focus on concepts that appear at the lowest levels, on which we
can erect significant superstructures. And even these apparently lowly notions
turn out to be surprisingly rich, with explicit ties to Sections 1.2.3, 1.2.6, 2.2.1,
2.2.3, 2.3.3, 3.3.2, 4.6, 4.6.1, 4.6.4, 5, 5.3.4, and 6.5 of the first three volumes.
I strongly believe in building up a firm foundation, so I have discussed Boolean
topics much more thoroughly than I will be able to do with material that is
newer or less basic. After typing the material I was astonished to discover that
I had come up with 129 exercises, even though—believe it or not—1I had to
eliminate quite a lot of the interesting material that appears in my files.

My notes on combinatorial algorithms have been accumulating for more
than forty years, so I fear that in several respects my knowledge is woefully
behind the times. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 66,
89, 90, 116, and 120; I’ve also implicitly mentioned or posed additional unsolved
questions in the answers to exercises 25, 27, and 93. Are those problems still
open? Please let me know if you know of a solution to any of these intriguing
questions. And of course if no solution is known today but you do make progress
on any of them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made up
as I was preparing this material. I certainly don’t like to get credit for things that
have already been published by others, and most of these results are essentially
“low-hanging fruits” that were just waiting to be plucked. Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 15, 25, 34(b,c,d), 41 (Solution 2), 47, 51, 81, 96, 104, 107(g,h), 118,
119, 123(c), 124, and 125. Furthermore I've credited exercises 60, 65, and 67 to
unpublished work of Craige Schensted, and exercise 57 to unpublished work of
Dan Pehoushek. Have any of those results appeared in print, to your knowledge?

I’ve decided to introduce the terms “proper Horn clause” and “proper Horn
function” in this draft; I hope they don’t conflict with anybody else’s usage.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
05 September 2005
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Yet now and then your men of wit
Will condescend to take a bit.

— JONATHAN SWIFT, Cadenus and Vanessa (1713)

If the base 2 is used the resulting units may be called binary digits,
or more briefly bits, a word suggested by J. W. Tukey.

— CLAUDE E. SHANNON, in Bell System Technical Journal (1948)

bit (bit), n ... [A] boring tool ...
— Random House Dictionary of the English Language (1987)

7.1. BIT MANIPULATION

COMBINATORIAL ALGORITHMS often require special attention to efficiency, and
the proper representation of data is an important way to gain the necessary
speed. It is therefore wise to beef up our knowledge of elementary representation
techniques before we set out to study combinatorial algorithms in detail.

Most of today’s computers are based on the binary number system, instead
of working directly with the decimal numbers that human beings prefer, because
machines are especially good at dealing with the two-state on-off quantities that
we usually denote by the digits 0 and 1. But in Chapters 1 to 6 we haven’t made
much use of the fact that binary computers can do several things quickly that
decimal computers cannot. A binary machine can usually perform “logical” or
“bitwise” operations just as easily as it can add or subtract; yet we have seldom
capitalized on that capability. We’ve seen that binary and decimal computers are
not significantly different, for many purposes, but in a sense we’ve been asking
a binary computer to operate with one hand tied behind its back.

The amazing ability of Os and 1s to encode information as well as to encode
the logical relations between items, and even to encode algorithms for processing
information, makes the study of binary digits especially rich. Indeed, we not only
use bitwise operations to enhance combinatorial algorithms, we also find that the
properties of binary logic lead naturally to new combinatorial problems that are
of great interest in their own right.

Computer scientists have gradually become better and better at taming the
wild Os and 1s of the universe and making them do useful tricks. But as bit
players on the world’s stage, we’d better have a thorough understanding of the
low-level properties of binary quantities before we launch into a study of higher-
level concepts and techniques. Therefore we shall start by investigating basic
ways to combine individual bits and sequences of bits.

7.1.1. Boolean Basics

There are 16 possible functions f(z,y) that transform two given bits = and y
into a third bit z = f(z,y), since there are two choices for each of f(0,0), f(0,1),
f(1,0), and f(1,1). Table 1 indicates the names and notations that have tradi-
tionally been associated with these functions in studies of formal logic, assuming
that 1 corresponds to “true” and O to “false.” The sequence of four values
£(0,0)£(0,1)£(1,0)f(1,1) is customarily called the truth table of the function f.
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Let us conceive, then, of an Algebra
in which the symbols X, y, z, &c. admit indifferently of
the values 0 and 1, and of these values alone.

— GEORGE BOOLE, An Investigation of the Laws of Thought (1854)

‘Contrariwise,’” continued Tweedledee, ‘if it was so, it might be;
and if it were so, it would be;
but as it isn’t, it ain’'t. That's logic.’

— LEWIS CARROLL, Through the Looking Glass (1871)

Such functions are often called “Boolean operations” in honor of George
Boole, who first discovered that algebraic operations on Os and 1s could be used
to construct a calculus for logical reasoning [The Mathematical Analysis of Logic
(Cambridge: 1847); An Investigation of the Laws of Thought (London: 1854)].
But Boole never actually dealt with the “logical or” operation V; he confined
himself strictly to ordinary arithmetic operations on Os and 1s. Thus he would
write x + y to stand for disjunction, but he took pains never to use this notation
unless z and y were mutually exclusive (not both 1). If necessary, he wrote
x + (1—2)y to ensure that the result of a disjunction would never be equal to 2.

When rendering the + operation in English, Boole sometimes called it “and,”
sometimes “or.” This practice may seem strange to modern mathematicians until
we realize that his usage was in fact normal English; we say, for example, that
“boys and girls are children,” but “children are boys or girls.”

Boole’s calculus was extended to include the unconventional rule z + z = =
by W. Stanley Jevons [Pure Logic (London: Edward Stanford, 1864), §69], who
pointed out that (z + y)z was equal to zz 4+ yz using his new + operation. But
Jevons did not know the other distributive law xy+2z = (z+z)(y+2). Presumably
he missed this because of the notation he was using, since the second distributive
law has no familiar counterpart in arithmetic; the more symmetrical notations
x Ay, ¢V y in Table 1 make it easier for us to remember both distributive laws

(Vy)Ahz = (Az)V(yAz); (1)
(xAy)Vz = (zVz)A(yV=2). (2)

The second law (2) was introduced by C. S. Peirce, who had discovered indepen-
dently how to extend Boole’s calculus [Proc. Amer. Acad. Arts and Sciences 7
(1867), 250-261]. Incidentally, when Peirce discussed these early developments
several years later [Amer. J. Math. 3 (1880), 32], he referred to “the Boolian
algebra, with Jevons’s addition”; his now-unfamiliar spelling of “Boolean” was
in use for many years, appearing in the Funk and Wagnalls unabridged dictionary
as late as 1963.

The notion of truth-value combination is actually much older than Boolean
algebra. Indeed, propositional logic had been developed by Greek philosophers
already in the fourth century B.C. There was considerable debate in those days
about how to assign an appropriate true-or-false value to the proposition “if x
then y” when x and y are propositions; Philo of Megara, about 300 B.C., defined
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Table 1
THE SIXTEEN LOGICAL OPERATIONS ON TWO VARIABLES
f;;ﬁl Notation(s) Soyll)ﬁll;?ﬁo:; Name(s)
0000 0 1 Contradiction; falsehood; constant 0
0001 ry, tAy, &y A Conjunction; and
0010 zAg, zdy, [z>y], z-y D Nonimplication; difference; but not
0011 x L Left projection
0100 Z Ay, z€vy, [z<y], y—z C Converse nonimplication; not ... but
0101 y R Right projection
0110 TPy, TZY, Y &) Exclusive disjunction; nonequivalence; “
0111 zVy, zl|y \Y% (Inclusive) disjunction; or; and/or
1000 ZANG, zVy, zVy, zly v Nondisjunction; joint denial; neither ...
1001 T=Y, TEY, TESY = Equivalence; if and only if
1010 g, -y, ly, ~y R Right complementation
1011 zVy, zCy,z<y, [z>y],z¥ C Converse implication; if
1100 z, —x, lz, ~x C Left complementation
1101 zZVy,zDy,z=>y, [z<y],y® D Implication; only if; if ... then
1110 zVy, TNy, cAy, x|y A Nonconjunction; not both ... and; “nand”
T

1111 1

Affirmation; validity; tautology; constant 1

it by the truth table shown in Table 1, which states in particular that the
implication is true when both z and y are false. Much of this early work has been
lost, but there are passages in the works of Galen (2nd century A.D.) that refer
to both inclusive and exclusive disjunction of propositions. [See I. M. Bochenski,
Formale Logik (1956), English translation by Ivo Thomas (1961), for an excellent
survey of the development of logic from ancient times up to the 20th century.)

A function of two variables is often written zoy instead of f(z, y), using some
appropriate operator symbol o. Table 1 shows the sixteen operator symbols that
we shall adopt for Boolean functions of two variables; for example, | symbolizes
the function whose truth table is 0000, A is the symbol for 0001, D is the symbol
for 0010, and so on. Wehave x | y =0,z Ay =ay,zDy=x -y, x Ly = x,
L EAY=ZV cTy=1

Of course the operations in Table 1 aren’t all of equal importance. For
example, the first and last cases are trivial, since they have a constant value
independent of z and y. Four of them are functions of = alone or y alone. We
write T for 1 — x, the complement of x.

The four operations whose truth table contains just a single 1 are easily
expressed in terms of the AND operator A, namely x Ay, t Ay, TAy, TAY.
Those with three 1s are easily written in terms of the OR operator V, namely
cVy, VY, TVy, VY. The basic functions z Ay and x V y have proved to be
more useful in practice than their complemented or half-complemented cousins,
although the NOR and NAND operations tVy = ZA g and z Ay = TV § are also
of interest because they are easily implemented in transistor circuits.
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In 1913, H. M. Sheffer showed that all 16 of the functions can be expressed
in terms of just one, starting with either V or A as the given operation (see
exercise 4). Actually C. S. Peirce had made the same discovery about 1880, but
his work on the subject remained unpublished until after his death [Collected
Papers of Charles Sanders Peirce 4 (1933), §§12-20, 264]. Table 1 indicates that
NAND and NOR have occasionally been written z | y and z | y; sometimes they
have been called “Sheffer’s stroke” and the “Peirce arrow.” Nowadays it is best
not to use Sheffer’s vertical line for NAND, because z |y denotes bitwise z V y in
programming languages like C.

So far we have discussed all but two of the functions in Table 1. The
remaining two are * =y and = @ y, “equivalence” and “exclusive-or,” which
are related by the identities

81
&®

=207 = 19zdy; (3)

xEy = Y
=y = xz=§ = 0=zx=y. (4)

Bl

rTdYy =

Both operations are associative (see exercise 6). In propositional logic, the notion
of equivalence is more important than the notion of exclusive-or, which means
inequivalence; but when we consider bitwise operations on full computer words,
we shall see in Section 7.1.3 that the situation is reversed: Exclusive-or turns
out to be the most useful of the two. The chief reason why x @ y has significant
applications, even in the one-bit case, is the fact that

c®y = (z+y)mod2. (5)

Therefore z@®y and Ay denote addition and multiplication in the field of two el-
ements (see Section 4.6), and @y naturally inherits many “clean” mathematical
properties.

Basic identities. Now let’s take a look at interactions between the fundamental
operators A, V, @, and 7, since the other operations are easily expressed in terms
of these four. Each of A, V, @ is associative and commutative. Besides the
distributive laws (1) and (2), we also have

(oY) nz = (zA2)@(yA2), (6)
as well as the absorption laws
(zAy)Ve = (zVy) Az = x. (7)
One of the simplest, yet most useful, identities is
@z = 0, (8)
since it implies among other things that
oy or =y, (tdy) Sy = 7, (9)

when we use the obvious fact that & 0 = z. In other words, given = @ y and
either x or y, it is easy to determine the other. And let us not overlook the
simple complementation law

T =zl (10)
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Another important pair of identities is known as De Morgan’s laws in honor
of Augustus De Morgan, who stated that “The contrary of an aggregate is the
compound of the contraries of the aggregants; the contrary of a compound is
the aggregate of the contraries of the components. Thus (A, B) and AB have
ab and (a,b) for contraries.” [Trans. Cambridge Philos. Soc. 10 (1858), 208.] In
more modern notation, these are the rules we have implicitly derived via truth
tables in connection with the operations NAND and NOR in Table 1, namely

TAy = TVy; (11)
xVy = TN. (12)

Incidentally, W. S. Jevons knew (12) but not (11); he consistently wrote AB +
BA + AB instead of A 4+ B for the complement of AB. Yet De Morgan was
not the first Englishman who enunciated the laws above. Both (11) and (12)
can be found in the early 14th century writings of two scholastic philosophers,
William of Ockham [Summa Logicae 2 (1323)] and Walter Burley [De Puritate
Artis Logicze (c. 1330)].

De Morgan’s laws and a few other identities can be used to express A, V,
and @ in terms of each other:

ANy = ZTVY = zdyd(zVy); (13)
tVy = ZAG = z2Dy® (zAy); (14)
z®y = (eVy) Az Ay = (NG V(TAY). (15)

According to exercise 7.1.2-00, all computations of 1y ® xo & - - - D x,, that use
only the operations A, V, and ~ must be at least 4(n — 1) steps long; thus, the
other three operations are not an especially good substitute for .

Functions of n variables. A Boolean function f(z,y, z) of three Boolean vari-
ables x, y, z can be defined by its 8-bit truth table f(0,0,0) f(0,0,1) ... f(1,1,1);
and in general, every n-ary Boolean function f(z1,...,z,) corresponds to a 2"-
bit truth table that lists the successive values of f(0,...,0,0), f(0,...,0,1),
F(0,...,1,0), ..., f(1,...,1,1).

We needn’t devise special names and notations for all these functions, since
they can all be expressed in terms of the binary functions that we’ve already
learned. For example, as observed by I. I. Zhegalkin [Matematicheskii Sbornik
35 (1928), 311-369], we can always write

flze, .. zn) = g(z1, ..o 20e1) @ h(z1,. ., Zn1) A2y (16)
when n > 0, for appropriate functions g and h, by letting

g(mla s 7xn71) = f(xla s 7xn7170);

h(il)l, e ,J,‘nfl) = f(il‘l, e 7$n7170) D f(l’l, ey Lp—1, 1)

(The operation A conventionally takes precedence over @, so we need not use
parentheses to enclose the subformula ‘h(z1,...,2,_1) A ,; on the right-hand
side of (16).) Repeating this process recursively on g and h until we’re down

(17)
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to 0-ary functions leaves us with an expression that involves only the operators
@, A, and a sequence of 2" constants; those constants can usually be simplified
away, because we have

xA0=0 and tAl=260=u=z. (18)
After applying the associative and distributive laws, we end up needing the
constant 0 only if f(x1,...,2,) is identically zero, and the constant 1 only if
£(0,...,0) = 1.

We might have, for instance,

f(@,y,2) = (1®0AZ) ® (0B 1Az)Ay) & (0B 1AZ) & (1® 1AT)Ay) Az
=(1®zAy) & (zBydDzAy)Az
=1 & Ay & zAz & yAz & TAyAz.

Furthermore, by rule (5), we see that we’re simply left with the polynomial
flz,y,2) = (14+2y+ 22+ yz + zyz) mod 2, (19)

because * Ay = xy. Notice that this polynomial is linear (of degree < 1) in
each of its variables. And in general, a similar calculation will show that any
Boolean function f(z1,...,z,) has a unique representation such as this, called
its multilinear representation, which is a sum (modulo 2) of zero or more of the
2" possible terms 1, x1, T2, 1T, T3, T1X3, LT3, TI1TL2L3, « .., T1T ... Tn.

George Boole decomposed Boolean functions in a different way, which is
often simpler for the kinds of functions that arise in practice. Instead of (16), he
essentially wrote

f(z1,. . @n) = (g(wl, ey 1) A jn) Vv (h(a;l, cey Tp1) A wn) (20)
and called it the “law of development,” where we now have simply

9(11117 v 7wn71) = f(xla v 7$n7170)7

h(xlv v 7$n—1) = f(xla sy Tn—1, 1)7

(21)

instead of (17). Repeatedly iterating Boole’s procedure, using the distributive
law (1), and eliminating constants, leaves us with a formula that is a disjunc-
tion of zero or more minterms, where each minterm is a conjunction such as
1 ANTa AT3 A\ x4Axs5 in which every variable or its complement is present. Notice
that a minterm is a Boolean function that is true at exactly one point.
For example, let’s consider the more-or-less random function f(w,z,y,2)
whose truth table is
11001001 0000 1111. (22)

When this function is expanded by repeatedly applying Boole’s law (20), we get
a disjunction of eight minterms, one for each of the 1s in the truth table:
fw,z,y,2) = (DAZAGAZ)V (DAZAGAZ) V (DAZAGAZ) V (DATAYAZ)
V(wAZAGAZ) V (WAZAGAZ) V (wAzAYyAZ) V (wATAYyAz). (23)
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In general, a disjunction of minterms is called a full disjunctive mormal
form. Every Boolean function can be expressed in this way, and the result
is unique — except, of course, for the order of the minterms. Nitpick: A special
case arises when f(z1,...,z,) is identically zero. We consider ‘0’ to be an empty
disjunction, with no terms, and we also consider ‘1’ to be an empty conjunction,
for the same reasons as we defined 22:1 ar = 0and H2:1 ax = 1in Section 1.2.3.

C. S. Peirce observed, in Amer. J. Math. 3 (1880), 37-39, that every Boolean
function also has a full conjunctive normal form, which is a conjunction of “min-
clauses” like T V 22 V T3 V T4 V T5. A minclause is 0 at only one point; so each
clause in such a conjunction accounts for a place where the truth table has a 0.
For example, the full conjunctive normal form of our function in (22) and (23) is

flw,z,y,2) = (wVaVvVyVz) A (wVzVgVE) A (wVEVYVZ) A (wVEVHV2)
A (wVzVyVz) A (wVezVyVz) A (wVzVyVz) A(wVezVyVz). (24)

Not surprisingly, however, we often want to work with disjunctions and con-
junctions that don’t necessarily involve full minterms or minclauses. Therefore,
following nomenclature introduced by Paul Bernays in his Habilitationsschrift
(1918), we speak in general of a disjunctive normal form or “DNF” as any
disjunction of conjunctions,

m  Sj
\/ /\ Uik = (U11 /\~-~/\u131) VeV (uml/\"'/\umsm)y (25)
j=1k=1
where each uji is a literal, namely a variable z; or its complement. Similarly,
any conjunction of disjunctions of literals,

m  Sj
/\ \/ Uik = (U1 V- Vurg) A A (Um1 Vo Vilms,, ), (26)
j=1k=1

is called a conjunctive normal form, or “CNF” for short.

A great many electrical circuits embedded inside today’s computer chips are
composed of “programmable logic arrays” (PLAs), which are ORs of ANDs of
possibly complemented input signals. In other words, a PLA basically computes
one or more disjunctive normal forms. Such circuits are fast, versatile, and
relatively inexpensive; and indeed, DNF's have played a prominent role in electri-
cal engineering ever since the 1950s, when switching circuits were implemented
with comparatively old-fashioned devices like relays or vacuum tubes. Therefore
people have long been interested in finding the simplest DNFs for classes of
Boolean functions, and we can expect that an understanding of disjunctive
normal forms will continue to be important as technology continues to evolve.

The terms of a DNF are often called implicants, because the truth of any
term in a disjunction implies the truth of the whole formula. In a formula like

flz,y,2) = (@AGA2Z)V(YyAz)V(TAYAZ),

for example, we know that f is true when Ay Az is true, namely when (z,y, z) =
(1,0,1). But notice that in this example the shorter term x A z also turns out to
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be an implicant of f, even though not written explicitly, because the additional
term y A z makes the function true whenever x = z = 1, regardless of the value
of y. Similarly, Z A y is an implicant of this particular function. So we might as
well work with the simpler formula

flz,y,2) = (@A) V(yAz)V(ZAY). (27)

At this point no more deletions are possible within the implicants, because
neither z nor y nor z nor 7 is a strong enough condition to imply the truth of f.
An implicant that can’t be factored further by removing any of its literals
without making it too weak is called a prime implicant, following the terminology
of W. V. Quine in AMM 59 (1952), 521-531.
These basic concepts can perhaps be understood most easily if we simplify
the notation and adopt a more geometric viewpoint. We can write simply *f(z)’

instead of f(z1,...,2,), and regard x as a vector, or as a binary string z; ...z,
of length n. For example, the strings wzyz where the function of (22) is true are
{0000, 0001, 0100, 0111, 1100, 1101, 1110, 1111}, (28)

and we can think of them as eight points in the 4-dimensional hypercube 2 x
2 X 2 x 2. The eight points in (28) correspond to the minterm implicants that
are explicitly present in the full disjunctive normal form (23); but none of those
implicants is actually prime. For example, the first two points of (28) make the
subcube 000%, and the last four points constitute the subcube 11x%x, if we use
asterisks to denote “wild cards” as we did when discussing database queries in
Section 6.5; therefore w A T A § is an implicant of f, and so is w A x. Similarly,
we can see that the subcube 000 accounts for two of the eight points in (28),
making w A g A Z an implicant.

In general, each prime implicant corresponds in this way to a mazimal
subcube that stays within the set of points that make f true. (The subcube
is maximal in the sense that it isn’t contained in any larger subcube with the
same property; we can’t replace any of its explicit bits by an asterisk. A maximal
subcube has a maximal number of asterisks, hence a minimal number of con-
strained coordinates, hence a minimal number of variables in the corresponding
implicant.) The maximal subcubes of the eight points in (28) are

000x, 0x00, %100, *111, 11xx; (29)
so the prime implicants of the function f(w,z,y, z) in (23) are
(WAZAG)V (@AGAZ)V (2 AGAZ)V (xAyAz)V (wAx). (30)

The disjunctive prime form of a Boolean function is the disjunction of all its
prime implicants. Exercise 30 contains an algorithm to find all the prime impli-
cants of a given function, based on a list of the points where the function is true.

We can define a prime clause in an exactly similar way: It is a disjunctive
clause that is implied by f, having no subclause with the same property. And
the conjunctive prime form of f is the conjunction of all its prime clauses. (An
example appears in exercise 19.)
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In many simple cases, the disjunctive prime form is the shortest possible
disjunctive normal form that a function can have. But we can often do better,
because we might be able to cover all the necessary points with only a few of
the maximal subcubes. For example, the prime implicant (y A z) is unnecessary
n (27). And in expression (30) we don’t need both (w A § A z) and (z A g A 2);
either one is sufficient, in the presence of the other terms.

Unfortunately, we will see in Section 7.9 that the task of finding a best
disjunctive normal form is NP-complete, thus quite difficult in general. But many
useful shortcuts have been developed for sufficiently small problems, and they
are well explained in the book Introduction to the Theory of Switching Circuits
by E. J. McCluskey (New York: McGraw—Hill, 1965). For later developments,
see Petr Fiser and Jan Hlavicka, Computing and Informatics 22 (2003), 19-51.

There’s an important special case for which the shortest DNF is, however,
easily characterized. A Boolean function is said to be monotone or positive if
its value does not change from 1 to 0 when any of its variables changes from 0
to 1. In other words, f is monotone if and only if f(x) < f(y) whenever = C y,
where the bit string © = z; ...z, is regarded as contained in or equal to the bit
string y = y1 ...yn if and only if «; < y; for all j. An equivalent condition (see
exercise 21) is that the function f either is constant or can be expressed entirely
in terms of A and V, without complementation.

Theorem Q. The shortest disjunctive normal form of a monotone Boolean
function is its disjunctive prime form.

Proof. [W. V. Quine, Boletin de la Sociedad Matemdtica Mexicana 10 (1953),
64-70.] Let f(z1,...,z,) be monotone, and let u; A ... Awus be one of its prime
implicants. We cannot have, say, u; = Z;, because in that case the shorter term
us A -+ A ug would also be an implicant, by monotonicity. Therefore no prime
implicant has a complemented literal.

Now if we set uy < - -- < ug < 1 and all other variables to 0, the value of f
will be 1, but all of f’s other prime implicants will vanish. Thus u; A ... A us
must be in every shortest DNF, because every implicant of a shortest DNF is
clearly prime. |

Corollary Q. A disjunctive normal form is the disjunctive prime form of a
monotone Boolean function if and only if it has no complemented literals and
none of its implicants is contained in another. |

Satisfiability. A Boolean function is said to be satisfiable if it is not identically
zero— that is, if it has at least one implicant. The most famous unsolved problem
in all of computer science is to find an efficient way to decide whether a given
Boolean function is satisfiable or unsatisfiable. More precisely, we ask: Is there an
algorithm that inputs a Boolean formula of length N and tests it for satisfiability,
always giving the correct answer after performing at most N9 steps?

When you hear about this problem for the first time, you might be tempted
to ask a question of your own in return: “What? Are you serious that computer
scientists still haven’t figured out how to do such a simple thing?”



10 COMBINATORIAL ALGORITHMS (FOB) 7.1.1

Well, if you think satisfiability testing is trivial, please tell us your method.
We agree that the problem isn’t always difficult; if, for example, the given formula
involves only 30 Boolean variables, a brute-force trial of 23° cases— that’s about
a billion — will indeed settle the matter. But an enormous number of practical
problems that still await solution can be formulated as Boolean functions with,
say, 100 variables, because mathematical logic is a very powerful way to express
concepts. And the solutions to those problems correspond to the vectors x =
21 ...2100 for which f(z) = 1. So a truly efficient solution to the satisfiability
problem would be a wonderful achievement.

There is at least one sense in which satisfiability testing is a no-brainer: If
the function f(z1,...,z,) has been chosen at random, so that all 2" truth tables
are equally likely, then f is almost surely satisfiable, and we can find an z with
f(z) = 1 after making fewer than 2 trials (on the average). It’s like flipping
a coin until it comes up heads; we rarely need to wait long. But the catch, of
course, is that practical problems do not have random truth tables.

Okay, let’s grant that satisfiability testing does seem to be tough, in general.
In fact, satisfiability turns out to be difficult even when we try to simplify it by
requiring that the Boolean function be presented as a “formula in 3CNF” —
namely as a conjunctive normal form that has only three literals in each clause:

flxe, .. zn) =1 Vur Vo) A (B2 Vug Vo) A A (tn Vit Vo). (31)

Here each t;, uj, and v; is z} or Zj for some k. The problem of deciding
satisfiability for formulas in 3CNF is called “3SAT,” and exercise 39 explains
why it is not really easier than satisfiability in general.

We will be seeing many examples of hard-to-crack 3SAT problems, especially
in Section 7.9, where satisfiability testing will be discussed in great detail. The
situation is a little peculiar, however, because a formula needs to be fairly long
before we need to think twice about its satisfiability. For example, the shortest
unsatisfiable formula in 3CNF is (x V2 V z) A (ZV Z V Z); but it is obviously
no challenge to the intellect. We don’t get into rough waters unless the three
literals ¢;, u;, v; of a clause correspond to three different variables. And in
that case, each clause rules out exactly 1/8 of the possibilities, because seven
different settings of (¢;,u;,v;) will make it true. Consequently every such 3CNF
with at most seven clauses is automatically satisfiable, and a random setting of
its variables will succeed with probability > 1 —7/8 = 1/8.

The shortest interesting formula in 3CNF therefore has at least eight clauses.
And in fact, an interesting 8-clause formula does exist, based on the associative
block design by R. L. Rivest that we considered in 6.5—(13):

(1‘2\/1‘3\/f4) N (1‘1 \/1113\/1‘4> A\ (fl\/l‘g\/l'z;) N (i‘1Vf2VCIJ3)
N (fz\/i'g\/x4) N (i‘l \/fg\/.’i4) A\ (Il\/iig\/iq) N (LElVl'QVCEg). (32)
Any seven of these eight clauses are satisfiable, in exactly two ways, and they

force the values of three variables; for example, the first seven imply that we have
r1xox3 = 001. But the complete set of eight cannot be satisfied simultaneously.

10



7.1.1 BOOLEAN BASICS 11

Simple special cases. Two important classes of Boolean formulas have been
identified for which the satisfiability problem does turn out to be pretty easy.
These special cases arise when the conjunctive normal form being tested consists
entirely of “Horn clauses” or entirely of “Krom clauses.” A Horn clause is an
OR of literals in which all or nearly all of the literals are complemented — at
most one of its literals is a pure, unbarred variable. A Krom clause is an OR of
exactly two literals. Thus, for example,

zVy, wVyVZz, uNVoVwVIVyVz and =z
are examples of Horn clauses; and
zVx, TV T, zVy, x VY, zVy, and zVy

are examples of Krom clauses, only the last of which is not also a Horn clause.
(The first example qualifies because z V x = z.) Notice that a Horn clause
is allowed to contain any number of literals, but when we restrict ourselves to
Krom clauses we are essentially considering the 2SAT problem. In both cases
we will see that satisfiability can be decided in linear time —that is, by carrying
out only O(N) simple steps, when given a formula of length N.

Let’s consider Horn clauses first. Why are they so easy to handle? The
main reason is that a clause like V7V @ V ZV §V z can be recast in the form
“(uAvAwAzAy)V z, which is the same as

UNVANWNANTNY = z.

In other words, if u, v, w, x, and y are all true, then z must also be true. For
this reason, parameterized Horn clauses were chosen to be the basic underlying
mechanism of the programming language called Prolog. Furthermore there is
an easy way to characterize exactly which Boolean functions can be represented
entirely with Horn clauses:

Theorem H. The Boolean function f(z1,...,x,) is expressible as a conjunction
of Horn clauses if and only if

f(xla"wxn) = f(y17-~-7yn) =1 implies f(wl AYiyeoosTn /\yn) =1 (33)
for all Boolean values x; and y;.
Proof. [Alfred Horn, J. Symbolic Logic 16 (1951), 1421, Lemma 7.] If we have
ToVELV- - VZ=land yoV§1 V-V ¥k = 1, then
(o AYo)VEL Ay V- VT Ayg
=(@oVZTL VI V- VI VYL) A (Yo VL VG V- VTV §k)
> (@ VIV VE)A (Yo VL V- Vi) = 1;
and a similar (but simpler) calculation applies when the unbarred literals zg
and yp are not present. Therefore every conjunction of Horn clauses satisfies (33).

Conversely, condition (33) implies that every prime clause of f is a Horn
clause (see exercise 44). |

11
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Let’s say that a Horn function is a Boolean function that satisfies con-
dition (33), and let’s also call it proper if it satisfies the further condition
f(1,...,1) = 1. Tt’s easy to see that a conjunction of Horn clauses is proper if
and only if each clause has exactly one unbarred literal, because only an entirely
negative clause like  V g will fail if all variables are true. Proper Horn functions
are slightly simpler to work with than Horn functions in general, because they
are obviously always satisfiable. Thus, by Theorem H, they have a unique least
vector x such that f(z) = 1, namely the bitwise AND of all vectors that satisfy
all clauses. The core of a proper Horn function is the set of all variables x; that
are true in this minimum vector . Notice that the variables in the core must
be true whenever f is true, so we can essentially factor them out.

Proper Horn functions arise in many ways, for example in the analysis of
games (see exercises 50 and 51). Another nice example comes from compiler
technology. Consider the following typical (but simplified) grammar for algebraic
expressions in a programming language:

(expression ) — (term ) | (expression )+ (term ) | ( expression ) - ( term )
(term ) — (factor) | =(factor) | (term ) * (factor) | (term ) / ( factor)
(factor ) — (variable) | (constant ) | ({expression))

(variable) — (letter) | (variable )(letter ) | ( variable )}{ digit ) (34)
(letter) > a|b|c

(constant ) — (digit ) | { constant )( digit )

(digit) =01

For example, the string a/(-b0-10)+cc*cc meets the syntax for ( expression )
and uses each of the grammatical rules at least once.

Suppose we want to know what pairs of characters can appear next to each
other in such expressions. Proper Horn clauses provide the answer, because
we can set the problem up as follows: Let the quantities Xx, xX, and xy denote
Boolean “propositions,” where X is one of the symbols {E, T,F,V,L, C,D} standing
respectively for (expression), (term), ..., (digit), and where x and y are sym-
bols in the set {+,-,%,/,(,),a,b,¢c,0,1}. The proposition Xx means, “X can
end with x”; similarly, xX means, “X can start with x”; and xy means, “The
character x can be followed immediately by y in an expression.” (There are
7x 11411 x 74 11 x 11 = 275 propositions altogether.) Then we can write

xT = xE = -T xC = xF Vx AyL = xy = Lc

Tx = Ex xF = —x Cx = Fx Vx AyD = xy xD = xC

Ex = x+ Tx = x* = (F Dx = Vx Dx = Cx

xT = +x xF = *xx xE = (x = aL Cx A yD = xy

Ex = x- Tx = x/ Ex = x) = La = 0D (35)

xT = -x xF = /x =F) = bL = DO

xF = xT xV = xF xL = xV = Lb = 1D

Fx = Tx Vx = Fx Lx = Vx = cL = D1
where x and y run through the eleven terminal symbols {+,...,1}. This sche-

matic specification gives us a total of 24 x 11 +3 x 11 x 11+ 13 x 1 = 640 proper

12
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Horn clauses, which we could write out formally as
(¥FTV+E) A (FTV-E) A--- A (T# VOLV+0) A --- A (D1)

if we prefer the cryptic notation of Boolean algebra to the = convention of (35).
Why did we do this? Because the core of all these clauses is the set of all
propositions that are true in this particular grammar. For example, one can
verify that -E is true, hence the symbols (- can occur next to each other within
an expression; but the symbol pairs ++ and *- cannot (see exercise 46).
Furthermore, we can find the core of any given set of proper Horn clauses
without great difficulty. We just start out with the propositions that appear
alone, on the right-hand side of = when the left-hand side is empty; thirteen
clauses of that kind appear in (35). And once we assert the truth of those
propositions, we might find one or more clauses whose left-hand sides are now
known to be true. Hence their right-hand sides also belong to the core, and
we can keep going in the same way. The whole procedure is pretty much like
letting water run downhill until it has found its proper level. In fact, when
we choose appropriate data structures, this downhill process goes quite fast,
requiring only O(N +n) steps, when N denotes the total length of the clauses and
n is the number of propositional variables. (We assume here that all clauses have
been expanded out, not abbreviated in terms of parameters like x and y above.
More sophisticated techniques of theorem proving are available to deal with
parameterized clauses, but they are beyond the scope of our present discussion.)

Algorithm C (Core computation for proper Horn clauses). Given a set P of
propositional variables and a set C' of clauses, each having the form

ug A Aup = v where k > 0 and {uq,...,ux, v} C P, (36)

this algorithm finds the set @ C P of all propositional variables that are neces-
sarily true whenever all of the clauses are true.

We use the following data structures for clauses ¢, propositions p, and
hypotheses h, where a “hypothesis” is the appearance of a proposition on the
left-hand side of a clause:

CONCLUSION(c) is the proposition on the right of clause c;
COUNT(¢) is the number of hypotheses of ¢ not yet asserted;
TRUTH(p) is 1 if p is known to be true, otherwise 0;

LAST (p) is the last hypothesis in which p appears;

CLAUSE(h) is the clause for which h appears on the left;

PREV (h) is the previous hypothesis containing the proposition of h.

We also maintain a stack Sg, Si1, ..., Ss_1 of all propositions that are known to
be true but not yet asserted.

C1. [Initialize.] Set LAST(p) < A and TRUTH(p) <« O for each proposition p.
Also set s < 0, so that the stack is empty. Then for each clause ¢, having
the form (36), set CONCLUSION(c) ¢ v and COUNT(c) + k. If kK = 0 and

13
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TRUTH(v) = 0, set TRUTH(v) < 1, S5 < v, and s < s + 1. Otherwise, for
1 < 5 <k, create a hypothesis record h and set CLAUSE(h) < ¢, PREV(h) <
LAST (u;), LAST (u;) < h.

C2. [Prepare to assert p.] Terminate the algorithm if s = 0; the desired core
now consists of all propositions whose TRUTH has been set to 1. Otherwise
set s s—1,p<+ S, and h «< LAST(p).

C3. [Done with hypotheses?] If h = A, return to C2.

C4. [Validate h.] Set ¢ < CLAUSE(h) and COUNT(c) < COUNT (¢) — 1. If the new
value of COUNT (¢) is still nonzero, go to step C6.

C5. [Deduce CONCLUSION(c).] Set p <— CONCLUSION(c). If TRUTH(p) = O, set
TRUTH(p) < 1, S5 < p, s < s+ 1.

C6. [Loop on h.] Set h + PREV(h) and return to C3. |

Notice how smoothly the data structures work together, avoiding any need to
search for a place to make progress in the calculation. Algorithm C is similar
in many respects to Algorithm 2.2.3T (topological sorting), which was the first
example of multilinked data structures that we discussed long ago in Chapter 2;
in fact, we can regard Algorithm 2.2.3T as the special case of Algorithm C in
which every proposition appears on the right-hand side of exactly one clause.
(See exercise 47.)

Exercise 48 shows that a slight modification of Algorithm C solves the
satisfiability problem for Horn clauses in general. Further discussion can be
found in a paper by W. F. Dowling and J. H. Gallier, J. Logic Programming 1
(1984), 267-284.

We turn now to Krom functions and the 2SAT problem. Again there’s a
linear-time algorithm; but again, we can probably appreciate it best if we look
first at a simplified-but-practical application. Let’s suppose that seven comedians
have each agreed to do one-night standup gigs at two of five hotels during a three-
day festival, but each of them is available for only two of those days because of
other commitments:

Tomlin should do Aladdin and Caesars on days 1 and 2;

Unwin should do Bellagio and Excalibur on days 1 and 2;

Vegas should do Desert and Excalibur on days 2 and 3;

Williams should do Aladdin and Desert on days 1 and 3; (37)
Xie should do Caesars and Excalibur on days 1 and 3;

Yankovic should do Bellagio and Desert on days 2 and 3;

Zany should do Bellagio and Caesars on days 1 and 2.

Is it possible to schedule them all without conflict?

To solve this problem, we can introduce seven Boolean variables {t, u, v, w,
x,y,z}, where t (for example) means that Tomlin does Aladdin on day 1 and
Caesars on day 2 while # means that the days and hotels occur in the opposite
order. Then we can set up constraints to ensure that no two comedians are

14
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booked in the same hotel on the same day:

—(tAw) [A1] -(yAz) [B2] —(tAz) [C2] —(wAy) D3]

—(u A z) [B1] —(tAz) [C1] =(vAy) D2 -(uAZ) [El] (38)
—~(@Ay) B2]  —(EAZ) (1] —(BAw) D3] —(uAD) (B2 O
—(a A Z) [B2] —(z A Z) [C1] -(TAy) D3 —(vAz) [E3]

Each of these constraints is, of course, a Krom clause; we must satisfy
(tvw) A (aVz) A (uVy) A (uVz) A (gVz) A ((VE) A (EVz) A (ZV2)
A(EVZ) A (0Vy) A (vVw) A (vVg) A (wVY) A (uVz) A (uVo) A (oVz). (39)
Furthermore, Krom clauses (like Horn clauses) can be written as implications:
t=>w, u=z, U=y, U=z, Y=z, t=I, t=z, T=2z,
t=z, v=>y, T=>w, 1=y, w=y, T=x, u=v, V=>I. (40)
And every such implication also has an alternative, “contrapositive” form:
w=t, z=u, y=u, z=u, z=>y, T=t, zZ=>t, Z=T,
2=t §=>v, w=v, y=v, y=w, T=>u, V=U, T=7. (41)
But oops —alas—there is a vicious cycle,

U= ZI=> 9y =>0=>u0=>2z=>1%t=>7I=u (42)
[B1] [B2] [D2] [E2] [B2] [C2] [C1] [E1]
This cycle tells that v and @ must both have the same value; so there is no way
to accommodate all of the conditions in (37). The festival organizers will have to
renegotiate their agreement with at least one of the six comedians {¢, u, v, z,y, 2},
if a viable schedule is to be achieved. (See exercise 52.)

Fig. 4. The digraph corresponding
to all implications of (40) and (41)
that do not involve either v or o.
Assigning appropriate values to the
literals in each strong component
will solve a binary scheduling prob-
lem that is an instance of 2SAT.

The organizers might, for instance, try to leave v out of the picture tem-
porarily. Then five of the sixteen constraints in (38) would go away and only 22
of the implications from (40) and (41) would remain, leaving the directed graph
illustrated in Fig. 4. This digraph does contain cycles, like z = 4 = = = 2z and
t = Z = t; but no cycle contains both a variable and its complement. Indeed,

15
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we can see from Fig. 4 that the values tuwxzyz = 110000 do satisfy every clause
of (39) that doesn’t involve v or ¥. These values give us a schedule that satisfies
six of the seven original stipulations in (37), starting with (Tomlin, Unwin, Zany,
Williams, Xie) at the (Aladdin, Bellagio, Caesars, Desert, Excalibur) on day 1.

In general, given any 2SAT problem with m Krom clauses that involve
n Boolean variables, we can form a directed graph in the same way. There
are 2n vertices {z1,Z1,...,Tn, Ty}, one for each possible literal; and there are
2m arcs of the form u — v and v — u, two for each clause u V v. Two literals
u and v belong to the same strong component of this digraph if and only if
there are oriented paths from u to v and from v to u. For example, the six
strong components of the digraph in Fig. 4 are indicated by dotted contours.
All literals in a strong component must have the same Boolean value, in any
solution to the corresponding 2SAT problem.

Theorem K. A conjunctive normal form with two literals per clause is satisfiable
if and only if no strong component of the associated digraph contains both a
variable and its complement.

Proof. [Melven Krom, Zeitschrift fiir mathematische Logik und Grundlagen der
Mathematik 13 (1967), 15-20, Corollary 2.2.] If there are paths from z to z and
from Z to x, the formula is certainly unsatisfiable.

Conversely, assume that no such paths exist. Any digraph has at least
one strong component S that is a “source,” having no incoming arcs from
vertices in any other strong component. Moreover, our digraph always has an
attractive antisymmetry, illustrated in Fig. 4: We have v — v if and only if
v — u. Therefore the complements of the literals in S form another strong
component S # S that is a “sink,” having no outgoing arcs to other strong
components. Hence we can assign the value 0 to all literals in S and 1 to
all literals in S, then remove them from the digraph and proceed in the same
way until all literals have received a value. The resulting values satisfy v < v
whenever u — v in the digraph; hence they satisfy u V v whenever @ V v is a
clause of the formula. 1

Theorem K leads immediately to an efficient solution of the 2SAT problem,
because of an algorithm by R. E. Tarjan that finds strong components in linear
time. [See SICOMP 1 (1972), 146-160; D. E. Knuth, The Stanford GraphBase,
512-519.] We shall study Tarjan’s algorithm in detail in Section 7.4.1. Exer-
cise 53 shows that the condition of Theorem K is readily checked whenever the
algorithm detects a new strong component. Furthermore, the algorithm detects
“sinks” first; thus, as a simple byproduct of Tarjan’s procedure, we can assign
values that establish satisfiability by choosing the value 1 for each literal in a
strong component that occurs before its complement.

Medians. We’ve been focusing on Boolean binary operations like zVy or x ®y.
But there’s also a significant ternary operation (zyz), called the median of z, y,
and z:

(zyz) = (zAy) V (yAz) V (zA2) = (zVy) A (yVz) A (zV2). (43)

16
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In fact, (zyz) is probably the most important ternary operation in the entire
universe, because it has amazing properties that are continually being discovered
and rediscovered.

In the first place, we can see easily that this formula for (zyz) describes the
majority value of any three Boolean quantities z, y, and z: (000) = (001) = 0
and (011) = (111) = 1. We call (zyz) the “median” instead of the “majority”
because, if x, y, and z are arbitrary real numbers, and if the operations A and V
denote min and max, then

(xyz) =y when z < y < 2. (44)
Secondly, the basic binary operations A and V are special cases of medians:

z ANy = (z0y); rVy = (rly). (45)

Thus any monotone Boolean function can be expressed entirely in terms of the
ternary median operator and the constants 0 and 1. In fact, if we lived in a
median-only world, we could let A stand for falsechood and V for truth; then
x Ay = (zAy) and = Vy = (2Vy) would be perfectly natural expressions,
and we could even use Polish notation like (Azy) and (Vay) if that was our
preference! The same idea applies to extended real numbers under the min-max
interpretation of A and V, if we take medians with respect to the constants
A = —o0 and V = +oc0.
A Boolean function f(x,zs,...,2,) is called self-dual when it satisfies

flz1, 20, ... 2n) = f(Z1,Za,...,Tn). (46)

We’ve noted that a Boolean function is monotone if and only if it can be expressed
in terms of A and V; by De Morgan’s laws (11) and (12), a monotone formula is
self-dual if and only if the symbols A and V can be interchanged without changing
the formula’s value. Thus the median operation defined in (43) is both monotone
and self-dual. In fact, it is the simplest nontrivial function of that kind, since
none of the binary operations in Table 1 are both monotone and self-dual except
the projections [ and R.

Furthermore, any expression that has been formed entirely with the median
operator, without using constants, is both monotone and self-dual. For example,
the function (w(zyz)(w(uvw)z)) is self-dual because

(wley2) wluow)a)) = (@ {ayz) (wlwvw)e))
= (@(zgE) (@ {wow) 7)) = (0(F52)(0(a00)3)).

Emil Post, while working on his Ph.D. thesis (1920), proved that the converse
statement is also true:

Theorem P. Every monotone, self-dual Boolean function f(x1,...,z,) can be
expressed entirely in terms of the median operation (vyz).

17
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Proof. [Annals of Mathematics Studies 5 (1941), 74-75.] Observe first that

[
(zry(way ... y(zs 1ys)...))
= ((931\/z2\/---\/xs_1 \/xs)/\y) V(g Aza Ao  Axs_q Axg); (47)

this formula for repeated medianing is easily proved by induction on s.
Now suppose f(x1,...,%,) is monotone, self-dual, and has the disjunctive
prime form

flz1,. . @) = 1V -- Vi, tj=xj1 N Nxjg,,

where no prime implicant ¢; is contained in another (Corollary Q). Any two prime
implicants must have at least one variable in common. For if we had, say, t; =
Ay and ty = u Av Aw, the value of f would be l whenz =y=1and u=v =
w = 0, as well as when x = y = 0 and u = v = w = 1, contradicting self-duality.
Therefore if any ¢; consists of a single variable z, it must be the only prime

implicant —in which case f is the trivial function f(zi,...,z,) =z = (zvzz).
Define the functions gg, g1, -- ., gm by composing medians as follows:
Ty.eeyTy) = (T12121);
gO( 1 ) n) < 141 1>7 (48)

gj(xla"')xn) = h‘(lea"')xjsj;gj—l(xla-'-axn))a for 1 < .] < m;

here h(z1,...,xs;y) denotes the function on the top line of (47). By induction
on j, we can prove from (47) and (48) that g;(x1,...,2,) = 1 whenever we have
ty V.- Vit; =1, because (w1 V-V xjs,) Ay =ty when k < j.

Finally, f(z1,...,x,) must equal g, (z1,...,z,), because both functions are
monotone and self-dual, and we have shown that f(z1,...,z,) < g(z1,...,2y)
for all combinations of Os and 1s. This inequality suffices to prove equality,
because a self-dual function equals 1 in exactly half of the 2™ possible cases. |

One consequence of Theorem P is that we can express the median of five
elements via medians of three, because the median of any odd number of Boolean
variables is obviously a monotone and self-dual Boolean function. Let’s write
(21 ...295_1) for such a median. Then the disjunctive prime form of (vwzyz) is

(vAwAZ) V (VAWAY) V (VAWAZ) V (VAZAY) V (VAZAZ)
V (vAYAz) V (wAzAY) V (wAZAZ) V (WAYAz) V (2AYAZ);
so the construction in the proof of Theorem P expresses (vwzyz) as a huge
formula g10(v, w,z,y, z) involving 1,022 median-of-3 operations. Of course this
expression isn’t the shortest possible one; we actually have
(vwayz) = (v(zyz)(wz(wyz))). (49)
[See H. S. Miiller and R. O. Winder, IRE Transactions EC-11 (1962), 89-90.]
*Median algebras and median graphs. We noted earlier that the ternary
operation {(zyz) is useful when z, y, and z belong to any ordered set like the real

numbers, when A and V are regarded as the operators min and max. In fact,
the operation (zyz) also plays a useful role in far more general circumstances. A
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median algebra is any set M on which a ternary operation (zyz) is defined that
takes elements of M into elements of M and obeys the following three axioms:

(zzy) =z (majority law); (50)
(xyz) = (xzy) = (yxz) = (yzz) = (zzy) = (zyz) (commutative law); (51)
(zwl{ywz)) = ({(zwy)wz) (associative law). (52)

In the Boolean case, for example, the associative law (52) holds for w = 0 and
w = 1 because A and V are associative. Exercise 74 proves that these three
axioms imply also a distributive law for medians, which has both a short form

((zyzyuv) = (z(yuv)(zuv)) (53)
and a more symmetrical long form
<<xyz>uv> = <<xuv><yuv><zuv>> (54)

No simple proof of this fact is known, but we can at least verify the special case
of (53) and (54) when y = w and z = v: We have

((myz)yz) = (xyz) (55)

because both sides equal (zy(zyz)). In fact, the associative law (52) is just the
special case y = u of (53). And with (55) and (52) we can also verify the case

= u ((uyz)uww) = (vulyuz)) = ((vuy)uz) = ((yw)uz) = (((yuv)uv)uz) =
{{yuv)ulvuz)) = (u(ywv)(zuv)).

An ideal in a median algebra M is a set C' C M for which we have
(zyz) € C whenever x € C,y € C, and z € M. (56)
If uw and v are any elements of M, the interval [u..v] is defined as follows:
[u..v] = {(xuv)‘xEM} (57)

We say that “z is between u and v” if and only if € [u..v]. According to these
definitions, u and v themselves always belong to the interval [u..v].

Lemma M. Every interval [u..v] is an ideal, and x € [u..v] <= x = (uzv).
Proof. Let (zuv) and (yuv) be arbitrary elements of [«..v]. Then
((zuv)(yuv)z) = ((zyz)uwv) € [u..v]

for all z € M, by (51) and (53), so [u..v] is an ideal. Furthermore every element
(zwv) € [u..v] satisfies (zuv) = (u(zuv)v) by (51) and (55). 1

Our intervals [u..v] have nice properties, because of the median laws:

vEu..ul = u=uv; (58)
z€u..vJandy €fu..z] = y€[u..v; (59)
z€fu..vJandy€fu..zlandy€v..2] = ye€[z..z]. (60)

Equivalently, [u..u] = {u}; if z € [u..v] then [u..z] C [u..v]; and = € [u..v]
also implies that [u..z]N[v..z] C [z..z] for all z. (See exercise 70.)
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Now let’s define a graph on the vertex set M, with the following edges:
u—v <= u#vand (zuv) € {u,v} for all x € M. (61)

In other words, u and v are adjacent if and only if the interval [u .. v] consists of
just the two points u and v.

Theorem G. If M is any finite median algebra, the graph defined by (61) is
connected. Moreover, vertex x belongs to the interval [u..v] if and only if x lies
on a shortest path from u to v.

Proof. If M isn’t connected, choose u and v so that there is no path from w

to v and the interval [u..v] has as few elements as possible. Let z € [u..v] be

distinct from u and v. Then (zuv) = x # v, so v ¢ [u..z]; similarly u ¢ [z..v].

But [u..z] and [z..v] are contained in [u..v], by (59). So they are smaller

intervals, and there must be a path from u to z and from z to v. Contradiction.
The other half of the theorem is proved in exercise 71. |

Our definition of intervals implies that (zyz) € [z..y]|N[z..2]N]y..z],
because (ryz) = <<xyz)xy> = <<xyz>:vz> = <<xyz>yz> by (55). Conversely,
ifwelz..yyNfz..z]N[y..z], exercise 72 proves that w = (ryz). In other
words, the intersection [z ..y]|N[z..z]N[y..z] always contains exactly one point,
whenever x, y, and z are points of M.

Figure 5 illustrates this principle in a 4 X 4 X 4 cube, where each point x has
coordinates (z1,z2,x3) with 0 < z1,z3,x3 < 4. The vertices of this cube form a
median algebra because (zyz) = (<{E1y121>, (x2y222), <x3y323>); furthermore, the
edges of the graph in Fig. 5 are those defined in (61), running between vertices
whose coordinates agree except that one coordinate changes by 1. Three typical
intervals [z ..y], [z..z], and [y .. z] are shown; the only point common to all three
intervals is the vertex (zyz) = (2,2,1).

(a) The interval [z..y]. (b) The interval [z .. z]. (c) The interval [y .. z].

Fig. 5. Intervals between the vertices z = (0,2,1),
y=1(3,3,3), and z = (2,0,0) in a 4 X 4 x 4 cube.

20
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So far we’ve started with a median algebra and used it to define a graph with
certain properties. But we can also start with a graph that has those properties
and use it to define a median algebra. If v and v are vertices of any graph, let us
define the interval [u..v] to be the set of all points on shortest paths between u
and v. A finite graph is said to be a median graph if exactly one vertex lies in the
intersection [z ..y]N[z..z]N[y.. 2] of the three intervals that tie any three given
vertices z, y, and z together; and we denote that vertex by (zyz). Exercise 73
proves that the resulting ternary operation satisfies the median axioms.

Many important graphs turn out to be median graphs according to this
definition. For example, any free tree is easily seen to be a median graph; and a
graph like the ny Xng X - - - X n,, hyperrectangle provides another simple example.
Cartesian products of arbitrary median graphs also satisfy the required condition.

*Median labels. If u and v are any elements of a median algebra, the mapping
f(z) that takes x — (zuv) is a homomorphism; that is, it satisfies

f((zyz)) = (f(2) f(y) f(2)), (62)

because of the long distributive law (54). This function “projects” any given
point z into the interval [u..v], by (57). And it is particularly interesting in the
case when u — v is an edge of the corresponding graph, because f(z) is then
essentially a Boolean mapping.

For example, consider the typical free tree shown below, with eight vertices
and seven edges. We can project each vertex z onto each of the edge intervals
[w..v] by deciding whether z is closer to u or to v:

ac bc cd de ef eg dh

a— a ¢ ¢ d e e d 0000000

b— c¢c b ¢c d e e d 1100000

a b cr c c c d e e d 1000000
¢ d— ¢ ¢c d d e e d 1010000 (63)

d e c c d e e e d 1011000

€ h fr=c c d e f e d 1011100

! g g c ¢ d e e g d 1011010

h—= c c d d e e h 1010001

On the right we’ve reduced the projections to Os and 1s, arbitrarily deciding that
a — 0000000. The resulting bit strings are called labels of the vertices, and we
write, for example, {(b) = 1100000. Since each projection is a homomorphism,
we can calculate the median of any three points by simply taking Boolean
medians in each component of their labels. For example, to compute (bgh) we
find the bitwise median of [(b) = 1100000, I(g) = 1011010, and I(h) = 1010001,
namely 1010000 = I(d).

When we project onto all the edges of a median graph, we might find that
two columns of the binary labels are identical. This situation cannot occur with
a free tree, but let’s consider what would happen if the edge g — h were added
to the tree in (63): The resulting graph would still be a median graph, but the
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22 COMBINATORIAL ALGORITHMS (FOB) 7.1.1

columns for eg and dh would become identical (except with e <+ d and g <> h).
Furthermore, the new column for gh would turn out to be equivalent to the
column for de. Redundant components should be omitted from the labels in
such cases; therefore the vertices of the augmented graph would have six-bit
labels, like I(g) = 101101 and I(h) = 101001, instead of seven-bit labels.

The elements of any median algebra can always be represented by labels in
this way. Therefore any identity that holds in the Boolean case will be true in
all median algebras. This “zero-one principle” makes it possible to test whether
any two given expressions built from the ternary operation (xyz) can be shown
to be equal as a consequence of axioms (50), (51), and (52) —although we do
have to check 2! —1 cases when we test n-variable expressions by this method.

For example, the associative law (zw(ywz)) = ((zwy)wz) suggests that
there should be a symmetrical interpretation of both sides that does not involve
nested brackets. And indeed, there is such a formula:

<xw<ywz)> = <<xwy>wz> = (zwywz), (64)

where (zwywz) denotes the median of the five-element multiset {z, w,y,w, 2z} =
{w,w,z,y,z}. We can prove this formula by using the zero-one principle, noting
also that median is the same thing as majority in the Boolean case. In a similar
way we can prove (49), and we can show that the function used by Post in (47)
can be simplified to

(zry(@ay ... y(@s_1yzs) . ..)) = (T1YT2Y ... YToo1YTs); (65)

it’s a median of 2s — 1 quantities, where nearly half of them are equal to y.

A set C of vertices in a graph is called convez if [u..v] C C whenever
u € C and v € C. In other words, whenever the endpoints of a shortest path
belong to C, all vertices of that path must also be present in C. (A convex
set is therefore identical to what we called an “ideal,” a few pages ago; now
our language has become geometric instead of algebraic.) The conver hull of
{v1,...,vm} is defined to be the smallest convex set that contains each of the
vertices vy, ..., Un,. Our theoretical results above have shown that every interval
[w..v] is convex; hence [u..v] is the convex hull of the two-point set {u,v}. But
in fact much more is true:

Theorem C. The convex hull of {vy,vs,...,vy} in a median graph is the set
of all points
C = {(niavez...zvm) | v € M}. (66)

Furthermore, x is in C if and only if x = (vizvaT ... TVy,).

Proof. Clearly v; € C for 1 < j < m. Every point of C must belong to the
convex hull, because the point ' = (vax...zvy,) is in the hull (by induction
on m), and because x € [v1 ..z']. The zero-one principle proves that

<$<711yv2y--~yvm><vlzv2z~-~2vm>> = <111 (zyz)va (zy2) ... <xyz>vm>; (67)

hence C is convex. Setting z = y in this formula proves that (vizvex ... zv,,) is
the closest point of C' to z, and that (vizvex...zvy) € [z..z]forallze C. |
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Corollary C. Let the label of v; be v;1 ...vj for 1 < j < m. Then the convex
hull of {vy,...,vm} Is the set of all x € M whose label 1 ...z, satisfies x; = ¢;
whenever vi; = vg; = - = U =¢5. |

For example, the convex hull of {c,g,h} in (63) consists of all elements whose
label matches the pattern 10%x0xx*, namely {c,d, e, g,h}.

When a median graph contains a 4-cycle u — x — v — y — u, the edges
u— x and v — y are equivalent, in the sense that projection onto [u..z] and
projection onto [v..y] both yield the same label coordinates. The reason is that,
for any z with (zuz) = u, we have

y = (uvy) = ((zuz)oy)
= <<zvy><uvy><fwy>>
= ((zvy)yv),

hence (zvy) = y; similarly (zuz) = z implies (zvy) = v. The edges * — v and
y — u are equivalent for the same reasons. Exercise 75 shows, among other
things, that two edges yield equivalent projections if and only if they can be
proved equivalent by a chain of equivalences obtained from 4-cycles in this way.
Therefore the number of bits in each vertex label is the number of equivalence
classes of edges induced by the 4-cycles; and it follows that the reduced labels for
vertices are uniquely determined, once we specify a vertex whose label is 00. .. 0.

A nice way to find the vertex labels of any median graph was discovered
by J. Hagauer, W. Imrich, and S. Klavzar [Theoretical Computer Science 215
(1999), 123-136]:

Algorithm H (Median labels). Given a median graph G and a source vertex a,
this algorithm determines the equivalence classes defined by the 4-cycles of G,
and computes the labels I(v) = vy ...v; of each vertex, where ¢ is the number of
classes and I(a) =0...0.

H1. [Initialize.] Preprocess G by visiting all vertices in order of their distance
from a. For each edge u— v, we say that u is an early neighbor of v if a is
closer to w than to v, otherwise u is a late neighbor; in other words, the early
neighbors of v will already have been visited when v is encountered, but the
late neighbors will still be awaiting their turn. Rearrange all adjacency lists
so that early neighbors are listed first. Place each edge initially in its own
equivalence class; a “union-find algorithm” like Algorithm 2.3.3E will be
used to merge classes when the algorithm learns that they’re equivalent.

H2. [Call the subroutine.] Set j <— 0 and invoke Subroutine I with parameter a.
(Subroutine I appears below. The global variable j will be used to create a
master list of edges r; — s; for 1 < j < n, where n is the total number of
vertices; there will be one entry with s; = v, for each vertex v # a.)

H3. [Assign the labels.] Number the equivalence classes from 1 to ¢. Then set

l(a) to the t-bit string 0...0. For j =1, 2, ..., n — 1 (in this order), set
I(sj) to I(r;) with bit k changed from 0 to 1, where k is the equivalence
class of edge r; —s;. 1
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Subroutine I (Process descendants of r). This recursive subroutine, with
parameter r and global variable j, does the main work of Algorithm H on
the graph of all vertices currently reachable from vertex r. In the course of
processing, all such vertices will be recorded on the master list, except r itself,
and all edges between them will be removed from the current graph. Each vertex
has four fields called its LINK, MARK, RANK, and MATE.

I1. [Loop over s.] Choose a vertex s with r — s. If there is no such vertex,
return from the subroutine.

I2. [Record the edge.] Set j <— j+ 1, rj < r, and s; < s.

I3. [Begin breadth-first search.] (Now we want to find and delete all edges
of the current graph that are equivalent to » — s.) Set MARK(s) < s,
RANK(s) < 1, LINK(s) < A, and v < q < s.

I4. [Find the mate of v.] Find the early neighbor u of v for which MARK (u) # s.
(There will be exactly one such vertex u. Recall that early neighbors have
been placed first, in step H1.) Set MATE(v) « u.

I5. [Delete u — v.] Make the edges u — v and r — s equivalent by merging
their equivalence classes. Remove u and v from each other’s adjacency lists.

16. [Classify the neighbors of v.] For each early neighbor u of v, do step I7; for
each late neighbor u of v, do step I8. Then go to step I9.

I7. [Note a possible equivalence.] If MARK(u) = s and RANK(u) = 1, make the
edge u— v equivalent to the edge MATE (u) — MATE (v). Return to I6.

I8. [Rank w.] If MARK(u) = s and RANK(u) = 1, return to I6. Otherwise set
MARK (u) < s and RANK(u) < 2. Set w to the first neighbor of u (it will
be early). If w = v, reset w to u’s second early neighbor; but return to I6
if w has only one early neighbor. If MARK(w) # s or RANK(w) # 2, set
RANK(u) < 1, LINK(u) < A, LINK(g) < u, and g < u. Return to I6.

I9. [Continue breadth-first search.] Set v <— LINK(v). Return to I4 if v £ A.

I10. [Process subgraph s.] Call Subroutine I recursively with parameter s. Then
return to I1. |

This algorithm and subroutine have been described in terms of relatively high-
level data structures; further details are left to the reader. For example, adja-
cency lists should be doubly linked, so that edges can readily be deleted in step I5.
Any convenient method for merging equivalence classes can be used in that step.

Exercise 75 explains the theory that makes this algorithm work, and ex-
ercise 76 proves that each vertex is encountered at most lgn times in step I4.
Furthermore, exercise 77 shows that a median graph has at most O(nlogn)
edges. Therefore the total running time of Algorithm H is O(n(logn)?), except
perhaps for the bit-setting in step H3.

The reader may wish to play through Algorithm H by hand on the median
graph in Table 2, whose vertices represent the twelve monotone self-dual Boolean
functions of four variables {w,z,y,z}. All such functions that actually involve
all four variables can be expressed as a median of five things, like (64). With
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Table 2

LABELS FOR THE FREE MEDIAN ALGEBRA ON FOUR GENERATORS

«z i 5 1(s;)
Yy - w 0000000
| (awz) 1w (wwaeyz) 0000001
<« (wayzz) 2 (wwzyz) (wyz) 0010001
(wryyz) > 3 (wyz) (wzyzz) 0010101
_ > 4 (wxyzz TYZ 0010111
wu2) £ — (wawyz) 5 Ewmyzzi | 2 > 1010101
<« (wzz) 6 (wyz) (wzyyz) 0010011
(way) — 7 (wzyyz) Y 0110011
(wwzyz) ——— l z 8 (wwzyz) (wzz) 0000101
9 (wzz) (wzzyz) 0000111
W— 10 (wzzyz) z 0001111
11 (wwzyz) (wzy) 0000011

starting vertex a = w, the algorithm computes the master list of edges 7; — s;
and the binary labels shown in the table. (The actual order of processing depends
on the order in which vertices appear in adjacency lists. But the final labels will
be the same under any ordering, except for permutations of the columns.)

Notice that the number of 1-bits in each label I(v) is the distance of v from
the starting vertex a. In fact, the uniqueness of labels tells us that the distance
between any two vertices is the number of bit positions in which their labels
differ, because we could have started at any particular vertex.

The special median graph in Table 2 could actually have been handled in a
completely different way, without using Algorithm H at all, because the labels
in this case are essentially the same as the truth tables of the corresponding
functions. Here’s why: We can say that the simple functions w, z, y, z have
the respective truth tables ¢(w) = 0000000011111111, #(z) = 0000111100001111,
t(y) = 0011001100110011, £(z) = 0101010101010101. Then the truth table of
(wwxyz) is the bitwise majority function <t(w)t(w)t(x)t(y)t(z)>, namely the
string 0000000101111111; and a similar computation gives the truth tables of all
the other vertices.

The last half of any self-dual function’s truth table is the same as the first
half, but complemented and reversed, so we can eliminate it. Furthermore the
leftmost bit in each of our truth tables is always zero. We are left with the
seven-bit labels shown in Table 2; and the uniqueness property guarantees that
Algorithm H will produce the same result, except for possible permutation of
columns, when it is presented with this particular graph.

This reasoning tells us that the edges of the graph in Table 2 correspond to
pairs of functions whose truth tables are almost the same. We move between
neighboring vertices by switching only two complementary bits of their truth
tables. In fact, the degree of each vertex turns out to be exactly the number of
prime implicants in the disjunctive prime form of the monotone self-dual function
represented by that vertex (see exercises 68 and 82).
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*Median sets. A median set is a collection X of binary vectors with the property
that (xyz) € X whenever z € X, y € X, and z € X, where the medians are
computed componentwise as we've done with median labels. Thomas Schaefer
noticed in 1978 that median sets provide us with an attractive counterpoint to
the characterization of Horn functions in Theorem H:

Theorem S. The Boolean function f(z1,...,x,) is expressible as a conjunction
of Krom clauses if and only if

flz1, - o zn) = flyry - yyn) = f21,.-0,20) =1
implies f(<x1y121>7 te <xnynzn>) =1 (68)

for all Boolean values x;, y;, and z;.

Proof. [STOC 10 (1978), 216-226, Lemma 3.1B.] If we have x1 V23 = y; Vy2 =
z1Vzg = 1, say, with 21 < y; < 21, then (x1y121) V (Z2y222) = y1 V (x2y222) = 1,
since y; = 0 implies that o = yo = 1. Thus (68) is necessary.

Conversely, if (68) holds, let u; V - -V uy be a prime clause of f, where each
u; is a literal. Then, for 1 < j <k, the clause uq V- Vuj_1 Vujpq V- Vuyg is
not a clause of f; so there’s a vector (9) with f(:v(j)) = 1 but with »;”’ =0 for
all i # j. If k > 3, the median (z(MzPz®)) has u; = 0 for 1 < i < k; but that’s
impossible, because u; V - - -V up was supposedly a clause. Hence & < 2. |

Thus median sets are the same as “2SAT instances,” the sets of points that satisfy
some formula f in 2CNF.

A median set is said to be reduced if its vectors x = zy...x; contain no
redundant components. In other words, for each coordinate position k, a reduced
median set has at least two vectors #(¥) and y*) with the property that x,(ck) =0
and y,(ck) =1 but xgk) = ygk) for all 7 # k. We’ve seen that the labels of a median
graph satisfy this condition; in fact, if coordinate k corresponds to the edge u — v
in the graph, we can let (®) and y(®) be the labels of v and v. Conversely, any
reduced median set X defines a median graph, with one vertex for each element
of X and with adjacency defined by all-but-one equality of coordinates. The
median labels of these vertices must be identical to the original vectors in X,
because we know that median labels are essentially unique.

Median labels and reduced median sets can also be characterized in yet
another instructive way, which harks back to the networks of comparator modules
that we studied in Section 5.3.4. We noted in that section that such networks
are useful for “oblivious sorting” of numbers, and we noted in Theorem 5.3.4Z
that a network of comparators will sort all n! possible input permutations if and
only if it correctly sorts all 2" combinations of Os and 1s. When a comparator
module is attached to two horizontal lines, with inputs  and y entering from
the left, it outputs the same two values on the right, but with min(z,y) =z Ay
on the upper line and max(z,y) = z V y on the lower line. Let’s now extend
the concept slightly by also allowing inverter modules, which change 0 to 1 and
vice versa. Here, for example, is a comparator-inverter network (or CI-net, for
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short), which transforms the binary value 0010 into 0111:

(69)

o = O O
= O = O
—_ e O

B—~
=)
o = O O

S O O =
O = ==
=)

(A single dot denotes an inverter.) Indeed, this network transforms

0000 +— 0110; 0100 — 0111; 1000 — 0111; 1100 — 0110;
0001 — 0111; 0101 — 1111; 1001 — 0101; 1101 — 0111;
0010 > 0111, 0110 — 1111, 1010 — 0101; 1110 — 0111; (70)
0011 — 0110; 0111 — 0111; 1011 — 0111; 1111 — 0110.

Suppose a Cl-net transforms the bit string x = z, ...z, into the bit string
2y ...x; = f(x). This function f, which maps the ¢-cube into itself, is in fact a
graph homomorphism. In other words, we have f(x) — f(y) whenever z — y in
the ¢-cube: Changing one bit of z always causes exactly one bit of f(z) to change,
because every module in the network has this behavior. Moreover, CI-nets have
a remarkable connection with median labels:

Theorem F. Every set X of t-bit median labels can be represented by a
comparator-inverter network that computes a Boolean function f(z) with the
property that f(z) € X for all bit vectors xy ...x¢, and f(z) =z for all z € X.

Proof. [Tomas Feder, Memoirs Amer. Math. Soc. 555 (1995), 1-223, Lemma 3.37.]
Consider columns ¢ and j of the median labels, where 1 < i < 7 <t. Any such
pair of columns contains at least three of the four possibilities {00,01,10,11}, if
we look through the entire set of labels, because median labels have no redundant
columns. Let us write 7 — 4, j — 4, ¢ — j, or ¢ — 7 if the value 00, 01, 10, or 11
(respectively) is missing from those two columns; we can also note the equivalent
relations 7 — j, 7 — 7, 7 — 1, or j — 1, respectively, which involve 7 instead of i.
For example, the labels in Table 2 give us the relations

1—2,3,4,5,6,7 2,3,4,5,6,7 = 1;
2 —3,4,5,6,7 3,4,5,6,7 — 2;
34,7 4,7 = 3;
_ - T (71)
4 —5,6,7 5,6,7 — 4;
57 7 5;
67 7 — 6.

(There is no relation between 3 and 5 because all four possibilities occur in those
columns. But we have 3 — 4 because 11 doesn’t appear in columns 3 and 4.
The vertices whose label has a 1 in column 3 are those closer to {(wyz) than to
(wwzyz) in Table 2; they form a convex set in which column 4 of the labels is
always 0, because they are also closer to (wzzyz) than to x.)

These relations between the literals {1,1,2,2,...,¢,} contain no cycles,
so they can always be topologically sorted into an anti-symmetrical sequence
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Uy Uz ... Uz in which u; is the complement of ug:y1—;. For example,
17423566532471 (72)
is one such way to sort the relations in (71) topologically.

Now we proceed to construct the network, by starting with ¢ empty lines
and successively examining elements up and ug4q in the topological sequence,
ford=2t—2,2t—3, ..., 1 (in this order), and for k =1, 2, ..., t — [d/2]. If
Uk < Upyq is a relation between columns ¢ and j, where ¢ < j, we append new
modules to lines ¢ and j of the network as follows:

Ifi—j Ifi—7 Ifzr—j Ifz—7
e e

For example, from (71) and (72) we first enforce 1 — 7, then 1 — 4, then 1 — 2,
then 7 — 4 (that is, 4 — 7), etc., obtaining the following network:

)

)
T (74)

)

(Go figure. No modules are contributed when, say, uy is 7 and ug 4 is 3, because
the relation 3 — 7 does not appear in (71).)

Exercise 87 proves that each new cluster of modules (73) preserves all of the
previous inequalities and enforces a new one. Therefore, if x is any input vector,
f(z) satisfies all of the inequalities; so f(z) € X by Theorem S. Conversely, if
x € X, every cluster of modules in the network leaves z unchanged. |

Corollary F. Suppose the median labels in Theorem F are closed under the
operations of bitwise AND and OR, so that vt & y € X and z | y € X whenever
xz € X and y € X. Then there is a permutation of coordinates under which the
labels are representable by a network of comparator modules only.

Proof. The bitwise AND of all labelsis 0. . .0, and the bitwise ORis 1...1. So the
only possible relations between columns are ¢ — j and j — 7. By topologically
sorting and renaming the columns, we can ensure that only ¢ — j occurs when
t < j; and in this case the construction in the proof never uses an inverter. |

In general, if G is any graph, a homomorphism f that maps the vertices of G
onto a subset X of those vertices is called a retraction if it satisfies f(z) = « for all
x € X; and we call X a retract of G when such an f exists. The importance of this
concept in the theory of graphs was first pointed out by Pavol Hell [see Lecture
Notes in Math. 406 (1974), 291-301]. One consequence, for example, is that
the distance between vertices in X —the number of edges on a shortest path —
remains the same even if we restrict consideration to paths that lie entirely in X.
(See exercise 91.)

Theorem F demonstrates that every t-dimensional set of median labels is
a retract of the t-dimensional hypercube. Conversely, exercise 92 shows that
hypercube retracts are always median graphs.
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Threshold functions. A particularly appealing and important class of Boolean

functions f(z1,z3,...,T,) arises when f can be defined by the formula
flz1,zo,...,xn) = [wiz) + weze + -+ + wpz, > ], (75)
where the constants wy, wa, ..., w, are integer “weights” and ¢ is an integer

“threshold” value. For example, threshold functions are important even when
all the weights are unity: We have

TINT2 A Az = [T1 + 22+ + 2, >0 (76)
TNV V-V, =[x + 2+ > 1]; (77)
and (T1T9 ... Top 1) = [T1 + T2+ -+ + T 1 > ], (78)

where (2122 ... 2o;—1) stands for the median (or majority) value of a multiset that
consists of any odd number of Boolean values {1, 2, ...,z 1}. In particular,
the basic mappings z Ay, =V y, and (zyz) are all threshold functions, and so is

T = [~z>0] (79)
With more general weights we get many other functions of interest, such as
[2"711‘1 + 2"721‘2 + - tx,> (tltg e tn)g], (80)

which is true if and only if the binary string zizs ...z, is lexicographically
greater than or equal to a given binary string ¢1t5...t,. Given a set of n objects
having sizes wy, ws, ..., Wy, a subset of those objects will fit into a knapsack
of size t + 1 if and only if f(z1,22,...,2,) = 0, where x; = 1 represents the
presence of object 7 in the subset. Simple models of neurons, originally proposed
by W. McCullough and W. Pitts in Bull. Math. Biophysics 5 (1943), 115-133,
have led to thousands of research papers about “neural networks” built from
threshold functions.

We can get rid of any negative weight w; by setting z; < z;, w; + —wjy,
and t < t + |w;|. Thus a general threshold function can be reduced to a
positive threshold function in which all weights are nonnegative. Furthermore,
any positive threshold function (75) can be expressed as a special case of the
median/majority-of-odd function, because we have

<0“1bx11”1:v12”2 coexpr)y =[b+ wixy + wexe + - - + wpzy > b+t (81)

where ™ stands for m copies of z, and where a and b are defined by the rules

a =max(0,2t—1—w), b=max(0,w+1-2t), w=witws+---Fw,. (82)
For example, when all weights are 1, we have

0" 'z x) =2 A Az, and (1" tzy.z,) =21 VeV, (83)

we’ve already seen these formulas in (45) when n = 2. In general, either a or b is
zero, and the left-hand side of (81) specifies a median of 27" — 1 elements, where

T = b+t = max(t,w; +ws + -+ + w, — ). (84)
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There would be no point in letting both a and b be greater than zero, because
the majority function clearly satisfies the cancellation law

<01£U1:L‘2 e xgt_1> = <£U1£L‘2 e xgt_1>. (85)

One important consequence of (81) is that every positive threshold function
comes from the pure majority function

g(zo, 1, T2, .., Tp) = <mg+bx11“1x12”2 coxen) (86)

by setting zg = 0 or 1. In other words, we know all threshold functions of n vari-
ables if and only if we know all of the distinct median-of-odd functions of n+1 or
fewer variables (containing no constants). Every pure majority function is mono-
tone and self-dual; thus we’ve seen the pure majority functions of four variables
{w,z,y,z} in column s; of Table 2 on page 25, namely (w), (wwzyz), (wyz),
(wzyzz), (zyz), (2), (wryyz), (y), (wez), (wezyz), (), (wry). By settingw =0
or 1, we obtain all positive threshold functions f(z,y, z) of three variables:

(0), (1), (00zyz), (11zyz), (0yz), (1yz), (Ozyz2), (lryzz), (zyz), (2),
(Ozyyz), (1zyyz), (y), (0xz), (Lwz), (Ozyz), (lewyz), (x), (Ozy), (1zy).  (87)

All 150 positive threshold functions of four variables can be obtained in a similar
fashion from the self-dual majority functions in the answer to exercise 82.

There are infinitely many sequences of weights (wq,ws,...,wy), but only
finitely many threshold functions for any given value of n. So it is clear that
many different weight sequences are equivalent. For example, consider the pure
majority function

2.3 5 7 11_13
(riz5T3T875 T67),

in which prime numbers have been used as weights. A brute-force examination
of 26 cases shows that

4,5

(20308 0T al el = (o adadadatad); (88)

L1LoX3XyXs Tg
thus we can express the same function with substantially smaller weights. Simi-
larly, the threshold function

[(z122 ... T20)2 > (01100100100001111110)5] = (12250285,324299,,262144 " 00 ),

a special case of (80), turns out to be simply

(1323 ,764323,,328 1 118 118 8T 3l 03 0250828 18, a8y g 15161 7018710) . (89)
Exercise 101 explains how to find a minimum set of weights without resorting to
a huge brute-force search, using linear programming.

A nice indexing scheme by which a unique identifier can be assigned to
any threshold function was discovered by C. K. Chow [FOCS 2 (1961), 34-38].
Given any Boolean function f(z1,...,%,), let N(f) be the number of vectors
z = (x1,...,2n) for which f(z) = 1, and let X(f) be the sum of all those
vectors. For example, if f(z1,z2) = z1 V x2, we have N(f) = 3 and X(f) =
(0,1) +(1,0) + (1,1) = (2,2).
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Theorem T. Let f(z1,...,x,) and g(z1,...,z,) be Boolean functions with
N(f) = N(g) and X(f) = X(g), where f is a threshold function. Then f = g.

Proof. Suppose there are exactly k vectors z(V), ..., z(*) such that f(x(j)) =1
and g(z()) = 0. Since N(f) = N(g), there must be exactly k vectors y(M, ...,
y®) such that f(y)) =0 and g(y)) = 1. And since 2(f) = X(g), we must also
have (1) + .- 4 k) = () ... 4 (k)

Now suppose f is the threshold function (75); then we have w - () > ¢ and
w-yU) < tforl1<j <k Butiff#gwehavek >0, and w-(z® 4. 4zF) >
kt >w- (y™M 4+ - +y®), a contradiction. 1|

Threshold functions have many curious properties, some of which are ex-
plored in the exercises below. Their classical theory is well summarized in Saburo
Muroga’s book Threshold Logic and its Applications (Wiley, 1971).

Symmetric Boolean functions. A function f(z1,...,x,) is called symmetric
if f(@1,...,7,) is equal to f(zp(1),. .., Zpm)) for all permutations p(1)...p(n) of
{1,...,n}. When all the z; are 0 or 1, this condition means that f depends only
on the number of 1s that are present in the arguments, namely the “sideways
sum” ve = v(&1,...,%,) = &1+ - -+ &,. The notation Sk, k... k, (T1,--.,%y) is
commonly used to stand for the Boolean function that is true if and only if vz is
either k; or ks or - - or k.. For example, S1 35(v,w,z,y,2) =vQwd Dy D z;
5374,5(1)7 w,x,Y, Z) = <U’LU:I?yZ>, 5475(’(), w,x,Y, Z) = <00’way2>

Many applications of symmetry involve the basic functions Si(z1,...,zn)
that are true only when va = k. For example, S3(z1, %2, z3, T4, T5, Tg) is true
if and only if exactly half of the arguments {z1,...,2¢} are true and the other
half are false. In such cases we obviously have

Sp(T1,.. o, 2n) = Ssr(®1,...,20) ASskq1(z1,..., Tn), (90)
where S>i(z1,...,2,) is an abbreviation for Sk k1. n(z1,...,2n). The func-
tions S>r(x1,...,x,) are, of course, the threshold functions [z; + --- + z, > k]

that we have already studied.
More complicated cases can be treated as threshold functions of threshold
functions. For example, we have

S23689(x1,. . 212) = [vo > 2+ 4[ve > 4]+ 2[ve > 7] + 5[ve > 10]]

= <00x1 PN I12<05f1 PN f12>4<1i'1 e f12>2<17f1 PN CE12>5>, (91)

because the number of 1s in the outermost majority-of-25 turns out to be re-
spectively (11,12,13,14,11,12,13,12,13,14,10,11,12) when z; + -+ + z12 =
(0,1,...,12). A similar two-level scheme works in general [R. C. Minnick, IRE
Trans. EC-10 (1961), 6-16]; and with three or more levels of logic we can reduce
the number of thresholding operations even further. (See exercise 111.)

Many ingenious tricks have been discovered for evaluating symmetric Bool-
ean functions. For example, S. Muroga attributes the following remarkable
sequence of formulas to F. Sasaki:

ZoPx1 D - D Tam = (Tos152. .. Som),

where S5 = <ZL'0$]'CCJ'+1 . xj—i—m—ljj-i-mjj—&-m-&-l . Ej+2m—1>7 (92)
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if m > 0 and if we consider zo,, 4+ to be the same as xy for £ > 1. In particular,
when m = 1 and m = 2 we have the identities

To @ 1 © T2 = (To(ToT1Z2)(ToT2T1)); (93)
To @ - © x4 = (To(ToT102T3T4) (ToT203T4T1 )(ToT3T4T1T2) (ToT4T1T2T3))- (94)
The right-hand sides are fully symmetric, but not obviously so! (See exercise 113.)

Canalizing functions. A Boolean function f(z1,...,z,) is said to be canalizing
or “forcing” if we might be able to deduce its value by examining at most one of
its variables. More precisely, f is canalizing if n = 0 or if there’s a subscript j for
which f(x) either has a constant value when we set z; = 0 or a constant value
when we set z; = 1. For example, f(z,y, 2z) = (x ®2z) V§ is canalizing because it
always equals 1 when y = 0. (When y = 1 we don’t know the value of f without
examining also z and z; but half a loaf is better than none.) Such functions,
introduced by Stuart Kauffman [Lectures on Mathematics in the Life Sciences
3 (1972), 63-116; J. Theoretical Biology 44 (1974), 167-190], have proved to be
important in many applications, especially in chemistry and biology. Some of
their properties are examined in exercises 122-126.

Quantitative considerations. We’ve been studying many different kinds of
Boolean functions, so it’s natural to ask: How many n-variable functions of each
type actually exist? Tables 3, 4, and 5 provide the answers, at least for small
values of n.

All functions are counted in Table 3. There are 22" possibilities for each n,
since there are 22" possible truth tables. Some of these functions are self-dual,
some are monotone; some are both monotone and self-dual, as in Theorem P.
Some are Horn functions as in Theorem H; some are Krom functions as in
Theorem S; and so on.

But in Table 4, two functions are considered identical if they differ only
because the names of variables have changed. Thus only 12 different cases arise
when n = 2, because (for example) z V § and Z V y are essentially the same.

Table 5 goes a step further: It allows us to complement individual variables,
and even to complement the entire function, without essentially changing it.
From this perspective the 256 Boolean functions of (z,y,z) fall into only 14
different equivalence classes:

Representative Class size Representative Class size

1 2 Si(z,y,2) 16

x 6 So,3(z,y, z) 8

Ay 24 zA(yVz) 48
Ty 6 A (Yo 2) o0 (95)

TAYNz 16 z® (YA z2) 24

TDYDdz 2 (x Ay) V(T Az) 24

(zyz) 8 (zAyANz)V(TAY) 48

We shall study ways to count and to list inequivalent combinatorial objects in
Section 7.2.3.
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Table 3
BOOLEAN FUNCTIONS OF n VARIABLES
n=0n=1n=2n=3 n=4 n=>5 n==~6
arbitrary 2 4 16 256 65,536 4,294,967,296 18,446,744,073,709,551,616
self-dual 0 2 4 16 256 65,536 4,294,967,296
monotone 2 3 6 20 168 7,581 7,828,354
both 0 1 2 4 12 81 2,646
Horn 2 4 14 122 4,960 2,771,104 151,947,502,948
Krom 2 4 16 166 4,170 224,716 24,445,368
threshold 2 4 14 104 1,882 94,572 15,028,134
symmetric 2 4 8 16 32 64 128
canalizing 2 4 14 120 3,514 1,292,276 103,071,426,294
Table 4
BOOLEAN FUNCTIONS DISTINCT UNDER PERMUTATION OF VARIABLES
n=0n=1n=2n=3 n=4 n=>5 n==6
arbitrary 2 4 12 80 3,984 37,333,248 25,626,412,338,274,304
self-dual 0 2 2 8 32 1,088 6,385,408
monotone 2 3 5 10 30 210 16,353
both 0 1 1 2 3 7 30
Horn 2 4 10 38 368 29,328 216,591,692
Krom 2 4 12 48 308 3,028 49,490
threshold 2 4 10 34 178 1,720 590,440
canalizing 2 4 10 38 294 15,774 149,325,022
Table 5
BOOLEAN FUNCTIONS DISTINCT UNDER COMPLEMENTATION/PERMUTATION
n=0n=1n=2n=3 n=4 n=>5 n==~6
arbitrary 1 2 4 14 222 616,126 200,253,952,527,184
self-dual 0 1 1 3 7 83 109,950
threshold 1 2 3 6 15 63 567
both 0 1 1 2 3 7 21
canalizing 1 1 3 6 22 402 1,228,158
EXERCISES

1. [15] (Lewis Carroll.) Make sense of Tweedledee’s comment, quoted near the
beginning of this section. [Hint: See Table 1.]

2. [17] Logicians on the remote planet Pincus use the symbol 1 to represent “false”
and 0 to represent “true.” Thus, for example, they have a binary operation called “or”
whose properties

lorl=1, lor0=0, Oorl=0, Oor0=0

we associate with A. What operations would we associate with the 16 logical opera-
tors that Pincusians respectively call “falsehood,” “and,” ..., “nand,” “validity” (see
Table 1)7
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» 3. [18] Suppose logical values were respectively —1 for falsehood and +1 for truth, in-
stead of 0 and 1. What operations o in Table 1 would then correspond to (a) max(z,y)?
(b) min(z,y)? (c) —z? (d) = - y?

4. [24] (H. M. Sheffer.) The purpose of this exercise is to show that all of the
operations in Table 1 can be expressed in terms of NAND. (a) For each of the 16
operators o in that table, find a formula equivalent to x o y that uses only A as an
operator. Your formula should be as short as possible. For example, the answer for
operation | is simply “z”, but the answer for [ is “z A £”. Do not use the constants
0 or 1 in your formulas. (b) Similarly, find 16 short formulas when constants are
allowed. For example, z [ y can now be expressed also as “z A 1”.

5. [24] Consider exercise 4 with C as the basic operation instead of A.

6. [21] (E. Schroder.) (a) Which of the 16 operations in Table 1 are associative—in
other words, which of them satisfy z o (yo z) = (z o y) 02?7 (b) Which of them satisfy
the identity (zoy)o(yoz) =z o02?

7. [20] Which operations in Table 1 have the property that z oy = z if and only if
yoz=u?

8. [24] Which of the 16 pairs of operations (o,n) satisfy the left-distributive law
zo(yoz) = (zoy)o(zoz)?

9. [15] True or false? (a) (@ y)Vz=(zV2)D(yVz); b)(wdzdy)Vz=
(wVz)@®(xzVz)d(yVz).

10. [17] What is the multilinear representation of the “random” function (22)?

11. [M25] Is there an intuitive way to understand exactly when the multilinear rep-
resentation of f(z1,...,zs) contains, say, the term z2zszszs? (See (19).)

> 12. [M21] The integer multilinear representation of a Boolean function extends rep-
resentations like (19) to a polynomial f(z1,...,z,) with integer coeflicients, in such
a way that f(z1,...,2n) has the correct value (0 or 1) for all 2" possible 0—1 vectors
(z1,.-.,%n), without taking a remainder mod 2 as in (23). For example, the integer
multilinear representation corresponding to (19) is 1 — zy — zz — yz + 3zyz.
a) What is the integer multilinear representation of the “random” function (22)?
b) How large can the coefficients of such a representation be, when f is a function of
n variables?
c) Show that, in every integer multilinear representation, 0 < f(z1,...,2,) < 1
whenever z1, ..., x, are real numbers with 0 < zy,...,z, < 1.
d) If f is monotone and 0 < z; < y; <1 for 1 < j < n, prove that f(z) < f(y).

» 13. [20] Consider a system that consists of n units, each of which may be “working”
or “failing.” If x; represents the condition “unit j is working,” then a Boolean function
like z1 A (Z2 V Z3) represents the statement “unit 1 is working, but either unit 2 or
unit 3 is failing”; and S3(z1,...,zn) means “exactly three units are working.”

Suppose each unit j is in working order with probability p;, independent of the
other units. Show that a Boolean function f(z1,...,zn) is true with probability
F(p1,...,pn), where F' is a polynomial in the variables p1, ..., pn.

14. [20] The probability function F(pi,...,pn) in exercise 13 is often called the
availability of the system. Find the self-dual function f(z1,x2,%3) of maximum avail-
ability when the probabilities (p1, p2,p3) are (a) (.9,.8,.7); (b) (.8,.6,.4); (c) (.8,.6,.1).
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» 15. [M20] If f(x1,...,%xn) is any Boolean function, show that there is a polynomial
F(z) with the property that F'(z) is an integer when z is an integer, and f(z1,...,2z,) =
F((mn o ml)g) mod 2. Hint: Consider (i) mod 2.

16. [13] Can we replace each V by @ in a full disjunctive normal form?

17. [10] By De Morgan’s laws, a general disjunctive normal form such as (25) is not
only an OR of ANDs, it is a NAND of NANDs:

(it A= Aurs;) Ao A (Umi A AUms,,)-

Both levels of logic can therefore be considered to be identical.
A student named J. H. Quick rewrote this expression in the form

(Ui A Atina) Ao A (Umi A A Umay, )-

Was that a good idea?

> 18. [20] Let ui A--- Aus be an implicant in a disjunctive normal form for a Boolean
function f, and let v1 V ---V v be a clause in a conjunctive normal form for the same
function. Prove that u; = v; for some 7 and j.

19. [20] What is the conjunctive prime form of the “random” function in (22)7

20. [M21] True or false: Every prime implicant of f A g can be written f'A g’, where
f' is a prime implicant of f and ¢’ is a prime implicant of g.

21. [M20] Prove that a nonconstant Boolean function is monotone if and only if it
can be expressed entirely in terms of the operations A and V.

22. [20] Suppose f(z1,-..,2n) = g(1,...,Tn=1) ® h(z1,...,Tn-1)Azn as in (16).
What conditions on the functions g and h are necessary and sufficient for f to be
monotone?

23. [15] What is the conjunctive prime form of (vAwAz) V (vAzAZ) V (zAyAz)?

24. [M20] Consider the complete binary tree with
2% leaves, illustrated here for k = 3. Operate al-
ternately with A or V on each level, using A at the
root, obtaining for example ((zo Az1) V (z2 Az3)) A
((zaNzs5)V (26 Az7)). How many prime implicants does the resulting function contain?

25. [M21] How many prime implicants does (z1Vz2)A(z2Vxs)A- - A(Tn—1Vz,) have?

26. [M22] Let F and G be the families of index sets for the prime clauses and the
prime implicants of a monotone CNF and a monotone DNF:

f@) =N\ Ve g@) =\ Az

IeFiel JeG jeT

Exhibit an x such that f(z) # g(x) if any of the following conditions hold:

a) Thereisan I € Fand a J € G with INJ = 0.

b) Urer I #Ujeg J-

c) There’s an I € F with |I| > |G|, or a J € G with |[J| > |F]|.

d) Y2+ 20 V<2, where n= U2 1]
27. [M30] Continuing the previous exercise, consider the following algorithm X(F, G),
which either returns a vector x with f(z) # g(z), or returns A if f = g:
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X1. [Check necessary conditions.] Return an appropriate value z if condition (a), (b),
(c), or (d) in exercise 26 applies.

[Done?] If | F||G| < 1, return A.
[Recurse.] Compute the reduced families
]:12{I|IE]:,CL')C¢I}, .FOZ.FlU{I‘IU{CL'k;}E]:};
gOZ{J|J€g,$k¢J}, legou{J|JU{xk}eg}.
Delete any member of Fo or G; that contains another member of the same family.
The index k should be chosen so that the ratio p = min(|F1|/|F],|G0|/|G]) is as
small as possible. If X(Fg, Go) returns a vector z, return the same vector extended

with zp = 0. Otherwise if X(F1,G1) returns a vector z, return the same vector
extended with z; = 1. Otherwise return A. |

X2.
X3.

If N = |F|+ |G|, prove that step X1 is executed at most N8 N)? times. Hint: Show
that p <1—1/IgN in step X3.

28. [21] (W. V. Quine, 1952.) If f(z1,...,z,) is a Boolean function with prime
implicants p1, ..., pg, let g(y1,...,yq) = \/f(I)=1 N y; | pj(z) = 1}. For example, the
“random” function (22) is true at the eight points (28), and it has five prime implicants
given by (29) and (30); so g(y1,---,ys) is

(Y1Vy2) A (Y1) A (Y2Vys) A (ya) A (ysVys) A (ys) A (y5) A (yaVys)
= (11 A\Y2AYaAys) V (Y1 Ays AyaAys)

in this case. Prove that every shortest DNF expression for f corresponds to a prime
implicant of the monotone function g.

29. [22] (The next several exercises are devoted to algorithms that deal with the
implicants of Boolean functions by representing points of the n-cube as n-bit numbers
(br=1...b1bo)2, rather than as bit strings 1 ...x,.) Given a bit position j, and given
n-bit values vo < vy < -+ < v;_1, explain how to find all pairs (k,k’) such that
0 <k <k <mand vy = v+ 27, in increasing order of k. The running time of your
procedure should be O(m), if bitwise operations on n-bit words take constant time.

» 30. [27] The text points out that an implicant of a Boolean function can be regarded
as a subcube such as 01%0%, contained in the set V' of all points for which the function is
true. Every subcube can be represented as a pair of binary numbers a = (an—1...a0)2
and b= (by_1...bo)2, where a records the positions of the asterisks and b records the
bits in non-* positions. For example, the numbers ¢ = (00101)2 and b = (01000),
represent the subcube ¢ = 01x0%. We always have a & b = 0.

The “j-buddy” of a subcube is defined whenever a; = 0, by changing b to b ® 27,
For example, 01x0* has three buddies, namely its 4-buddy 11x0x, its 3-buddy 00%0x,
and its 1-buddy 01%1%. Every subcube ¢ C V can be assigned a tag value (tn—1...%0)2,
where t; = 1 if and only if the j-buddy of c is defined and contained in V. With this
definition, c represents a maximal subcube (hence a prime implicant) if and only if its
tag is zero.

Use these concepts to design an algorithm that finds all maximal subcubes (a, b)
of a given set V', where V is represented by the n-bit numbers v < v1 < -+ < V1.

» 31. [28] The algorithm in exercise 30 requires a complete list of all points where a
Boolean function is true, and that list may be quite long. Therefore we may prefer to
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work directly with subcubes, never going down to the level of explicit n-tuples unless
necessary. The key to such higher-level methods is the notion of consensus between
subcubes c and ¢’, denoted by clLic’ and defined to be the largest subcube ¢’ such that

/1 / s s /
¢ CcUc, ¢ Zec, and ¢ Zc.

Such a ¢’ does not always exist. For example, if ¢ = 000 and ¢’ = %111, every subcube
contained in cU ¢’ is contained either in c or in ¢’.
a) Prove that the consensus, when it exists, can be computed componentwise using
the following formulas in each coordinate position:

zUz=zUsxs=*xUzr =2 and xzUZ=x*UL=*=:x*, for z =0 and z = 1.

Furthermore, cLic’ exists if and only if the rule £ 1UZ = * has been used in exactly
one component.

b) A subcube with k asterisks is called a k-cube. Show that, if c is a k-cube and ¢’
is a k'-cube, and if the consensus ¢’ = c U ¢’ exists, then ¢ is a k”-cube where
1 < k" < min(k, k') + 1.

c) If C and C’ are families of subcubes, let

cuc'" ={cud|ceC,d el and cUc exists}.

Explain why the following algorithm works.

Algorithm E (Find mazimal subcubes). Given a family C of subcubes of the n-
cube, this algorithm outputs the maximal subcubes of V = | ¢, without actually
computing the set V itself.

ceC

E1. [Initialize.] Set j < 0. Delete any subcube c of C that is contained in another.
E2. [Done?] (At this point, every j-cube C V is contained in some element of C, and
C contains no k-cubes with k£ < j.) If C is empty, the algorithm terminates.

E3. [Take consensuses.] Set C' <— C U C, and remove all subcubes from C’ that are
k-cubes for k < j. While performing this computation, also output any j-cube
¢ € C for which cU C does not produce a (j + 1)-cube of C'.

E4. [Advance.] Set C < C UC’, but delete all j-cubes from this union. Then delete
any subcube c € C that is contained in another. Set j <— 7 + 1 and go to E2. |

(See exercise 7.1.3-00 for an efficient way to perform these computations.)

» 32. [M27] Let c1, ..., cm be subcubes of the n-cube.
a) Prove that ¢y U- - -Ucy, contains at most one maximal subcube ¢ that has a point in
common with each of ¢, ..., cn. (If ¢ exists, we call it the generalized consensus
of ¢1, ..., ¢m, because ¢ = c¢1 U ¢z in the notation of exercise 31 when m = 2.)
b) Find a set of m subcubes for which each of the 2™ — 1 nonempty subsets of
{c1,...,cm} has a generalized consensus.

c¢) Prove that a DNF with m implicants has at most 2™ — 1 prime implicants.
d) Find a DNF that has m implicants and 2™ — 1 prime implicants.

33. [M21] Let f(z1,...,zn) be one of the (27:) Boolean functions that is true at
exactly m points. If f is chosen at random, what is the probability that z1 A --- A xy,
is (a) an implicant of f? (b) a prime implicant of f? [Give the answer to part (b) as a
sum; but evaluate it in closed form when k = n.]
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[HM87] Continuing exercise 33, let ¢(m,n) be the average total number of impli-

cants, and let p(m, n) be the average total number of prime implicants.

a)

b)

)
d)

> 35.

If 0 < m < 2%/n, show that m < ¢(m,n) < 2m + O(m/n) and p(m,n) >
me™" 4+ O(m/n); hence p(m,n) = O(c(m,n)) in this range.
Now let 2"/n < m < (1 —€)2", where € is a fixed positive constant. Define the
numbers ¢ and o, by the relations
2

n=4/3 < (%) = amn < n_2/3, integer t.
Express the asymptotic values of ¢(m,n) and p(m,n) in terms of n, ¢, and amn.
[Hint: Show that almost all of the implicants have exactly n—t or n—¢—1 literals.]
Estimate c(m,n)/p(m,n) when m = 2" ' and n = [(Int — Inlnt) 22tJ, integer ¢.
Prove that ¢(m,n)/p(m,n) = O(logloglogn/loglogn) when m < (1 — €)n.

[M25] A DNF is called orthogonal if its implicants correspond to disjoint sub-

cubes. Orthogonal disjunctive normal forms are particularly useful when the reliability
polynomial of exercise 13 is being calculated or estimated.

The full DNF of every function is obviously orthogonal, because its subcubes

are single points. But we can often find an orthogonal DNF that has significantly
fewer implicants, especially when the function is monotone. For example, the function
(z1Az2) V (z2Az3) V (z3AT4) is true at eight points, and it has the orthogonal DNF

(z1Az2) V (T1Az2AT3) V (T2 AT3ATY).

In other words, the overlapping subcubes 11%*, *11%, *x11 can be replaced by the dis-
joint subcubes 11x%, 011%, *011. Using the binary notation for subcubes in exercise 30,
these subcubes have asterisk codes 0011, 0001, 1000 and bit codes 1100, 0110, 0011.

Every monotone function can be defined by a list of bit codes By, ..., Bp, when

the asterisk codes are respectively B, ..., B,. Given such a list, let the “shadow” Sk
of By, be the bitwise OR of B; & By, for all 1 < j < k such that v(B; & By) = 1:

Sk =Pk | | Bk—1yrs  Bir = ((Bj&Br)&—(B; & Bx)) - ((B; & Bx) & ((B;j & By) - 1)).

For example, when the bit codes are (Bi, B2,Bs) = (1100,0110,0011), we get the
shadow codes (S1, S2,.S3) = (0000, 1000, 0100).

a)

b)

~ —

Show that the asterisk codes A} = B; — S; and bit codes B; define subcubes that
cover the same points as the subcubes with asterisk codes A; = B;.

A list of bit codes Bi, ..., B, is called a shelling if B; & Sj is nonzero for all
1 < j <k < p. For example, (1100,0110,0011) is a shelling; but if we arrange
those bit codes in the order (1100,0011,0110) the shelling condition fails when
7 =1 and k = 2, although we do have S3 = 1001. Prove that the subcubes in
part (a) are disjoint if and only if the list of bit codes is a shelling.

According to Theorem Q, every prime implicant must appear among the B’s when
we represent a monotone Boolean function in this way. But sometimes we need
to add additional implicants if we want the subcubes to be disjoint. For example,
there is no shelling for the bit codes 1100 and 0011. Show that we can, however,
obtain a shelling for this function (z1Az2) V (z3Az4) by adding one more bit code.
What is the resulting orthogonal DNF?

Permute the bit codes {11000,01100,00110,00011,11010} to obtain a shelling.
Add two bit codes to the set {110000,011000,001100,000110,000011} in order to
make a shellable list.
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36. [M21] Continuing exercise 35, let f be any monotone function. Show that the set
B={z|f(z)=1and (zx=0...0or f(z') =0)}, z =& (z—1),

is always shellable when listed in decreasing lexicographic order. (The vector z’ is
obtained from x by zeroing out the rightmost 1.) For example, this method produces
an orthogonal DNF for (z1Az2) V (z3Azs) from the list (1100,1011,0111,0011).

37. [M31] Find a shellable DNF for (z1Az2) V (z3Az4) V + -+ V (T2n—1AZ2n) that has
2" — 1 implicants, and prove that no orthogonal DNF for this function has fewer.

38. [05] Is it hard to test the satisfiability of functions in disjunctive normal form?

39. [25] Let f(z1,...,zn) be a Boolean formula represented as an extended binary
tree with N internal nodes and N + 1 leaves. Each leaf is labeled with a variable zy,
and each internal node is labeled with one of the sixteen binary operators in Table 1;
applying the operators from bottom to top yields f(z1,...,zn) as the value of the root.

Explain how to construct a formula F(z1,...,%n,y1,...,yn) in 3CNF, having ex-
actly 4N +1 clauses, with the property that f is satisfiable if and only if F' is satisfiable.

40. [23] Given an undirected graph G, construct the following clauses on the Boolean
variables {puv | ¥ # v} U {Guow | ¥ # v, u # w, v # w, v + v}, where u, v, and w
denote vertices of G:

A:/\{(puv vau)|u7é'0};
B = A{Buv VBow Vpuw) |u# v, u#w,v#w};

C= /\{ (quvw\/puv (quvw\/pvw) A (quvwvﬁuvvﬁvw) | uF v, uFw,vFEw, u"‘“}?

D:/\{( wé{u, U} quvaQvuw)> | u# v, u—!—v}.

Prove that the formula A A B A C A D is satisfiable if and only if G has a Hamiltonian
path. Hint: Think of py, as the statement ‘u < v’.

41. [20] (The pigeonhole principle.) The island of San Serriffe contains m pigeons and
n holes. Find a conjunctive normal form that is satisfiable if and only if each pigeon
can be the sole occupant of at least one hole.

42. [20] Find a short, unsatisfiable CNF that is not totally trivial, although it consists
entirely of Horn clauses that are also Krom clauses.

43. [20] Is there an efficient way to decide satisfiability of a conjunctive normal form
that consists entirely of Horn clauses and/or Krom clauses (possibly mixed)?

44. [M23] Complete the proof of Theorem H by studying the implications of (33).
45. [M20] (a) Show that exactly half of the Horn functions of n variables are proper.

(b) Also show that there are more Horn functions of n variables than monotone
functions of n variables (unless n = 0).

46. [20] Which of the 11 x 11 character pairs xy can occur next to each other in the
context-free grammar (34)7

47. [20] Given a sequence of relations j < k with 1 < j,k < n as in Algorithm 2.2.3T
(topological sorting), consider the clauses

Tjy N-o- ANxj, = Tp for 1 <k <n,

where {j1,...,7:} is the set of elements such that j; < k. Compare the behavior of
Algorithm C on these clauses to the behavior of Algorithm 2.2.3T.
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> 48. [21] What’s a good way to test a set of Horn clauses for satisfiability?

49. [HM40] There are (n + 2)2"* possible Horn clauses on n variables. Select ¢ - 2"
of them at random, with repetition permitted, and let P, (c) be the probability that all
of the selected clauses are simultaneously satisfiable. Prove that

ILm Po(c) = 1= (1—e %) (1—e>)(1—e"*)(1—e7%)....

» 50. [22] A great many two-player games can be defined by specifying a directed graph
in which each vertex represents a game position. There are two players, Alice and Bob,
who construct an oriented path by starting at a particular vertex and taking turns to
extend the path, one arc at a time. Before the game starts, each vertex has either
been marked A (meaning that Alice wins), or marked B (meaning that Bob wins), or
marked C (meaning that the cat wins), or left unmarked.

When the path reaches a vertex v marked A or B, that player wins. The game
stops without a winner if v has been visited before, with the same player to move. If v
is marked C, the currently active player has the option of accepting a draw; otherwise
he or she must choose an outgoing arc to extend the path, and the other player becomes
active. (If v is an unmarked vertex with outdegree zero, the active player loses.)

Associating four propositional variables A1 (v), A~ (v), BY(v), and B~ (v) with
every vertex v of the graph, explain how to construct a set of proper Horn clauses such
that A™ (v) is in the core if and only if Alice can force a win when the path starts at v
and she moves first; A7 (v) is in the core if and only if Bob can force her to lose in that
game; BY(v) and B~ (v) are similar to AT (v) and A~ (v), but with roles reversed.

51. [25] (Boolean games.) Any Boolean function f(z1,...,zn) leads to a game called
“two steps forward or one step back,” in the following way: There are two players,
0 and 1, who repeatedly assign values to the variables z;; player y tries to make
f(z1,...,zn) equal to y. Initially all variables are unassigned, and the position marker
m is zero. Players take turns, and the currently active player either sets m < m + 2
(ifm+2<mn)orm<« m—1(if m—12>1), then sets

Tm ¢ 0or 1, if xz, was not previously assigned;
T < T, if z,,, was previously assigned.

The game is over as soon as a value has been assigned to all variables; then f(z1,...,zn)
is the winner. A draw is declared if the same state (including the value of m) is reached
twice. Notice that at most four moves are possible at any time.

Study examples of this game when 2 < n < 9, in the following four cases:

a) f(z1,...,zn) =[Z1...Tn <Tn...z1] (in lexicographic order);
b) f(x1,...,Zn) =21 D - D Tn;

c) f(z1,...,2n) =[z1... 2, contains no two consecutive 1sl;

d) f(z1,...,2n) =[(21...2s)2 is prime].

52. [23] Show that the impossible comedy festival of (37) can be scheduled if a
change is made to the requirements of only (a) Tomlin; (b) Unwin; (c¢) Vegas; (d) Xie;
(e) Yankovic; (f) Zany.

53. [20] Let S = {u1,uz,-..,ur} be the set of literals in some strong component of a
digraph that corresponds to a 2CNF formula as in Fig. 4. Show that S contains both
a variable and its complement if and only if u; = @; for some 7 with 2 < j < k.
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» 54. [20] The satisfiability problem for a Boolean function f(z1,z2,...,zn) can be
stated formally as the question of whether or not the quantified formula

Jz1 Jz2 ... Jzn f(z1, T2, .., Tn)

is true; here ‘dz; @’ means, “there exists a Boolean value z; such that « holds.”

A much more general evaluation problem arises when we replace one or more of
the existential quantifiers 3x; by the universal quantifier Va;, where ‘Vz; o’ means,
“for all Boolean values z;, a holds.”

Which of the eight quantified formulas 3z 3y 3z f(z,y, z), Iz Iy Vz f(z,y,2), ...,
Ve VyVz f(x,y, 2) are true when f(z,y,2) = (zVy) A (ZVz) A (yVZ)?

55. [30] (B. Aspvall, M. F. Plass, and R. E. Tarjan.) Continuing exercise 54, design
an algorithm that decides in linear time whether or not a given fully quantified formula
f(z1,...,xn) is true, when f is any formula in 2CNF (any conjunction of Krom clauses).

v

v

56. [35] Continuing exercise 55, design an efficient algorithm that decides whether or
not a given fully quantified conjunction of Horn clauses is true.

57. [M20] (D. Pehoushek, 1999.) If the truth table for f(x1,z2,...,2n) has exactly k
1s, show that exactly k of the fully quantified formulas Qz1 Q2 ...Qzy f(z1, 22, ..., Tn)
are true, when each Q is either 3 or V.

v

58. [12] Which of the following expressions yield the median (zyz), as defined in (43)7
(a) (zAy) @ (yAz) @ (xAz). (b) (zVy) ® (yVz) ® (xVz). (c) (z@y) A (y®z) A (xDz).
() (z=y) & (y=2) ® (z==2). (e) (zAy) A (yAz) A (zAz). (f) (zAy)V (yAz)V (zAz).
59. [138] True or false: If o is any one of the Boolean binary operations in Table 1, we
have the distributive law w o {(zyz) = ((woz)(woy)(woz)).

60. [25] (C. Schensted.) If f(z1,...,2zn) is a monotone Boolean function and n > 3,
prove the median expansion formula

f(z1,. .. zn) = (f(z1, 21,23, T4y - .., @) f(T1, T2, T2, Tay . . ., Tn) f (T3, T2, T3, Ty - . -, Thr) ).

61. [20] Equation (49) shows how to compute the median of five elements via medians
of three. Conversely, can we compute (zyz) with a subroutine for medians of five?

62. [23] (S. B. Akers, Jr.) (a) Prove that a Boolean function f(z1,...,2Z,) is mono-
tone and self-dual if and only if it satisfies the following condition:

Forallz =z1...2, and y = y1 ... yn there exists k such that f(z) = zx and f(y) = yx.

(b) Suppose f is undefined for certain values, but the stated condition holds whenever
both f(z) and f(y) are defined. Show that there is a monotone self-dual Boolean
function g for which g(z) = f(x) whenever f(z) is defined.

» 63. [M21] Anysubset X of {1,2,...,n} corresponds to a binary vector z = z1z2 ... Zx
via the rule z; = [j € X]. And any family F of such subsets corresponds to a Boolean
function f(z) = f(z1,x2,...,Tn) of n variables, via the rule f(z) = [X € F|. Therefore
every statement about families of subsets corresponds to a statement about Boolean
functions, and vice versa.

A family F is called intersecting if X NY # () whenever X,Y € F. An intersecting
family that loses this property whenever we try to add another subset is said to be
mazimal. Prove that F is a maximal intersecting family if and only if the corresponding
Boolean function f is monotone and self-dual.
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> 64. [M25] A coterie of {1,...,n} is a family C of subsets called quorums, which have
the following properties whenever @ € C and Q' € C: (i) QN Q" # 0; (i) Q C Q'
implies Q = Q'. Coterie C dominates coterie C' if C # C' and if, for every Q' € C',
there is a Q € C with Q C Q. For example, the coterie {{1,2},{2,3}} is dominated
by {{1,2},{1,3},{2,3}} and also by {{2}}. [Coteries were introduced in classic papers
by L. Lamport, CACM 21 (1978), 558-565; H. Garcia-Molina and D. Barbara, JACM
32 (1985), 841-860. They have numerous applications to distributed system protocols,
including mutual exclusion, data replication, and name servers. In these applications
C is preferred to any coterie that it dominates.]
Prove that C is a nondominated coterie if and only its quorums are the index
sets of variables in the prime implicants of a monotone self-dual Boolean function
f(z1,...,2n). (Thus Table 2 illustrates the nondominated coteries on {1, 2,3,4}.)

» 65. [M30] (C. Schensted.) A triangular grid of order n, illustrated
here for n = 3, contains (n + 2)(n + 1)/2 points with “barycentric
coordinates” zyz, where z,y,z > 0 and = + y + z = n. Two points
are adjacent if they differ by 41 in exactly two coordinate positions.
A point is said to lie on the « side if its z coordinate is zero, on the
y side if its y coordinate is zero, or on the z side if its z coordinate
is zero; thus each side contains n + 1 points. If n > 0, a point lies on two different sides
if and only if it occupies one of the three corner positions.

A “Y” is a connected set of points with at least one point on each side. Suppose
each vertex of a triangular grid is covered with a white stone or a black stone. For
example, the 52 black stones in

contain a (somewhat distorted) Y; but if any of them is changed from black to white,
there is a white Y instead. A moment’s thought makes it intuitively clear that, in any
placement, the black stones contain a Y if and only if the white stones do not.
We can represent the color of each stone by a Boolean variable, with 0 for white and
1 for black. Let Y (¢) = 1 if and only if there’s a black Y, where ¢ is a triangular grid com-
prising all the Boolean variables. This function Y is clearly monotone; and the intuitive
claim made in the preceding paragraph is equivalent to saying that Y is also self-dual.
The purpose of this exercise is to prove the claim rigorously, using median algebra.
Given a,b,c > 0, let tqpe be the triangular subgrid containing all points whose
coordinates xyz satisfy x > a, y > b, z > c. For example, tg91 denotes all points except
those on the z side (the bottom row). Notice that, if a + b+ ¢ = n, tesc is the single
point with coordinates abc; and in general, t4pc is a triangular grid of order n—a—b—-c.
a) Prove that, if n > 0, Y(¢) = (Y (t100)Y (t010)Y (f001))-
b) If n > 0, let t* be the triangular grid of order n — 1 defined by the rule

t;yz = <t(z+1)yzta:(y+1)ztzy(z+1)>7 forzr+y+z=n—-1

Prove that Y (¢t) = Y(¢*). [In other words, t* condenses each small triangle of
stones by taking the median of their colors. Repeating this process defines a
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pyramid of stones, with the top stone black if and only if there is a black Y at the
bottom. It’s fun to apply this condensation principle to the twisted Y above.]

66. [46] The just-barely-Y configuration shown in the previous exercise has 52 black
stones. What is a largest number of black stones possible in such a configuration?

» 67. [M26] (C. Schensted.) Exercise 65 expresses the Y function in terms of medians.
Conversely, let f(z1,...,z,) be any monotone self-dual Boolean function with m + 1
prime implicants po, p1, ..., pPm. Prove that f(z1,...,z,) = Y(T), where T is any

triangular grid of order m — 1 in which Ty is a variable common to p, and pe4p+1,
for a + b+ ¢ = m — 1. For example, when f(w,z,y, z) = (zwywz) we have m = 3 and

f(w,x,y,z):(w/\x)\/(w/\y)\/(w/\z)\/(ac/\y/\z)ZY( www).

Ty z

v

68. [M20] (A. Meyerowitz, 1989.) Given any monotone self-dual Boolean function
f(z) = f(z1,...,2n), choose any prime implicant z;; A--- A z;, and let

g(x) = (f(z) Az #t]) V [z =],

where ¢ = t1...t, is the bit vector that has 1s in positions {j1,...,js}. Prove that
g(z) is also monotone and self-dual. (Notice that g(x) is equal to f(x) except at the
two points ¢ and %.)

v

69. [M21] Given the axioms (50), (51), and (52) of a median algebra, prove that the
long distributive law (54) is a consequence of the shorter law (53).

70. [M22] Derive (58), (59), and (60) from the median laws (50)—(53).

71. [M32] (S. P. Avann.) Given a median algebra M, whose intervals are defined
by (57) and whose corresponding median graph is defined by (61), let d(u,v) denote
the distance from u to v. Also let ‘[uzv]’ stand for the statement “z lies on a shortest
path from u to v.”

a) Prove that [uzwv] holds if and only if d(u,v) = d(u,z) + d(z,v).

b) Suppose z € [u..v] and u € [z..y], where y — v is an edge of the graph. Show

that x — w is also an edge.

c) If z € [u..v], prove [uzv], by induction on d(u,v).

d) Conversely, prove that [uzv] implies = € [u..v].
72. [M21] In a median algebra, show that w = (zyz) whenever we have w € [z..y],
w € [z..z], and w € [y..z] according to definition (57).
73. [M36] (M. Sholander, 1954.) Suppose M is a set of points with a betweenness

relation “z lies between u and v,” symbolized by [uzv], which satisfies the following
three axioms:

v

i) If [uvu] then u = v.
ii) If [uzv] and [zyu] then [vyu].
iii) Given z, y, and z, exactly one point w = (zyz) satisfies [zwy], [zwz], and [ywz].
The object of this exercise is to prove that M is a median algebra.
a) Prove the majority law (zzy) = z, Eq. (50).
b) Prove the commutative law (zyz) = (zzy) = - - = (zyz), Eq. (51).
¢) Prove that [uzv] if and only if x = (uzv).
d) If [uzy] and [uyv], prove that [zyv].
e) If [uzv] and [uyz] and [vyz], prove that [zyz]. Hint: Construct the points w =
(yuv), p = (wuz), g = (o), r = (puz), 5 = (quz), and t = (rsz).
f) Finally, deduce the short distributive law, Eq. (53): ((zy2z)uv) = (z(yuv)(zuv)).
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74. [M38] Derive the betweenness axioms (i), (ii), and (iii) of exercise 73, starting
from the three median axioms (50), (51), and (52), letting [uzv] be an abbreviation for
“z = (uzv).” Do not use the distributive law (53). Hint: See exercise 72.

75. [M28] Let G be a median graph containing the edge r — s. For each edge u— v,
call w an early neighbor of v if and only if r is closer to w than to v. Partition the
vertices into “left” and “right” parts, where left vertices are closer to r than to s and
right vertices are closer to s than to r. Each right vertex v has a rank, which is the
shortest distance from v to a left vertex. Similarly, each left vertex u has rank 1 — d,
where d is the shortest distance from w to a right vertex. Thus u has rank zero if it is
adjacent to a right vertex, otherwise its rank is negative. Vertex r clearly has rank 0,
and s has rank 1.

a) Show that every vertex of rank 1 is adjacent to exactly one vertex of rank 0.

b) Show that the set of all right vertices is convex.

c) Show that the set of all vertices with rank 1 is convex.

d) Prove that steps I3-19 of Subroutine I correctly mark all vertices of ranks 1 and 2.

e) Prove that Algorithm H is correct.

76. [M26] If the vertex v is examined k times in step 14 during the execution of
Algorithm H, prove that the graph has at least 2* vertices. Hint: There are k ways to
start a shortest path from v to a; thus at least k 1s appear in [(v).
77. [M27] (R.L. Graham.) A subgraph of a hypercube is a graph whose vertices v can
be labeled with bit strings [(v) in such a way that w — v if and only if I(u) and [(v)
differ in exactly one bit position. (Each label has the same length.)

a) One way to define an n-vertex subgraph of a hypercube is to let I(v) be the
binary representation of v, for 0 < v < n. Show that this subgraph has exactly
f(n) = 022 v(k) edges, where v(k) is the sideways addition function.

b) Prove that f(n) < n[lgn]/2.

c) Prove that no n-vertex subgraph of a hypercube has more than f(n) edges.

78. [27] A partial cube is an “isometric” subgraph of a hypercube, namely a subgraph
in which the distances between vertices are the same as they are in the full graph. The
vertices of a partial cube can therefore be labeled in such a way that the distance
from u to v is the “Hamming distance” between [(u) and [(v), namely v(I(u) ® I(v)).
Algorithm H shows that every median graph is a partial cube.

a) Find a subgraph of the 4-cube that isn’t a partial cube.

b) Give an example of a partial cube that isn’t a median graph.

79. [16] Is every median graph bipartite?
80. [25] (Incremental changes in service.) Given a sequence of vertices (vo, v1, ..., vt)
in a graph G, consider the problem of finding another sequence (uo, U1, . . . , u¢) for which
uo = vo and the sum

(d(uo,u1) + d(us,uz) + - -+ d(ur—1,u)) + (d(ur,v1) + d(uz,va) + -+ + d(ue, ve))

is minimized, where d(u,v) denotes the distance from u to v. (Each vx can be regarded
as a request for a resource needed at that vertex; a server moves to uy as those requests
are handled in sequence.) Prove that if G is a median graph, we get an optimum solution
by choosing ur = (uk_10kvk+1) for 0 < k < t, and us = v;.

81. [28] Generalizing exercise 80, find an efficient way to minimize
(d(uo,ur) + d(ur,uz) + - - + d(tn—1,un)) + p(d(u1,v1) + d(uz,v2) + - + d(tn, vn))

in a median graph, given any positive ratio p.
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82. [80] Write a program to find all monotone self-dual Boolean functions of five
variables. What are the edges of the corresponding median graph? (Table 2 illustrates
the four-variable case.)

83. [M22] Theorem S tells us that every formula in 2CNF corresponds to a median
set; therefore every antisymmetric digraph such as Fig. 4 also corresponds to a median
set. Precisely which of those digraphs correspond to reduced median sets?

84. [15] If v, w, z, y, and z belong to a median set X, does their five-element median
(vwzyz), computed componentwise, always belong to X7

85. [24] What Cl-net does the proof of Theorem F construct for the free tree (63)?
86. [M21] We can use parallel computation to condense the network (74) into

b T
I T b

b
b

by letting each module act at the earliest possible time. Prove that, although the
network constructed in the proof of Theorem F may contain Q(tz) modules, it always
requires at most O(tlogt) levels of delay.

T
It

87. [24] When the construction (73) appends a new cluster of modules to enforce
the condition v — v, for some literals v and v, prove that it preserves all previously
enforced conditions u’ — v'.

88. [21] Construct a Cl-net with input bits 1 ...z; and output bits y1 ...y:, where
yi=-=y-1=0and yy =x1 P - P z¢. Try for only O(logt) levels of delay.

89. [46] Can a retraction mapping for the labels of every median graph of dimension ¢
be computed by a Cl-net that has only O(logt) levels of delay? [This question is moti-
vated by the existence of asymptotically optimum networks for the analogous problem
of sorting; see M. Ajtai, J. Komlds, and E. Szemerédi, Combinatorica 3 (1983), 1-19.]

90. [46] Can a Cl-net sort n Boolean inputs with fewer modules than a “pure” sorting
network that has no inverters?

91. [M20] Prove that every retract X of a graph G is an isometric subgraph of G.
(In other words, distances in X are the same as in G; see exercise 78.)

92. [M21] Prove that every retract X of a hypercube is a set of median labels, if we
suppress coordinates that are constant for all z € X.

93. [M25] True or false: The set of all outputs produced by a comparator-inverter
network, when the inputs range over all possible bit strings, is always a median set.

94. [HM25] Instead of insisting that the constants wy, wa, ..., wp, and T in (75) must
be integers, we could allow them to be arbitrary real numbers. Would that increase
the number of threshold functions?

95. [10] What median/majority functions arise in (81) when n = 2, wy = wp = 1,
and t=-1,0,1, 2, 3, or 47

96. [M21] Prove that any self-dual threshold function can be expressed in the form
f(xl,xg, e 7Z'n) = [’Ulyl +-+ UnYn >0]7

where each y; is either z; or ;. For example, 2z1 + 322 +5x3 + Txs + 11x5 + 1326 > 21
if and only if 2x1 + 322 4+ bxs — 7ZT4 + 11laxs — 13T6 > 0.
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» 97. [20] (J. E. Mezei, 1961.) Prove that

<<$1 e 1"2371)2/1 cee y2t72> = <$1 e $2s—1yf e ygt—2>-

98. [20] True or false: If f(z1,...,2n) is a threshold function, so are the functions
f(@1, .., Tn) ATpt1 and f(z1,...,Tn)V Tnt1.
99. [M23] The Fibonacci threshold function Fy(z1,...,2Zn) is defined by the formula
(frzl> ozl afm—2) when n > 3; for example, Fy (1, ..., x7) = (22 232503 c525).
a) What are the prime implicants of F,,(z1,...,2,)7
b) Find an orthogonal DNF for Fy,(z1,...,zn) (see exercise 35).
c) Express F,,(z1,...,%,) in terms of the Y function (see exercises 65 and 67).

100. [M21] The self-dualization of a Boolean function is defined by the formulas

f(xo,acl, e ,CL‘n) = (xo/\f(xl, e ,xn)) \Y (i‘of\f(fl, . .,in))
(fo\/f(il?l, e ,xn)) A (CL‘o\/f(fl, ey j?n))

a) If f(z1,... ,Zzn) is any Boolean function, prove that f is self-dual.
b) Prove that f is a threshold function if and only if f is a threshold function.

101. [HM25] Explain how to use linear programming to test whether or not a mono-
tone, self-dual Boolean function is a threshold function, given a list of its prime
implicants. Also, if it is a threshold function, explain how to minimize the size of
its representation as a majority function (zi*...zp").

102. [25] Apply the method of exercise 101 to find the shortest representations of
the following threshold functions as majority functions: (a) (z3x3x3a]ct e e ¢5°);
(b) [(z1m22314)2 > t], for 0 <t < 16 (17 cases); (¢) (x5 23z vt g abzdxi o).
103. [M25] Show that the Fibonacci threshold function in exercise 99 has no shorter
representation as a majority function than the one used to define it.

» 104. [M25] The median-of-three operation (zyZz) is true if and only if z > y + z.
a) Generalizing, show that we can test the condition (z1z2...2n)2 > (Y1Y2---Yn)2+2
by performing a median of 2! — 1 Boolean variables.
b) Prove that no median of fewer than 2"™* — 1 will suffice for this problem.

105. [17] Calculate N(f) and X(f) for the 16 functions in Table 1. (See Theorem T.)

106. [M21] Let g(zo,z1,...,zn) be a self-dual function; thus N(g) = 2" in the nota-
tion of Theorem T. Express N(f) and X(f) in terms of X(g), when f(z1,...,2,) is
(a) g(0,z1,...,2n); (b) g(1,z1,...,2x).

107. [M25] The binary string o = a1...a, is said to majorize the binary string
B=0b1...by, written « > for R, ifa1 +---4+ar > b1 +---+ bg for all k > 0.

a) Let & = @1 ...an. Show that « = 3 if and only if 8 > a.

b) Show that any two binary strings of length n have a greatest lower bound a A 3,
which has the property that a > v and 8 > v if and only if a« A 8 > . Explain
how to compute a A 8, given « and 3.

¢) Similarly, explain how to compute a least upper bound « V 3, with the property
that v > a and v > (8 if and only if v > a V .

d) True or false: a A (BVy) = (aAB) V (aAy); aV (BAY) = (aVB) A (aVy).

e) Say that a covers 8 if a > 8 and a # B, and if a > v > [ implies that we
have either v = « or v = 3. For example, Fig. 6 illustrates the covering relations
between binary strings of length 5. Find a simple way to describe the strings that
are covered by a given binary string.
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(11000) (10101 01110}
[10100@01 01
[10(‘)10%00]\[01011]
10001 01010) (00111)
(00110

Fig. 6. The binary majori-
zation lattice for strings of
length 5. (See exercise 107.)

00100

f) Show that every path & = awg, 1, ..., @ =0...0 from a given string « to 0...0,
where a;j_1 covers a; for 1 < j < r, has the same length r = r(a).

g) Let m(a) be the number of binary strings 8 with 8 = «. Prove that m(la) =
m(a) and m(0a) = m(a) + m(a'), where o' is o with its leftmost 1 (if any)
changed to 0.

h) How many strings « of length n satisfy a = a?

108. [M21] A Boolean function is called regular if x < y implies that f(z) < f(y)
for all vectors x and y, where < is the majorization relation in exercise 107. Prove or
disprove the following statements:

a) Every regular function is monotone.

b) If f is a threshold function (75) for which w1 > wa > --- > wy, f is regular.

c) If fisasin (b) and X(f) = (s1,...,8n), then s1 > s2 > -+ > sp.

d) If f is a threshold function (75) with s1 > s2 > -+ > sy, then wi > w2 > -+ > wp.

109. [M30] An optimum coterie for a system with working probabilities (p1,...,pn) is
a coterie that corresponds to a monotone self-dual function with maximum availability,
among all monotone self-dual functions with n variables. (See exercises 14 and 64.)
a) Provethatifl >p; > -+ > p, > %, at least one self-dual function with maximum
availability is a regular function.
b) Furthermore, it suffices to test the optimality of f at points y of the binary
majorization lattice for which f(y) =1 but f(z) = 0 for all = covered by y.
c) What coterie is optimum when some probabilities are < %?

110. [M37] (J. Hastad.) If f(z1,22,...,Zm) is a Boolean function, let M(f) be its
representation as a multilinear polynomial with integer coefficients (see exercise 12).
Arrange the terms in this polynomial by using Chase’s sequence ap = 00...0, a1 =
10...0, ..., agm_1 = 11...1 to order the exponents; Chase’s sequence, obtained
by concatenating the sequences Ano, A(n_1)1, ..., Aon of 7.2.1.3-(35), has the nice
property that «; is identical to «;41 except for a slight change, either 0 — 1 or 01 — 10
or 001 — 100 or 10 — 01 or 100 — 001. For example, Chase’s sequence is

0000, 1000, 0010, 0001, 0100, 1100, 1010, 1001, 0011, 0101,0110,1110,1101,1011,0111, 1111
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when m = 4, corresponding to the respective terms 1, x1, z3, T4, T2, T1T2, ..., T2T3T4,
Z1Z223x4; so the multilinear representation of, say, ((z1 ® Z2) Aw3) V (z1 A T3 A z4) is

T3 — T1X3 + T1T4 — T2X3 + 201 T2X3 — T1T3La
when the terms have been arranged in this order. Now let
F(f) = [the most significant coefficient of M(f) is positive].

For example, the most significant (final) nonzero term of ((z1 ®Z2) Aws)V (z1 ATz Axs)
is —z1z3z4 in Chase’s ordering, so F(f) = 0 in this case.
a) Determine F(f) for each of the 16 functions in Table 1.
b) Show that F'(f) is a threshold function of the n = 2™ entries { fo...00, fo...01,- - -
f1..11} of the truth table for f. Write this function out explicitly when m = 2.
¢) Prove that, when m is large, all the weights in any threshold representation of F
must be huge: Their absolute values must all exceed

)

m

3(7;) 7(72) 15(7;) . (2m—1)(m)

— 9mn/2-n—2(3/2)"/In24+0((5/4)™)
n

Hint: Consider discrete Fourier transforms of the truth table entries.

111. [24] Show that the following three threshold operations suffice to evaluate the
function Sz,3,6,8,9(z1,---,Z12) in (91):

g1(z1,...,z12) = [vx > 6] = (lz1...T12);

g2(z1,...,x12) = [vz — 691 > 2] = <13:c1 .. .w12§?>;

gs(@1,...,12) = [—2vz + 13g1 + Tga > 1] = (0°Z7 .. .Efzgigggf
Also find a four-threshold scheme that evaluates S1,3,5,8(z1, .. .,Z12).

112. [20] (D. A. Huffman.) What is the function S5 ¢(zzzzyyz)?
113. [M22] Explain why (92) correctly computes the parity function zo@z1®- - -®T2m.

114. [HM28] (B.Dunham and R. Fridshal, 1957.) By considering symmetric functions,
one can prove that Boolean functions of n variables can have many prime implicants.
a) Suppose 0 < j < k < n. For which symmetric functions f(z1,...,%») is the term
Ty A---ANTj ANTjp1 N\--- ATy a prime implicant?
b) How many prime implicants does the function Ss4,56(z1,...,z9) have?
¢) Let b(n) be the maximum number of prime implicants, over all symmetric Boolean
functions of n variables. Find a recurrence formula for b(n), and compute b(9).
d) Prove that b(n) = ©(3"/n).
e) Show that, furthermore, there are symmetric functions f(z1,...,z,) for which
both f and f have @(23"/2/n) prime implicants.

115. [M26] A disjunctive normal form is called irredundant if none of its implicants
implies another. Let b*(n) be the maximum number of implicants in an irredundant
DNF, over all Boolean functions of n variables. Find a simple formula for b*(n), and
determine its asymptotic value.

116. [M48] Continuing the previous exercises, let b(n) be the maximum number of
prime implicants in a Boolean function of n variables. Clearly b(n) < b(n) < b*(n);
what is the asymptotic value of b(n)?
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117. [23] What is the shortest DNF for the symmetric functions (a) 21 ®z2®-- - Dz, ?
(b) So,1,3,4,6,7(z1,--.,27)? (c) Prove that every Boolean function of n variables can be
expressed as a DNF with at most 2"~ prime implicants.

118. [M23] The function (1(z1®z2)y1y2ys) is partially symmetric, since it is symmet-
ric in {x1,z2} and in {y1,y2,ys}, but not in all five variables {z1,z2,y1,y2,ys}.
a) Exactly how many Boolean functions f(z1,...,%m,¥y1,...,Yn) are symmetric in
{z1,...,zm} and {y1,-..,yn}?
b) How many of those functions are monotone?
¢) How many of those functions are self-dual?
d) How many of those functions are monotone and self-dual?

119. [M25] Continuing exercises 108 and 118, find all Boolean functions f(z1,z2,zs,
Y1,Y2,Y3, Y4, Y5, Ye) that are simultaneously symmetric in {z1,z2,z3}, symmetric in
{y1,y2,...,Ys}, self-dual, and regular. Which of them are threshold functions?

120. [46] How many self-dual Boolean functions of ten variables are (a) regular?
(b) threshold functions?

121. [20] Find a Boolean function of four variables that is equivalent to 767 other
functions, under the ground rules of Table 5.

122. [18] Which of the function classes in (95) are canalizing?
123. [23] (a) Show that a Boolean function is canalizing if and only if its sets of prime
implicants and prime clauses have a certain simple property. (b) Show that a Boolean

function is canalizing if and only if its Chow parameters N(f) and X(f) have a certain
simple property (see Theorem T). (c¢) Define the Boolean vectors

Vi) =\V{z|f@)=1} and  A() = N\{z| f(z) =1}

by analogy with the integer vector ¥(f). Show that it’s possible to decide whether or

not f is canalizing, given only the four vectors V(f), V(f), A(f), and A(f).

124. [M25] Which canalizing functions are (a) self-dual? (b) proper Horn functions?

[
125. [20] Find a noncanalizing f(z1,...,Z,) that is true at exactly two points.
126. |
127. [M21] According to Table 3, there are 168 monotone Boolean functions of four
variables. But some of them, like x A y, depend on only three variables or fewer.

a) How many 4-variable monotone Boolean functions actually involve each variable?
b) How many of those functions are distinct under permutation, as in Table 47

M25] How many different canalizing functions of n variables exist?

128. [HM42] Table 3 makes it clear that there are many more Horn functions than
Krom functions. What is the asymptotic number, as n — oo?

129. [20] (Mark A. Smith, 1990.) Suppose we flip n independent coins to get n
random bits, where the kth coin produces bit 1 with probability pr. Find a way to
choose (p1,...,pn) so that f(z1,...,x,) = 1 with probability (tot1 ...tan_1)2/(22"—1),
where tot1...t2n_1 is the truth table of the Boolean function f. (Thus, n suitable
random coins can generate a probability with 2"-bit precision.)
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SECTION 7.1.1

1. He was describing the equation z A y = z, with “it” standing respectively for z, z,
Y, 2, y (or perhaps ), z.

2. The Earth operation corresponding to the Pincusian x o y is Z o y; its truth table
is therefore the reverse of the Complement of the truth table for o. Hence the respective
16 operations of Table 1 1mphes a correspondlng dual 1dent1ty obtained by substituting
the Pincusian equivalents. For example, each of De Morgan’s laws (11) and (12) is the
dual of the other, as are the identities (3), (4) relating = and @. In this sense = can
be considered to be just as useful as its dual, ®.)

3. (a) V; (b) A; (¢) T (d) =. [Many formulas actually work out better if we use —1
for truth and +1 for falsehood, even though this convention seems a bit immoral; then
x -y corresponds to @. See the next exercise.]

4. [Trans. Amer. Math. Soc. 14 (1913), 481-488.] (a) Start with the truth tables for
L and R; then compute truth table o A 8 bitwise from each known pair of truth tables
« and [, generating the results in order of the length of each formula and writing down
a shortest formula that leads to each new 4-bit table:

L @A@RD)A @A @A) Vi (7 (@A) A (yA) A (@A)
A (zAy)A(zAy) =: Ay A((yAy) A (zAz))

D (A (zAy)A(zA(zAy)) R:yAy

L:x C:yA(zAx)

C: (yA(zAz)A(yA(zAz)) L:zAz

R:y D:zA(zAy)

@: (WA(zAz)A(zA(zAy)) A:zAy

V: (yAy)A(zAx) T: zA(zAx)

(b) In this case we start with four tables |, T, L, R, and we prefer formulas with fewer
occurrences of variables whenever there’s a choice between formulas of a given length:

1:0 V:1A((yA1)A(zA1))

AN: (zAy) Al =: (zAy)A((yAl)A(zAl))

S: (A1) Az) Al R:yAl

L:z C: yA(zA1l)

C: (WA(zA1)A1L C:zAl

Ry D: (yAl) Az

©: (A (xAL))A((yAl)Ax) A:zAy

Vi (WA A (A1) Ti1
5. (a) L: zCz; A: (zCy)Cy; D:yCwx; L:x; C xCy; R:y; the other 10
cannot be expressed. (b) With constants, however, all 16 are possible:

1:0 V:yC(xC1l)

A: (yCl)Ce =: (yCx)C((zCy)C1)

>:yCz R: yCl1

L:wx C: (zCy)C1

C: wa L:xzC1

R:y D: (yCz)C1

@®: (yCz)T(zCTy)CT1)T1 A: (yC1)Tz)CT1

V: (yC(zC1l))C1 T:1

[B. A. Bernstein, University of California Publications in Mathematics 1 (1914), 87-96.]
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6. (a) L,\,L,R,®,V,=,T. (b) L,L,R, &, =, T. [Notice that all of these operators
are associative. In fact, the stated identity implies the associative law in general: First
we have (i) (zoy)o((zoy)ow) = ((zoz)o(zo0y))o((zo0y)ow) = (zoz)ow, and
similarly (ii) (z o (yo z)) o (yow) = z o (2 o w). Furthermore (iii) (zoy) o (zo0w) =
(zoy)o((zoy)o(yow)) = (zoz)o(yow) by (i). Thus (zoz)ow = (zxoz)o((z02)ow) =
(zo(z02z2))o(zow) = zo(z0w) by (i), (iii), (ii)). The free system generated by
{21,...,7,} has exactly n + 2"n? distinct elements, namely {z; | 1 < j < n} and
{ziozj0--rozj oz |r>0and1<i,k<nand1<j < -+ <jr <n}l

7. Equivalently, we want the identity y o (z o y) = x, which holds only for & and =.
[Jevons noticed this property of @ in Pure Logic §151, but he did not pursue the matter.
We will investigate general systems of this nature, called “gropes,” in Section 7.2.3.]

8. ({L,A,C}So), {T,V,2}, 81), {L,C}, SonSh), ({®, =R}, S2), ({3,V},50NS2),
({c,A},51 N Sz), and (R,any), where So = {n | 000 =0}, S1 = {o| 1ol = 1}, and
Se ={o|zoy =Ty} = {L,R,,R}. Thus 92 of the 256 pairs are left-distributive. [This
problem and those of exercise 6 were first treated by E. Schréder in §55 of his posthu-
mously published Vorlesungen tiber die Algebra der Logik 2,2 (1905). He expressed the
answer by saying in essence that the respective truth tables (pgrs, wzyz) of (o,n) must
satisfy the relation ((pgVrs)AZ)V ((pgV7s) Aw)V ((pgVri)A(w=z)V(z=y))) =0.]

9. (a) False; (z®y)Vz = (zV2)®(yVz)Dz. (b) True, because the identity obviously
holds when z = 0 and when z = 1.

10. The first stage of decomposition (16) yields the functions with truth tables g =
11001001 and A = 11001001 ¢ 00001111 = 11000110; and the process continues in a
similar way, yielding 1+ y + zz + w + wy + wzr + wzrz (modulo 2).

11. The stated term is present if and only if f(z1,...,2z») is true an odd number of
times when 1 = 4 = 25 = 7 = 9 = 10 = --- = 0. (There are 2F such cases when
we set all but k variables to zero.) In other words the multilinear representation can
be expressed in a suggestive notation like

f(z,y,2) = (fooo + fooxz + foxoy + fosxyz + fr00Z + fr0xZ2z + fax0Ty + frxxzyz) mod 2

illustrated here for n = 3, where f..0 = f(1,1,0)® f(1,0,0)® £(0,1,0) ® £(0,0,0), etc.

12. (a) Substitute 1 — w for @, etc., in (20), getting 1 — y — zz + 2zyz — w + wy +
wz + wrz — 2wryz. [Some authors have called this the “Zhegalkin polynomial”; but
I. I. Zhegalkin himself always worked modulo 2.]

(b) The corresponding coefficients for an arbitrary n-ary function can be as large
as 2"~ ! in absolute value (and this, by induction, is the maximum). For example, the
integer multilinear representation of 1 @ --- & x, over the integers turns out to be
e —2ex +4e3 — -+ + (—2)"_len, where ey, is the kth elementary symmetric function
of {z1,...,zn}. The formula in the previous answer becomes

f(l‘,y, Z) = fOOO + fOO*Z + fO*Oy + fO**yz + f*OOm + f*O*mZ + f**ol‘y + f***myz

over the integers, where we now have f..0o = f(1,1,0)— f(1,0,0) — £(0,1,0)+ f(0,0,0),
etc. This expansion is a disguised form of the Hadamard transform, Eq. 4.6.4—(38).
(c) The polynomial is the sum of its minterms like z1(1 — z2)(1 — z3)z4. Each
minterm is nonnegative for 0 < z1,...,x, < 1, and the sum of all minterms is 1.
(d) Use induction on n, since f = zng + h — zngh.

13. In fact, F is precisely the integer multilinear representation (see exercise 12).
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14. Let r; = p;/(1 — pj). We want f(0,0,0) = 0 and f(1,1,1) =1 < rirers > 1,
£(0,0,1) =0 and f(1,1,0) =1 < 7172 > 13, £(0,1,0) =0 and f(1,0,1) =1 & rirs >
r2, £(0,1,1) = 0 and f(1,0,0) =1 < 71 > rar3. So we get (a) (z1z273); (b) z1; (¢) Ts.
15. Exercise 1.2.6-10 tells us that (i) mod 2 = [z & k=k]. Hence, for example, (1731) =
x4 A 2 A z1 (modulo 2) when z = (2, ...21)2; and we can obtain every term in a
multilinear representation like (19) in this way. Moreover, we needn’t work mod 2,

because the interpolating polynomial (lzl) (15;”3) represents x4 A 2 A x1 exactly.

16. Yes, or even by +, because different minterms can’t be simultaneously true. (But
we can’t do that in ordinary disjunctive normal forms like (25). See exercise 35.)

17. The binary operation A is not associative, so an expression like x A y A z must be
interpreted as a ternary operation. Quick’s notation is fine if one understands NAND to
be an n-ary operation, being careful to note that the NAND of a single variable x is Z.

18. If not, we could set u; < -+ < us < 1 and v1 < --- < v + 0, making f both
true and false. (And if we consider applying the distributive law (2) repeatedly to a
DNF until it becomes a CNF, we find that the converse is also true: The disjunction
v1 V- -V, is implied by f if and only if it has a literal in common with every implicant
of f, if and only if it has a literal in common with every prime implicant of f, if and
only if it has a literal in common with every implicant of some DNF for f.)

19. The maximal subcubes contained in 0010, 0011, 0101, 0110, 1000, 1001, 1010, and
1011 are 0%10, 0101, *01%, and 10%x*; so the answer is (wVgVz)A (wVIVyVZ)A(zVF)A
(wVex). (This CNF is also shortest.)

20. True. The corresponding maximal subcube is contained in some maximal subcubes
f' and ¢’, and their intersection can’t be larger. (This observation is due to Samson
and Mills, whose paper is cited in answer 31 below.)

21. By Boole’s law (20), we see that an n-ary function f is monotone if and only if its
(n — 1)-ary projections g and h are monotone and satisfy g < h. Therefore

F=@AZn)V(hAzn) = (gATn)V (gAzn) V (R ATR) = gV (hAzy),

so we can do without complementation. The constants 0 and 1 disappear unless the
function is identically constant. Conversely, any expression built up from A and V is
obviously monotone.

Note on terminology: Strictly speaking, we should say “monotone nondecreasing”
instead of simply “monotone,” if we want to preserve the language of classical math-
ematics, because a decreasing function of a real variable is also said to be monotonic.
(See, for example, the “run test” in Section 3.3.2G.) But “nondecreasing” is quite
a mouthful; so researchers who work extensively on Boolean functions have almost
unanimously opted to assume that “monotone” automatically implies nondecreasing,
in a Boolean context. Similarly, the mathematical term “positive function” normally
refers to a function whose value exceeds zero; but authors who write about “positive
Boolean functions” are referring to the functions that we are calling monotone. Since
a monotone function is order-preserving, some authors have adopted the term isotone;
but that word has already been coopted by physicists, chemists, and musicologists.

A Boolean function like Z V y, which becomes monotone if some subset of its vari-
ables is complemented, is called unate. Theorem Q obviously applies to unate functions.

22. Both g and g ® h must be monotone, and g(z) A h(z) = 0.

23. z A (vVy) A (vVz) A (wVz). (Corollary Q applies also to conjunctive prime forms
of monotone functions. Therefore, to solve any problem of this kind, we need only
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apply the distributive law (2) until no A occurs within a V, then remove any clause
that contains all the variables of another.)

24. By induction on k, the similar tree with V at the root gives a function with 22 Me/21 1

prime implicants of length 2L*/2] while the tree with A gives 4219721 -1 of length 2[%/21,
When k = 6, for example, the 47 = 2'* prime implicants in the A case have the form

T(0t90t000to00)z /N T(0t00toolteo1)z /N T(0to1to10t010)2 /N T(0tolto1lt011)2

N T(1810t100t100)2 N T(1t10t101¢101)2 N T(12118110t110)2 N T(1t11t111¢111)2)

with the ¢’s either 0 or 1. [For further information about such Boolean functions, see
D. E. Knuth and R. W. Moore, Artificial Intelligence 6 (1975), 293-326; V. Gurvich
and L. Khachiyan, Discrete Mathematics 169 (1957), 245-248.]

25. Let a, be the answer. Then a2z = a3 = 2, a4 = 3, and a,, = ap—2 +an—_3 for n > 4,
because the prime implicants when n > 4 are either p,—2 A &p—1 Or Pr_3 A Tp—_2 A\ Tn,
for some prime implicant ps in the k-variable case. (Is there a simple formula for the
shortest shellable list of implicants, in the sense of exercise 357)

26. (a) Let z; = [j€ J]. Then f(z) =0 and g(z) = 1. (This fact was exercise 18.)

(b) Suppose, for example, that k € J € G and k ¢ (J;.» I, and assume that test
(a) has been passed. Let z; = [j € J and j#k]. Then f(z) = 1; and g(z) = 0, because
every J' € G with J' # J contains an element ¢ J.

(c) Again assume that condition (a) has been ruled out. If, say, |I| > |G|, let
x; = [j is the smallest element of I U J, for some J € G]. Then f(z) =0, g(z) = 1.

(d) Now we assume that |J;c» I = J;cg J- Bach I € F stands for 27111 vectors
where f(z) = 0; similarly, each J € G stands for 27~1J| vectors where g(z) = 1. If the
sum s is less than 2", we can compute s = so + s1, where so counts the contributions
to s when z,, = 0. If 5o < 2" !, set x,, < 0; otherwise s; < 2" 7', so we set x,, « 1.
Then we set n < n — 1; eventually all z; are known, and f(z) =1, g(z) = 0.

27. Let m = min({I | I € F}U{J | J € G}) be the length of the shortest prime
clause or implicant. Then N -2"~™ > 37, 27—l 437, - 27=1J1 > 2" so we have
m < 1g N. If, say, |I| = m, some variable z, appears in at least 1/m of the members
J € G, because each J intersects I. This observation proves the hint.

Now let A(0) = A(1) =1 and A(v) =1+ A(v — 1) + A(|pv]) for v > 1. Then
A(|F||G]) is an upper bound on the number of recursive calls (the number of times X1
is performed). Letting B(v) = A(v) + 1, we have B(v) = B(v—1)+ B(|pv]) for v > 1,
hence B(v) < B(v — k) + kB(|pv]) for v > k. Taking k = v — |pv]| shows that B(v) <
((1 = p)v+2)B(|pv]); hence B(v) = O((1 — p)v + 2)* when p'v < 1, namely when ¢ >
Inv/In(1/p) = ©((logv)(log N)). Consequently A(|F||G|) < A(N?/4) = NOUogN)?,

In practice the algorithm will run much faster than the pessimistic bounds just
derived. Since the prime clauses of a function are the prime implicants of its dual,
this problem is essentially the same as verifying that one given DNF is the dual of
another. Moreover, if we start with f(z) = 0 and repeatedly find minimal z’s where
f(xz) =g(Z) =0, we can “grow” f until we’ve obtained the dual of g.

The ideas presented here are due to M. L. Fredman and L. Khachiyan, J. Algo-
rithms 21 (1996), 618—628, who also presented refinements that reduce the running
time to NO(log N/loglog N) No polynomial-time algorithm is known; yet the problem is
unlikely to be NP-complete, because we can solve it in less-than-exponential time.

28. This result is obvious once understood, but the notations and terminology can
make it confusing; so let’s consider a concrete example: If, say, y1 = ya = y¢ = 1 and
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the other y are zero, the function g is true if and only if the prime implicants pi1, p4,
and pe cover all the places where f is true. Thus we see that there is a one-to-one
correspondence between every implicant of g and every DNF for f that contains only
prime implicants p;. In this correspondence, the prime implicants of g correspond to
the “irredundant” DNFs in which no p; can be left out.

Numerous refinements of this principle have been discussed by R. B. Cutler and
S. Muroga, IEEE Transactions C-36 (1987), 277-292.

29. B1. [Initialize.] Set k < k' < 0. (Similar methods are discussed in exercise 5-19.)

B2. [Find a zero.] Increase k zero or more times, until either k = m (terminate)
or v & 27 = 0.

B3. [Make k' > k.| If ' < k, set k' < k + 1.

B4. [Advance k'.] Increase k' zero or more times, until either X’ = m (terminate)
or vy > vi +27.

B5. [Skip past a big mismatch.] If vy, @ vy > 27! set k < k' and return to B2.
B6. [Record a match.] If vy = vg + 27, output (k, k).
B7. [Advance k.| Set k + k + 1 and return to B2. |

(Steps B3 and B5 are optional, but recommended.)

30. The following algorithm keeps variable-length, sorted lists in a stack S whose size
will never exceed 2m + n. When the topmost entry of the stack is S; = s, the topmost
list is the ordered set Ss < Ssy1 < -+ < Si—i. Tag bits are maintained in another
stack T', having the same size as S (after the initialization step).

P1. [Initialize.] Set T} < 0 for 0 < k < m. Then for 0 < j < m, apply the j-
buddy scan algorithm of exercise 29, and set Ty « T% + 2j, Tyr < Thr + 27 for
all pairs (k, k') found. Then set s < ¢ < 0 and repeat the following operations
until s = m: If Ty = 0, output the subcube (0, v,) and set s < s+1; otherwise
set St «— vs, Tt < Ts, t < t+ 1, s < s+ 1. Finally set A < 0 and S; < 0.

P2. [Advance A.] (At this point stack S contains v(A) + 1 lists of subcubes.
Namely, if A = 2t 4+ ... + 2% with e; > --- > e, > 0, the stack contains
the b-values of all subcubes (a,b) C V whose a-values are respectively 0, 2°,
2°142°2 .., A, except that subcubes whose tags are zero do not appear. All
of these lists are nonempty, except possibly the last. We will now increase A
to the next relevant value.) Set j « 0. If S; = ¢ (that is, if the topmost list is
empty), increase j zero or more times until j > n or A & 27 # 0. Then while
j<nand A&29 #0,sett S, —1, A+ A—29 and j < j+ 1. Terminate
the algorithm if j > n; otherwise set A < A 4 27,

P3. [Generate list A.] Set r < t, s < s¢, and apply the j-buddy scan algorithm of
exercise 29 to the r — s numbers Ss < --- < Sr_1. For all pairs (k, k') found,
set @ < (Ty & Ty) — 27; and if 2 = 0, output the subcube (A, Sy), otherwise
set t «— t+1, Sy < Sk, 1t < =. Finally set t < t+ 1, Sy < r+ 1, and go
back to step P2. |

This algorithm is based in part on ideas of Eugenio Morreale [IEEE Trans. EC-16
(1967), 611-620; Proc. ACM Nat. Conf. 23 (1968), 355-365]. The running time is
essentially proportional to mn (for step P1) plus the total number of subcubes contained
in V. If m < 2"(1 —¢), and if V is chosen at random with size m, exercise 34 shows
that the average total number of subcubes is at most O(loglogn/logloglogn) times
the average number of maximal subcubes; hence the average running time in most cases
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will be nearly proportional to the average amount of output produced. On the other
hand, exercises 32 and 114 show that the amount of output might be huge.

31. (a) Letc=c, 1...co, ¢ =ch_1...co, " =ch_1...c5. There must be some j

with ¢; # * and ¢; # cfj; otherwise ¢’ C c. Similarly there must be some k with cj, # *
and cj, # ci. If j # k, there would be a point Z,_1...7o € ¢’ that is in neither c
nor ¢, because we could let z; = ¢; and z;, = ¢,. Hence j = k, and the value of j is
uniquely determined. Furthermore it’s easy to see that c; = ¢;. And if i # j, we have
either ¢; = x or ¢; = ¢, and either ¢; = * or ¢}, = ¢} .

(b) This statement is an obvious consequence of (a).

(c) First we prove that the parenthesized remark in step E2 is true whenever that
step is encountered. It’s clearly true when j = 0. Otherwise, let ¢ C V be a j-cube,
and suppose ¢ = ¢ U c; where ¢ and ¢; are (j — 1)-cubes. On the preceding execution
of step E2 we had ¢y C ¢y € C and ¢; C ¢} € C for some ¢ and c;; hence either
cCcplcioreCchorcCci. In each case, c is now contained in some element of C.

Secondly, we prove that the outputs in step E3 are precisely the maximal j-cubes
contained in V: Let ¢ C V be any k-cube. If ¢ is maximal, then ¢ will be in C when
we reach step E3 with j = k, and it will be output. If ¢ isn’t maximal, it has a buddy
¢’ C V, which is a k-cube contained in some subcube ¢’ € C when we reach E3. Since
c & ¢, the consensus c Ll ¢’ will be a (j + 1)-cube of C’, and ¢ will not be output.

References: The notion of consensus was first defined by Archie Blake in his Ph.D.
dissertation at the University of Chicago (1937); see J. Symbolic Logic 3 (1938), 93,
112-113. It was independently rediscovered by Edward W. Samson and Burton E. Mills
[Air Force Cambridge Research Center Tech. Report 54-21 (Cambridge, Mass.: April
1954), 54 pp.] and by W. V. Quine [AMM 62 (1955), 627-631]. The operation is also
sometimes called the resolvent, since J. A. Robinson used it in a more general form (but
with respect to clauses rather than implicants) as the basis of his “resolution principle”
for theorem proving [JACM 12 (1965), 23—-41]. Algorithm E is due to Ann C. Ewing,
J. Paul Roth, and Eric G. Wagner, AIEE Transactions, Part 1, 80 (1961), 450-458.

32. (a) Change the definition of LI in exercise 31 to the following associative and
commutative operation on the four symbols A = {0,1, %, e}, foralla € Aand z € {0,1}:

*a=alx*x=a, ella=ale=zxzUZT =, and zlz ==z

Also let h(0) = 0, h(1) = 1, h(x¥) = *, and h(e) = *. Then ¢ = h(ci U -+ U cm),
computed componentwise, is the generalized consensus if and only if this subcube is
contained in ¢; U ---Ucp,. [See P. Tison, IEEE Transactions EC-16 (1967), 446-456.]

(b) For example, let ¢; = ¥ ~*1x™7919=10+™~J, [The final component is superflu-
ous. All solutions have been characterized by R. H. Sloan, B. Szorényi, and G. Turén,
in Electronic Colloquium on Computational Complexity (2005), Report 23.]

(c) By (a), every prime implicant corresponds uniquely to the subset of implicants
that it “meets.” [A. K. Chandra and G. Markowsky, Discrete Math. 24 (1978), 7-11.]

(d) For example, (y1AZ1) V (y2AZ1AZ2) V -+ - V (Ym AZ1IA -+ - AT—1AZm) as in (b).
[J.-M. Laborde, Discrete Math. 32 (1980), 209-212.]

33. (a) (27172"_16)/(2"). (b) We must exclude the cases when z1 A--- Azj_1 AZ; A

m—2n—k m
Tj41 A--- Ay is also an implicant. By the inclusion-exclusion principle, the answer is

S0 (i )/ C)

it simplifies to (annfl)/(zn) when k = n.

m—1 m
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34. (a) We have ¢(m,n) = 3. ¢;(m,n), where ¢;(m,n) = 2"77 (?) (272_722;)/(27:) is the
average number of implicants with n — j literals (the average number of subcubes of

dimension j in the terminology of exercise 30). Clearly co(m,n) = m, and

a(mmn)= ———5 < — on —m,;

R <R () <)

similarly ¢;j(m,n) < m/(2jj!n2j717j)

po(m,n) = (2”—n—1)/(2”) :m(2"—n—1)L—1 Zm(zn_n_m)m—l

m—1 m (2n —1)m=t (27" —m)m-1

> m( lon >m> m(l—Lfn/n— m ex (zln(l—L)>
2" —m on —on/n) P\ (n—1)))

(b) Notice that ¢ = [lglgn —lglg(2"/m) +1g(4/3)| <lglgn+ O(1) is quite small.
We will repeatedly use the fact that (2n_j'2t)/(27:) < al,,, and indeed that

. Also p(m,n) = 3, pj(m,n), where we have

mfj-Zt
2" — 5.2t 2" ; )
(m—;.2t>/<m) = afn(1+0(;72%/m))

is an extremely good approximation when j isn’t too large. To establish the hint,
note that Zj<tcj(m,n)/ct(m,n) = O(tcj—1(m,n)/cj(m,n)) = O(t* (n/amn)) =

O((loglogn)*/n'/?); and ¢ty j(m,n)/ci(m,n) = O((n/(Zt))jafrfn_l. Consequently we
have c(m,n)/ci(m,n) ~ 1+ %(%)amn, where the second term dominates when cmn

is in the upper part of its range. Furthermore

has an exponentially small error term, because (1+ amn)" = O(e"l/S) <& m. Therefore
n—t

t+1
(c) Here atmn = 272"~ ot In(t/Int); so c(m,n)/ci(m,n) = 1+ O(t *logt),
p(m,n)/ce(m,n) =t "Int+1t7" Int+O(t ' loglogt). We conclude that, in this case,

p(m,n)/ct(m,n) is asymptotically e” "™ + %( )amnef""‘z"".

c(m,n) 2 lglgn (1 (loglogloglogn))

p(m,n) -3 Iglglgn logloglogn

(d) If ntmn < Int—Inlnt, we have p(m,n)/c(m,n) > pi(m,n)/c(m,n) >t ' Int+
O(t™'logt)?. On the other hand if nay,, > Int — Inlnt, we have p(m,n)/c(m,n) >
pep1(m,n)/c(m,n) > 2t7" Int + O(t ™' loglog t).

[The mean and variance of ¢(m,n) and the mean of p(m,n) were first studied
by F. Mileto and G. Putzolu, IEEE Trans. EC-13 (1964), 87-92; JACM 12 (1965),
364-375. Detailed asymptotic information about implicants, prime implicants, and
irredundant DNFs of random Boolean functions, when each value f(z1,...,z,) is inde-
pendently equal to 1 with probability p(n), has been derived by Karl Weber, Elektro-
nische Informationsverarbeitung und Kybernetik 19 (1983), 365-374, 449458, 529-534.]

35. (a) By rearranging coordinates we can assume that the pth subcube is 0¥1%+%, so
that B, = 0F170” and S, = 1F0**". Then all points of *F1"xY are still covered, by
induction on p, because all points of %7 “11%*771%%® have been covered for 1 < j < k.
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(b) The jth and kth subcubes differ in every coordinate position where B; & Sk
is nonzero. On the other hand if B; & S, is zero, the point Si of subcube k lies in a
previous subcube, by (a), because we have Sy D B;.

(c) From the list 1100, 1011, 0011 (with the bits of each Sy underlined) we obtain
the orthogonal DNF (z1Az2) V (21 AZ2Az3Az4) V (T1AT3ALZ4).

(d) (01100,00110,00011,11010,11000) is one of the eight solutions.

(e) (001100,011000,000110, 110010, 110000,010011,000011) is a symmetrical solu-
tion. And there are many more possibilities; for example, 42 permutations of the bit
codes {110000,011000,001100,000110,000011,110010,011010} are shellings.

[The concept of a shelling for monotone Boolean functions was introduced by
Michael O. Ball and J. Scott Provan, Operations Research 36 (1988), 703—715, who
discussed many significant applications.]

36. If j < k we have B; = alfB and B, = a0y for some strings «, 3, v. Form the

sequence To = alv, x1 = ¢, ..., £ = Tj_;, where z; = 00!, We have flxzo) =1
since ©o 2 By, but f(z:) = 0 since ; C Bj. So the string ;, where f(z;) = 1 and
f(ziy1) = --- = f(z;) = 0, is in B. It precedes By and proves that B; & S, 2 0'*110/41.

[This construction and parts of exercise 35 are due to E. Boros, Y. Crama, O. Ekin,
P. L. Hammer, T. Ibaraki, and A. Kogan, SIAM J. Discrete Math. 13 (2000), 212-226.]

37. The shelling order (000011, 001101, 001100, 110101, 110100, 110001, 110000)
generalizes to all n. There also are interesting solutions not based on shelling, like
the cyclically symmetrical (110000, 111000, 001100, 001110, 000011, 100011, 111111).

For the lower bound, assign the weight w. = — []7_, (z2j-1 + 22; — 3w2j_172;) to
each point z, and notice that the sum of w, over all z in any subcube is 0 or £1. (It
suffices to verify this curious fact for each of the nine possible subcubes when n = 1.)
Now choose a set of disjoint subcubes that cover the set F' = {z | f(z) = 1}; we have

le Z szzz E[mEC]ZZwI.

C chosen C chosen z€C z€F C chosen zeF

There are (Z) 2"k vectors x with exactly k pairs z2j_122; = 1 and nonzero weight.
Their weight is (—1)*7!, and they lie in F' except when k = 0. Hence Y wer We =
2 ko ()25(=1)** = 2" — (2= 1)". [See M. O. Ball and G. L. Nemhauser, Mathe-
matics of Operations Research 4 (1979), 132-143.]

38. Certainly not; a DNF is satisfiable if and only if it has at least one implicant. The
hard problem for a DNF is to decide whether or not it is a tautology (always true).

39. Associate variables y1, ..., ynv with each internal node in preorder, so that every
tree node corresponds to exactly one variable of F'. For each internal node y, with
children (I,r) and labeled with the binary operator o, construct four 3CNF clauses
coo A co1 A c10 A 11, where

Cpq = (yﬁN vty TQN)

and N denotes complementation (so that "~ = x and *¥ = ). These clauses state in
effect that y = lor; for example, if o is A, the four clauses are (FV IV r)A(FV IV T)A
(gVIVT)A(yVIVF). Finally, add one more clause, (y1 V y1 V y1), to force F' = 1.

40. Following the hint, A says ‘u < vorv < v’ and Bsays ‘u <vandv < w = u < w’.
So A A B says that there’s a linear ordering of the vertices, u1 < uz < -+ < 4y. (There
are n! ways to satisfy A A B.) Now C says that gyuy 1is equivalent to u < w < v; so D
says that u and v are not consecutive in the ordering, when v —+v. Thus ANABACAD
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is satisfiable if and only if there is a linear ordering in which all nonadjacent vertices
are nonconsecutive (that is, in which all consecutive vertices are adjacent).

41. Solution 0: ‘[m <n]’ is such a formula, but it is not in the spirit of this exercise.

Solution 1: Let z;r mean that pigeon j occupies hole k. Then the clauses are
(zj1V---Vajy) for 1 <j<mand (Tsxr VT, for 1<i<j<mandl <k<n.
[See S. A. Cook and R. A. Reckhow, J. Symbolic Logic 44 (1979), 36-50; A. Haken,
Theoretical Comp. Sci. 39 (1985), 297-308.]

Solution 2: Assume that n = 2* and let pigeon j occupy hole (z;1...x;:)2. The
clauses ((zi1 @ zj1) V-V (zit ®xj¢)) for 1 <i < j < m can be put into the CNF form
(yij1 V -+ -V yije) as in exercise 39, by introducing auxiliary clauses (Fijr V ik V Zjk) A
(y,-jk V ik V ijk) A (y,-jk V Zik V xjk) A (gj”k V Zix V fjk). If n is not a power of 2,
O(mlogn) additional clauses of size O(logn) will rule out inappropriate values. The
total size of this CNF is ©(m? logn), compared to ©(m?n) in Solution 1.

42. (ZVYIAN([GV2)AEVZ)A(GVZ)A(2V2).

43. Probably not, because every 3SAT problem can be converted to this form. For
example, the clause (z1 V z2 V Z3) can be replaced by (z1 VGV Z3) A (FV T2) A (yV z2),
where y is a new variable (essentially equivalent to Zz).

44. Suppose f(z) = f(y) = 1 implies f(x&y) = 1 and also that, say, c = 1 Vz2VZT3VZ4
is a prime clause of f. Then ¢’ = Z; V 22 V Z3 V Z4 is not a clause; otherwise c A ¢’ =
z2 V T3 V T4 would also be a clause, contradicting primality. So there’s a vector y with
flyy =1land y1 =1, y2 =0, y3s = y4 = 1. Similarly, there’s a z with f(z) = 1 and
z1=0,220 =1, 23 = z4 = 1. But then f(y& z) = 1, and ¢ isn’t a clause. The same
argument works for a clause c that has a different number of literals, as long as at least
two of the literals aren’t complemented.

45. (a) A Horn function f(z1,...,%,) is improper if and only if it is unequal to the
proper Horn function g(z1,...,2) = f(z1,-..,2Zn) V(1 A+ Azyn). So f < gis a
one-to-one correspondence between improper and proper Horn functions. (b) If f is
monotone, its complement f is either identically 1 or an improper Horn function.

46. Algorithm C puts 88 pairs xy in the core: When x = a, b, ¢, 0, or 1, the following
character y can be anything but (. When x = (, *, /, +, -, we can have y = (, a, b, c,
0, 1; also y = - when x = (, +, or -. Finally, the legitimate pairs beginning with x =)
are )+, )—,)*,)/,)).

47. The order in which Algorithm C brings vertices into the core is a topological sort,
since all predecessors of k are asserted before the algorithm sets TRUTH(xx) < 1. But
Algorithm 2.2.3T uses a queue instead of a stack, so the ordering it actually produces
is usually different from that of Algorithm C.

48. Let L be a new variable, and change every improper Horn clause to a proper one
by ORing in this new variable. (For example, ‘@ V §’ becomes ‘@ V § V L’, namely
‘w Ay = L’; proper Horn clauses stay unchanged.) Then apply Algorithm C. The
original clauses are unsatisfiable if and only if | is in the core of the new clauses. The
algorithm can therefore be terminated as soon as it is about to set TRUTH(L) <+ 1.

(J. H. Quick thought of another solution: We could apply Algorithm C to the
function g constructed in the answer to exercise 57(a), because f is unsatisfiable if and
only if every variable z; is in the core of g. However, improper clauses of f such as wVy
become many different proper clauses (0VGVz)A(GVGVZ)A(DBVGVO)A(TBVGVU)A---
of g, one for each variable not in the original clause. So Quick’s suggestion, which might
sound elegant at first blush, could increase the number of clauses by a factor of Q(n).
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Let f = fo A f1 be the conjunction of the original clauses, where fy is the conjunction
of the improper ones and f; is the conjunction of the proper ones. Adding the new
variable L, as above, changes f to (fo V L) A fi, which is proper and has the same
number of clauses as f.)

49. See Gabriel Istrate, Random Structures & Algorithms 20 (2002), 483-506.

50. If vertex v is marked A, introduce the clauses = AT (v) and = B~ (v); if it is
marked B, introduce = A~ (v) and = B (v). Otherwise let v have k outgoing arcs
v = Up, ..., v —> ug. Introduce the clauses A~ (u;) = B (v) and B~ (u;) = AT (v) for
1 < j < k. Also, if v is not marked C, introduce the clauses A" (u1) A+ A AT (uy,) =
B~ (v) and B* (u1) A+ A BT (ux) = A~ (v). All forcing strategies are consequences of
these clauses. Exercise 2.2.3-28 and its answer provide further information.

Notice that, in principle, Algorithm C can therefore be used to decide whether or
not the game of chess is a forced victory for the white pieces —except for the annoying
detail that the corresponding digraph is larger than the physical universe.

51. With best play, the results (see exercise 50) are:

n (a) (b) (c) (d)

2 0 wins second player wins 1 wins second player wins
3 0 wins first player wins  first player wins first player wins
4 first player wins first player wins  first player wins  first player wins
5 second player wins draw draw 1 loses if first

6 second player wins second player wins 1 loses if first 1 loses if first

7 1 loses if first second player wins 1 loses if first 1 loses if first

8 draw draw draw 1 loses if first

9 draw draw draw 1 loses if first

(Here “1 loses if first” means that the game is a draw if player 0 plays first, otherwise
0 can win.) Comments: In (a), player 1 has a slight disadvantage, because f = 0
when z; ...z, is a palindrome. This small difference affects the results when n = 7.
Although player 1 would seem to be better off playing Os in the left half of the board,
it turns out that his/her first move when n = 4 must be to *1#x*; the alternative, *0xx,
loses. Game (b) is essentially a race to see who can eliminate the last *. In game (c),
a random choice of z1 ...z, makes f = 1 with probability F42/2" = O(¢/2)"; in
game (d), this probability approaches zero more slowly, as ©(1/logn). Still, player 1
does better in (c) than in (d) when n = 2, 5, 8, and 9; no worse in the other cases.

52. (a) She should switch either day 1 or day 2 to day 3. (b) Change day 2 to day 3.
(c) This case is illustrated in Fig. 4; change either Desert or Excalibur to Aladdin.
(d) Change either Caesars or Excalibur to Aladdin. (e) Change either Bellagio or
Desert to Aladdin. (f) Change day 2 to day 3. Of course Williams, who doesn’t appear
in the cycle (42), bears no responsibility whatever for the conflicts.

53. If z and T are both in S, then u € S <= @ € S, because the existence of paths
from x to Z and Z to x and = to v and u to x implies the existence of paths from @
to Z and Z to @, hence from w to @ and % to u.

54. Here f(z,y,z) corresponds to the digraph shown below (analogous to Fig. 4),
and it can also be simplified to y A (Z V z). Each vertex is a strong component. So
the formula is true with respect to the quantifiers 334, 33V, V33,
false in the other cases 3V (any), V(any) (any). In general the eight
possibilities can be arranged at the corners of a cube, with each
change from 3 to V making the formula more likely to be false.
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55. Forming the digraph as in Theorem K, we can prove that the quantified formula
holds if and only if (i) no strong component contains both z and z; (ii) there is no path
from one universal variable z to another universal variable y or to its complement ¥;
(iii) no strong component containing a universal variable z also contains an existential
variable v or its complement ¥, when ‘Jv’ appears to the left of ‘Vz’. These three
conditions are clearly necessary, and they are readily tested as the strong components
are being found.

To show that they are sufficient, notice first that no strong component S equals its
complement S (see exercise 53). Therefore if S has only existential literals, we can set
them all equal as in Theorem K. Otherwise S has exactly one universal literal, u; = z;
or Zj; all other literals in S are existential and declared to the right of x;, so we can
equate them to u;. And all paths into S in such a case come from purely existential
strong components, whose value can be set to 0 because the complements of such strong
components cannot also lead into S; for if v and v imply u;, then @; implies v and v.

[Information Proc. Letters 8 (1979), 121-123. By contrast, M. Krom had proved
in J. Symbolic Logic 35 (1970), 210-216, that an analogous problem in first-order
predicate calculus (where parameterized predicates take the place of simple Boolean
variables, and quantification is over the parameters) is actually unsolvable in general.]

56. We can assume that each clause is proper, by introducing ‘1’ as in exercise 48 and
placing ‘V_L’ at the left. Call the universal variables zo, =1, ..., Tm (Where g is 1) and
call the existential variables y1, ..., yn. Remove z; from any clause whose unbarred
literal is yx when x; appears to the right of yx. Then, for 0 < j < m, let C; be the core
of the Horn clauses when the additional clauses (zo) A+ A (zj—1) A (zj41) A+ - A (zm)
are appended. (In other words, C; tells us what can be deduced when all the z’s
except z; are assumed to be true.) We claim that the given formula is true if and only
ifz; ¢ Cj, for 0 < j<m.

To prove this claim, note first that the formula is certainly false if z; € C; for
some j. Otherwise we can choose each y; to make the formula true, as follows: If
yr ¢ Co, set yr < 0; otherwise set yr < A{z; | yx ¢ C;}. Notice that y, depends on
x; only when Vz; appears to the left of Jy;, in the list of quantifiers. Each clause ¢ with
unbarred literal z; is now true: For if z; = 0, some ) appears in ¢ for which yi ¢ Cj,
because z; ¢ Cj; hence yr = 0. And each clause ¢ with unbarred literal yy, is also true:
If yr, = 0, we either have yi ¢ Cp, in which case some ¥; in ¢ is ¢ Co, hence y; = 0; or
yr € Co \ C; for some j, in which case some z; appears in Cp and z; = 0, or some 7
appears in ¢ where y; ¢ C;, making y; = 0.

[See M. Karpinski, H. Kleine-Biining, and P. H. Schmitt, Lecture Notes in Comp.
Sci. 329 (1988), 129-137; H. Kleine Biining, K. Subramani, and X. Zhao, Lecture Notes
in Comp. Sci. 2919 (2004), 93-104.]

57. By induction on n: Suppose f(0,z2,...,z,) leads to the quantified results y1, ...,
Yon—1, while f(1,z2,...,2,) leads similarly to z1, ..., 2yn—1. Then Iz f(z1,22,...,Zn)
leads to y1 V 21, ..., Yon—1 V 29n-1, and Vz1 f(z1,Z2,...,2y) leads to y1 A 21, ...,
Yan—1 A Zzn—1. Now use the fact that (yVz) + (yAz) =y + z.

58. Both (a) and (b). But (c) is always 0; (d) is always 1; (e) is (zyz); (f) isZV gV Z.
59. True —indeed obviously so, when w = 0, and when w = 1.

60. Since {z1,z2,z3} C {0,1}, we can assume by symmetry that z1 equals z2. Then
either f(z1,z1,23,%4,...,2n) = f(z1,%1,%1,Ta,...,Tn) O f(T1,T1,T3,Tay...,Tn) =
f(zs, 1,23, 24,...,2,), assuming only that f is monotone in its first three variables.
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61. (xyz) = (xxyyz). Note: Emil Post proved, in fact, that a single subroutine for any
nontrivial monotone self-dual function will suffice to compute them all. (By induction
on n, at least one appropriate way to call such an n-ary subroutine will yield (zyz).)

62. [FOCS 3 (1962), 149-157.] (a) If f is monotone and self-dual, Theorem P says
that f(z) = zx or f(z) = (fi(z)f2(x)fs(x)). The condition therefore holds either
immediately or by induction. Conversely, if the condition holds it implies that f is
monotone (when z and y differ in just one bit) and self-dual (when they differ in all bits).

(b) We merely need to show that it is possible to define f at one new point
without introducing a conflict. Let = be the lexicographically smallest point where
f(z) is undefined. If f(Z) is defined, set f(z) = f(Z). Otherwise if f(z') = 1 for some
x' C z, set f(z) = 1; otherwise set f(z) = 0. Then the condition still holds.

63. If F is maximal intersecting, we have (i) X € F = X ¢ F, where X is the
complementary set {1,2,...,n} \ X; (ii) X € Fand X CY = Y € F, because
F U {Y} is intersecting; and (iii) X ¢ F => X € F, because F U {X} must contain
an element Y C X. Conversely, one can prove without difficulty that any family F
satisfying (i) and (i) is intersecting, and maximal if it also satisfies (iii).

Punch line: All three statements can readily be translated into the language of
Boolean functions: (i) f(z) =1 = f(z) =0; (ii) 2 Cy = f(z) < f(y);
(iii) f(z) =0 = f(z)=1.

64. [T. Ibaraki and T. Kameda, IEEE Transactions on Parallel and Distributed Sys-
tems 4 (1993), 779-794.] Every family with the property that Q C Q' implies Q = Q’
clearly corresponds to the prime implicants of a monotone Boolean function f. The
further condition that @ N Q" # 0 corresponds to the further relation f(z) < f(z),
because f(Z) = f(z) = 1 holds if and only if z and Z both make prime implicants true.

If coteries C and C’ correspond in this way to functions f and f’, then C dominates
C' if and only if f # f' and f'(z) < f(z) for all z. Then f' is not self-dual, because
there is an = with f'(z) = 0, f(Z) = 1; and we have f(z) = 0, hence f'(z) = 0.

Conversely, if f' is not self-dual, there’s a y with f'(y) = f'(§) =0. If y =0...0,
coterie C' is empty, and dominated by every other coterie. Otherwise define f(z) =
f'(z) V[zDy]. Then f is monotone, and f(Z) < f(z) for all z; so it corresponds to a
coterie that dominates C’.

65. (a) By induction, if Y (t100) = Y (f010) = 1 we have a Y of 1s, because the Ys in
ti00 and to10 either intersect or are adjacent. Similarly, if Y (¢100) = Y (to10) = 0 we do
not have a Y of 1s, because there is a Y of Os.

(b) This formula follows from (a) and the fact that (tabc)des = t(atd)(bte)(ct+f) =
(tdef)abe- [Schensted stated the results of this exercise, and those of exercises 60 and
67, in a 28-page letter sent to Martin Gardner on 21 January 1979.]

66. When n = 15, the author’s best attempt so far has 58 black stones:

67. The proof of Theorem P shows that we need only prove Y(T) < f(z). AY in T
means that we’ve got at least one variable in each p;. Therefore f(Z1,...,Z,) =0, and
flx1,...,2n) =1.
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68. Self-duality of g is obvious for arbitrary ¢ when f is self-dual: g(z) = (f(z) V

o2t Ale=t] = (f(2) Ve =E)A[e £t] = (F() ALe 2DV ([2 =E] Az £1]) = g(z).

Let z = z1...2j-10xj41...2p and y = z1...zj_11lzj41 ... Ty; for monotonicity

we must prove that g(z) < g(y). f x =t or y =t, we have g(z) =0;if z =t or y =1,

we have g(y) = 1; otherwise g(z) = f(z) < f(y) = g(y). [European J. Combinatorics

6 (1995), 491-501; discovered independently by J. C. Bioch and H. Ibaraki, IEEE
Transactions on Parallel and Distributed Systems 6 (1995), 905-914.]

69. ((zyz)uv) = (((zyz)uwv)uww) = (((yuv)z(zuv))uv) = ((yuv)(zuv)((zuviuv)) =
(o) () (zuv)).

70. For (58), v = (uwvu) = u. For (59), (uyv) = (vu(zuy)) = ((vuz)uy) = {(zuy) = y.
And for (60), (zyz) = ((zuv)yz) = (z(uyz)(vyz)) = (zyy) = y.

71. (a) If d(u,v) = d(u,z) + d(z,v), we obviously obtain a shortest path of the form
U— e — L —— - if [uzv], let u— -+ — 2z — - — v be a
shortest path, with [ steps to z followed by m steps to v. Then d(u,v) =1+ m >
d(u,z) + d(z,v) > d(u,v).

(b) For all 2, (zzy) = (z(vuz)(yuz)) = ((zvy)uz) € {{yuz), (vuz)} = {u,z}.

(c) We can assume that d(z,u) > d(z,v) > 0. Let u —-
path, and let w = (zuy). Then (vzw) = (v{vuz)(wuz)) = <<vvw)uw> = (vuz) = z,
so z € [w..v]. We have [uwy], because d(u,y) < d(u,v) and w € [u..y]. If w # u
we have d(w, z) < d(u,v); hence [wzv], hence [uzv]. If w = u we have z — u by (b).
But d(z,u) > d(z,v); therefore z — v, and [uzv].

(d) Let y = (uzv). Since y € [u..z], we have d(u,z) = d(u,y) + d(y,z) by (a)
and (c). Similarly, d(u,v) = d(u,y) + d(y,v) and d(z,v) = d(z,y) + d(y,v). But these
three equations, together with d(u,v) = d(u,z) + d(z,v), yield d(z,y) = 0. [Proc.
Amer. Math. Soc. 12 (1961), 407-414.]

72. w = (yru) = (ya(saw)) = (yr(alyan)) = ((odolyaw)) = (loys)wys)) =
(zyz) by (55), the associative law (52), and the case z = y of (53).

»

73. (a) If w = (zzy) we have [zwz] by (iii), hence w = z by (i).

(b) Axiom (iii) and part (a) tell us that [zzy] is always true. So we can set x =y
in (ii) to conclude that [uzv] <= [vzu]. The definition of (zyz) in (iii) is therefore
perfectly symmetrical between x, y, and z.

(c) By the definition of (uzwv) in (iii), we have = (uzv) if and only if [uzz], [uzv],
and [zzv]. But we know that [uzz] and [zzv] are always true.

(d) In this step and subsequent steps, we will construct one or more auxiliary
points of M and then use Algorithm C to derive every consequence of the betweenness
relations that are known. (The axioms have the convenient form of Horn clauses.) For
example, here we define z = (zyv), so that we know [uzy], [uyv], [zzy], [zzv], and [yzv].
From these hypotheses we deduce, successively, [uzv], [uzy], [uzv]. So z = (uyv) = y.

(e) The hinted construction implies, among many other things, [utz], [vtz], [uwv],
[uwz], [vwz]; hence t = w. (A computer program is helpful here.) Adding the hypothe-
ses [rws], [rwz], [swz] now yields [zyz] as desired; it also turns out that r = p and s = q.

(f) Let r = (yuv), s = (zuv), t = (zyz), p = (zrs), ¢ = (tuv); then [pgp] flows out.
[Proc. Amer. Math. Soc. 5 (1954), 801-807.]

74. Axiom (i) obviously holds, and axiom (ii) follows from commutativity and (55).
The answer to exercise 86 derives (iii) from the identity (zyz) = (z{zyz){wyz)); so we
need only verify that formula: (z(zyz){wyz)) = ({yzz)z{wyz)) = ({{yzz)zz)z{wyz)) =

((yz2)z(za(wyz))) = (z(zy2)(z(zyz)w)) = ((@(zyz)2)(zyz)w) = ((wyz)(zyz)w
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Notes: The original treatment of median algebra by Birkhoff and Kiss in Bull.
Amer. Math. Soc. 53 (1947), 749-752, assumed (50), (51), and the short distributive
law (53). The fact that associativity (52) actually implies distributivity was not realized
until many years later; M. Kolibiar and T. Marcisovd, Matematicky Casopis 24 (1974),
179-185, proved it via Sholander’s axioms as in this exercise. A mechanical derivation
of (53) from (50)—(52) was found in 2005 by R. Veroff and W. McCune, using an
extension of the Otter theorem prover [to appear].

75. (a) Suppose r has 0 and s has 1, in coordinate r — s of the labels. Then the left ver-
tices are those with 0 in that coordinate. If u— v — ', where u and ' are on the left
but v is on the right, (uu'v) lies on the left. But [u..v] N [u'..v] = {v}, unless u = u'.

(b) This statement is obvious, by Corollary C.

(c) Suppose © — v and ' — v’, where u and u' are on the left, v and v’ are
on the right. Let v = vop — -+ — vy = v’ be a shortest path, and let up = u,
ur = u'. All vertices v; lie on the right, by (b). The left vertex u1 = (uoviug) must
be a common neighbor of up and vy, since the distance d(uo,v1) = 2. (We cannot have
u1 = uo, because that would imply the existence of a shortest path from v to v’ going
through the left vertex w.) Therefore v, has rank 1; and so do vz, ..., vg—1, by the
same argument. [L. Nebesky, Commentationes Mathematicse Universitatis Carolinee
12 (1971), 317-325; M. Mulder, Discrete Math. 24 (1978), 197-204.]

(d) These steps visit all vertices v of rank 1 in order of their distance d(v, s) from s.
If such a v has a late neighbor u not yet seen, the rank of v must be 1 or 2. If the
rank is 1, u will have at least two early neighbors, namely v and the future MATE (u).
Step I8 bases its decision on an arbitrary early neighbor w of u such that w # v. Since
d(w,v) = 2, the vertex z = (svw) has rank 1 by (c). If w hasrank 0, then z = v; so v has
rank 1. Otherwise d(z, s) < d(v, s), and the rank of w was correctly determined when
x was visited. If w has rank 1, u lies on a shortest path from v to wj; if w has rank 2, w
lies on a shortest path from u to s. In both cases v and w have the same rank, by (c).

(e) The algorithm removes all edges equivalent to 7 — s, by (a) and (c). Their
removal clearly disconnects the graph; the two pieces that remain are convex by (b),
so they are connected and in fact they are median graphs. Step I7 records all of
the relevant relations between the two pieces, because all 4-cycles that disappear are
examined there. By induction on the number of vertices, each piece is properly labeled.

76. Every time v appears in step 14, it loses one of its neighbors u;. Each of these
edges v — u; corresponds to a different coordinate of the labels, so we can assume
that I(v) has the form «1® for some binary string o. The labels for ui, ug, ..., ug
are then a01*~!, @101%72, ..., a1*7'0. By taking componentwise medians, we can
now prove that all 2% labels of the form af occur for vertices in the graph, since
((aB)(aB')(0...0)) is the bit string a(8 & £').
77. (a) If I(v) = k, exactly v(k) smaller vertices are neighbors of v.

(b) At most [n/2] 1s appear in bit position j, for 0 < j < [lgn].

(c) Suppose k vertices have labels beginning with 0. At most min(k,n — k) edges
correspond to that bit position, and at most f(k) + f(n — k) other edges are present.
But

f(n) = Jax (min(k,n — k) + f(k) + f(n — k)),

<n

because the function g(m,n) = f(m 4+ n) —m — f(m) — f(n) satisfies the recurrence

g(2m+a,2n+b) =ab+ g(m + a,n) + g(m,n +b) for 0 <a,b<1.
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It follows by induction that g(m,m) = g(m,m + 1) = 0, and that g(m,n) > 0 when
m < n. [Annals of the New York Academy of Sciences 175 (1970), 170-186; D. E.
Knuth, Proc. IFIP Congress 1971 (1972), 24.]

78. (a) (Solution by W. Imrich.) The graph with vertex labels 0000, 0001, 0010, 0011,
0100, 0110, 0111, 1100, 1101, 1110, 1111 cannot be labeled in any essentially different
way; but the distance from 0001 to 1101 is 4, not 2.

(b) The cycle Can is a partial cube, because its vertices can be labeled (k) =
1%0™7F I(m + k) = 0F1™7F for 0 < k < m. But the bitwise median of 1(0), I(m — 1),
and I(m + 1) is 01™20; and indeed those vertices don’t have a median, when m > 2.
79. Yes. A median graph is a subgraph of a hypercube, which is bipartite.

80. The general case reduces to the simple case where G has only two vertices {0,1},
because we can operate componentwise on the median labels, and because d(u,v) is
the Hamming distance between [(u) and I(v).

In the simple case, the stated rule sets ur < vi except when urp_1 = ve_1 =
Vk+1 # vk, and it is readily proved optimum. (Other optimum possibilities do exist,
however; for example, if vov1v2vs = 0110, we could set uouiuzusz = 0000.)

[This problem was motivated by the study of self-organizing data structures. F. R.
K. Chung, R. L. Graham, and M. E. Saks, in Discrete Algorithms and Complexity (Aca-
demic Press, 1987), 351-387, have proved that median graphs are the only graphs for
which uj can always be chosen optimally as a function of (vo,v1,...,Vk+1), regardless
of the subsequent values (vk+2,...,v:). They have also characterized all cases for which
a given finite amount of lookahead will suffice, in Combinatorica 9 (1989), 111-131.]

81. Again it suffices to consider the simple two-vertex case. An optimum solution in
that case can never have ur_1 7 ur except when ug_1 = vg_1 # vr = ur. Therefore
we must only decide which runs of consecutive Os or 1s in wov; ...v; should induce
matching runs in wous ... us.

Suppose vg_10k ... Vk+r = 0170 and ugr—; = 0. The cost of ug_1ug...upqr =
00...0 is rp, compared to a cost of 2 if ug_1uk ... ug4+r = 0170; so we must choose the
former if p < 2/r and the latter if p > 2/r. This policy can be expressed in terms of
medians, if we set up = (Uk—1...Uk—1Vk ... Vk4r) when 2/(r+1) < p < 2/r for r > 0,
where there are r occurrences of ug_1. (This median-of-(2r+1) gives correct results in
a general median graph, since it will produce valid median labels; see exercise 84.)

But we must change this rule when we get near the end, because it eventually asks
for the values of v; with 7 > ¢. The endgame is tricky; for if vg_1vk...v¢ = 01" and
ug—1 = 0, with r =t + 1 — k, the choice ug_1ug ...us = 00...0 is now preferable only
if p < 1/r. For example, if 2/4 < p < 2/3 and vov; = 01 and ¢ = 1, we want to choose
uou1 = 00; but if voviva = 011 and t = 2 we want upuiuz = 011. One solution is to
set vyqj ¢ v for 1 < j < [r/2] and vy < vo for [r/2] < j <.

82. There are 81 such functions, each of which can be represented as the median of an
odd number of elements. Seven types of vertices occur:

Type Typical vertex Cases Adjacent to Degree
1 (z) 5 (vwzyzzz) 1
2 (vwzyzzz) 5 (2), (wzyzz) 5
3 (wzyzz) 20 (vwzyzzz), (vwrryyzzz) 4
4 (vwzayyzzz) 30 (xyz), (wryzz), (vwryyzz) 5
5 (vwzyyzz) 10 (vwzzyyzzz), (Vwryz) 7
6 (vwzyz) 1 (vwzyyzz) 10
7 (zyz) 10 (vwzryyzzz) 3
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[Von Neumann and Morgenstern enumerated these seven types in their book Theory
of Games and Economic Behavior (1944), §52.5, in connection with the study of an
equivalent problem about systems of winning coalitions that they called simple games.
The graph for six-variable functions, which has 2646 vertices of 30 types, appears in the
paper by Meyerowitz cited in exercise 68. Only 21 of those types can be represented as
a simple median-of-odd; a vertex like ({abd){ace)(bcf)), for example, has no such repre-
sentation. Let the corresponding graph for n variables have M,, vertices; P. Erdds and
N. Hindman, in Discrete Math. 48 (1984), 61-65, showed that lg M,, is asymptotic to
((n72))- D- Kleitman, in J. Combin. Theory 1 (1966), 153-155, showed that the vertices
for distinct projection functions like z and y are always furthest apart in this graph.]

83. Every strong component must consist of a single vertex; otherwise two coordinates
would always be equal, or always complementary. Thus the digraph must be acyclic.

Furthermore, there must be no path from a vertex to its

complement; otherwise a coordinate would be constant. @ e e
When these two conditions are satisfied, we can prove that

no vertex z is redundant, by assigning the value 0 to all vertices e @

that precede z or Z, assigning 1 to all vertices that follow, and

giving appropriate values to all other vertices. e o @

(Consequently we obtain a completely different way to rep-
resent a median graph. For example, the digraph shown corresponds to the median
graph whose labels are {0000,0001,0010,0011,0111,1010}.)

84. Yes. By Theorem P, any monotone self-dual function maps elements of X into X.

)

(Consecutive inverters on the same line can, of course, be canceled out.)
86. A given value of d contributes at most 6[¢/d] units of delay (for 2[t/d] clusters).

87. Suppose first that the new condition is 4 — j while the old was i’ — j', where
i < j and i < j' and there are no complemented literals. The new module changes
T1...T¢ to y1...y, where y; = x; Ay, y; = x; V j, and yr = x otherwise. We
certainly have y;; < y;s when {¢',5'} N {i,j} = 0. And there is no problem if i = 7',
since y;r = y; < ®; = z < mjr = y;. But the case 1 = j' is trickier: Here the relations
1" — i and ¢ — j imply also ' — j; and this relation has been enforced by previous
modules, because modules have been appended in order of decreasing distance d in the
topological ordering w1 ...u2¢. Therefore vy =z < x; < y; = y;». A similar proof
works when j =4 or j = j'.

Finally, with complemented literals, the construction cleverly reduces the general
case to the uncomplemented case by inverting and un-inverting the bits.

88. When ¢ = 2, [ does the job. The general case follows recursively from this
building block by reducing ¢ to |t/2].

[The study of Cl-nets, and other networks of greater generality, was initiated by
E. W. Mayr and A. Subramanian, J. Computer and System Sci. 44 (1992), 302-323.]
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89. The answer does not yet seem to be known even in the special case when the
median graph is a free tree (with ¢ + 1 vertices), or in the monotone case when it is a
distributive lattice as in Corollary F. In the latter case, inverters may be unnecessary.
91. Let dx(u,v) be the number of edges on a shortest path between v and v, when
the path lies entirely within X. Clearly dx (u,v) > dg(u,v). And if u = uo Uy —
-+-—wu, = v is a shortest path in G, the path u = f(uo) — f(u1)— - — f(ur) =v
lies in X when f is a retraction from G to X; hence dx (u,v) < dg(u,v).

92. If f is a retraction of the t-cube onto X, two different coordinate positions cannot
always be equal or always complementary for all z € X, unless they are constant.
For if, say, all elements of X have the forms 00%...% or 11x...%, there would be no
path between vertices of those two types, contradicting the fact that X is an isometric
subgraph (hence connected).

Given z,y,z € X, let w = (zyz) be their median in the ¢-cube. Then f(w) €
[z..y]N[z..z]N[y..z], because (for example) f(w) lies on a shortest path from z to y
in X. So f(w) = w, and we have proved that w € X. [This result and its considerably
more subtle converse are due to H. J. Bandelt, J. Graph Theory 8 (1984), 501-510.]

93. False (although the author was hoping otherwise); the network at the _

right takes 0001 — 0000, 0010 — 0011, 1101 — 0110, but nothing — 0010. —%
(The set of all possible outputs appears to have no easy char- _]
acterization, even when no inverters are used. For example,
the pure-comparator network at the left, constructed by Tomas Feder,
takes 000000 — 000000, 010101 — 010101, and 101010 — 011001, but
nothing — 010001. See also exercises 5.3.4-50, 5.3.4-52.)

94. No. If f is a threshold function based on real parameters w = (w1,...,w,) and T,
let max{w-z | f(z) =0} =T —e. Then € > 0, and f is defined by the 2" inequalities
w-x—T > 0when f(z) =1, T—w-z—e >0 when f(z) =0. If Aisany M X N matrix
of integers for which the system of linear inequalities Av > (0,...,0)T has a real-valued
solution v = (v, ..., vN)T with vy > 0, there also is such a solution in integers. (Proof
by induction on N.) So we can assume that w1, ..., w,, T, and € are integers.

[A closer analysis using Hadamard’s inequality (see Eq. 4.6.1—(25)) proves in
fact that integer weights of magnitude at most (n + 1)(n+1)/2/2" will suffice; see
S. Muroga, I. Toda, and S. Takasu, J. Franklin Inst. 271 (1961), 376418, Theorem 16.
Furthermore, exercise 110 shows that weights nearly that large are sometimes needed.]

95. (11111$1$2>, <111$1£l72>, <1CL‘1CL‘2>, <0$1$2>, <000$1I2>, <00000$1CL‘2>
96. We may assume that f(z1,...,zn) = (y;’* ... yn"), with positive integer weights w;

and with w; + --- + w, odd. Let § be the minimum positive value of the 2" sums
+w; %+ - - - & wy, with n independently varying signs. Renumber all subscripts so that

w1+ We — Weg1 — - — W = 6. Then wiyr + -+ + WnYn > (w1 + -+ +wy) <
wl(yl—%)-l-"'-l-wn(yn—%) >0<:>w1(y1—%)+~-~+wn(yn—%) > —§/2 =
w1y1+"'+wnyn>%(w1+"'+wn_(w1+"'+wk_wk+l_"'_wn)):wk+1+
e Wh = WYL+ WRYk — Weg1Yk4+1 — 0 — WaYn > 0.

97. We have [z1+ -+ x2s—1 + s(y1 + -+ + y2e—2) > st] = [L(wl + -+ was—1)/s] +
Y1+ +yuo>t];and [(z1 4 -+ w2s1)/s] = [m1+ -+ @281 > 5]

(For example, ({zyz)uv) = (zyzu®v?), a quantity that we also know is equal to
(z(yuv)(zuv)) and {{zuv){yuv)(zuv)) by Egs. (53) and (54). Reference: C. C. Elgot,
FOCS 2 (1961), 238.)

98. True, because of the preceding exercise and (45).
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99. (a) When n = 7 they are z7 Axg, Te A5, T A5 A4, Te AT4AT3, T7 AT5 ANT3 A2,
Te ANxa ANT2 Ax1, 7 Axs Axs Axy; and in general there are n prime implicants, forming

a similar pattern. (We have either z, = xn—1 or , = Tn—1. In the first case,
Zn A Tn—1 is obviously a prime implicant. In the second case, Fy(21,...,Zn—1,Zn) =
Fr_1(x1,...,Zn-1); so we use the prime implicants of the latter, and insert =, when

Zn—1 does not appear.)

(b) The shelling pattern (0000011, 0000110, 0001101, 0011010, 0110101, 1101010,
1010101) for n = 7 works for all n.

(c) Two of several possibilities for n = 7 illustrate the general case:

Te Te
I7 Ts I7 Ts
F7($1,...,$7) - v mCL‘G Te T4 - v Te Te T4
7 5 T7 T3 7 Ts Ts T3
Te Te T4 Te T2 Te Te T4 T4 T2
X7 s 7 T3 7 T1 rr s s 3 T3 T1

[The Fibonacci threshold functions were introduced by S. Muroga, who also discovered
the optimality result in exercise 103; see IEEE Transactions EC-14 (1965), 136-148.]

100. (a) By (1) and (2), fA(io,i}, ...,Zp) is the complement of f(zo,z1,...,2n).
(b) If f is given by (75), f is [(w+ 1= 2t)z0 + wiz1 + -+ + WnTn 2w + 1 — 1],
where w = w1 4+ - +w,. Conversely, if f is a threshold function, so is f(z1,...,%n) =

f(l,z1,...,2,). [E. Goto and H. Takahashi, Proc. IFIP Congress (1962), 747-752.]

101. [See R. C. Minnick, IRE Transactions EC-10 (1961), 6-16.] We want to minimize
w1 + -+ - + wy, subject to the constraints w; > 0 for 1 < j < n and (2e; — Vwy +---+
(2, — 1)wy > 1 for each prime implicant z3* A -+ A z5*. For example, if n = 6, the
prime implicant z2 Axzs A xe¢ would lead to the constraint —wi + w2 — w3 — wa 4+ ws +we.
If the minimum is +oo, the given function is not a threshold function. (The answer to
exercise 94 gives one of the simplest examples of such a case.) Otherwise, if the solution
(w1, ...,wy) involves only integers, it minimizes the desired size. When noninteger
solutions arise, additional constraints must be added until the best solution is found,
as in part (c) of the following exercise.

102. First we need an algorithm to generate the prime implicants z* A -+ A x5 of a
given majority function (z7’* ...z5"), when wy + - -+ + w, is odd:

K1. [Initialize.] Set ¢ < 0. Then for j = n, n — 1, ..., 1 (in this order), set
aj — t,t < t+wj, e; < 0. Finally set t < (t+1)/2, s1 < 1, and [ + 1.

K2. [Enter level I.] Set I <~ I+ 1, e; < 1, si41 < s; + w;.

K3. [Below threshold?] If s;11 < ¢, return to K2.

K4. [Visit a prime implicant.] Visit the exponents (e1,...,en).

K5. [Downsize.] Set e; <— 0. Then if s; + a;41 > ¢, set si41 < s; and go to K2.
K6. [Backtrack.] Set [ <— [ — 1. Terminate if [ = 0; otherwise go to K5 if e; = 1;

otherwise repeat this step. |
(a) {(zyx3ciasabzi®2zg?) (95 prime implicants).
(b) The optimum weights for (wéG_Ztmzf x%wgu) are wowiwawazws = 10000, 31111,
21110, 32211, 11100, 23211, 12110, 13111, 01000, for 0 < t < 8; the other cases are dual.
(c) Here the optimum weights (w1, ...,w1o) are (29,25,19,15,12,8,8,3,3,0)/2;
so we learn that z10 is irrelevant, and we must deal with fractional weights. Constrain-

ing ws > 2 gives integer weights (15,13,10,8,6,4,4,2,1,0), which must be optimum
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because their sum exceeds the previous sum by 2. (Ounly two of the 175,428 self-dual
threshold functions on nine variables have nonintegral weights minimizing w1 +- - - +wn;
the other one is (m}7m%5mélm2mgm6m7msm9> The largest w1 in a minimum representa-
tion occurs in (m‘fzxzlesmlsx?xéow?mg:cg) the largest w1 + - - - + wy occurs uniquely
in (w?‘lmgzx%swfwg‘l:cgox%swéswél), which is also an example of the largest wg. See

S. Muroga, T. Tsuboi, and C. R. Baugh, IEEE Transactions C-19 (1970), 818-825.)

103. When n = 7, the inequalities generated in exercise 101 are wy +we¢ —ws —ws— w3 —
w2 —w1 > 1, —wr+we+ws —ws —wz —w2—w1 > 1, wr —we+ws+ws —w3z —w2—w1 > 1,
—w7 + we — Ws + wa + w3 — w2 —wi > 1, wr — we + wWs — wa + w3z + w2 —wy > 1,
—w7 +we —ws +wa —wz +wa+wi > 1, wr —we +ws —wa+wsz —wz +wr > 1. Multiply
them respectively by 1,1, 2,3,5,8, 5toget wi +---+wr >1+1+2+3+5+8+5.
The same idea works for all n > 3.

104. (a) (wf"71w§"72. . Tn @7%”71@7?“2. ..gnZ). (By exercise 97, we could also perform

n medians-of-three: ((...(Zn¥nZ)...T272)T171).)

(b) If (x¥ a2 ... 24 g g% ... §in2*) solves the problem, 2" — 1 basic inequal-
ities need to hold; for example, when n = 2 they are w1 + uz — v1 +v2a —w > 1,
up +ug —vy —vet+w>1,ug —uz+vy—ve—w>1, ug —uz—v1+ve+w > 1,
—urtuzt+vit+ve—w2>1, —urt+uzt+vi—v2t+w=>1, —ur —uz+vi+v2t+w2>1
Add them all up to get u1 +us + -+ up +vi +ve+---+vp +w > ontl _ 1,

105.  f N(f) 2(f) fN() () fN() () fN() ()
1L 0 (0,0 c 1 (0,1) v 1 (0,0) C 2 (0,1)
A1 (1,1) R 2 (1,2 = 2 (1,1) > 3 (1,2)
5 1 (1,0 o 2 (1,1) R 2 (1,0) A3 (1,1)
L2 (2,1) Vo3 (2,2 c 3 (2,1) T 4 (2,2

Notice that @ and = have the same parameters N(f) and X(f); they are the only
Boolean binary operations that aren’t threshold functions.

106. If X(g9) = (so,S1,---,8n), the value of g is 1 in s¢ cases when zo = 1 and in 2" — 59
cases when zo = 0. We also have X(fo) + X(f1) = (s1,...,8n), and

B(fo) =D o D (F1ye s Fn)g(0,F1, ..., Fn)
= > (1) = (@ ma)) (1 (1w, )

1
= (anl — S0y .. .72n71 - 80) + E(fl)

So the answers, for n > 0, are (a) N(fo) = 2" — so, (fo) = 2(s1 —so +2"7",...,

Sn — So =+ 2"71); (b) N(fl) = So, E(fo) = %(81 =+ So — 2"71,. ey Sn =+ So — 2"71).

[Equivalent results were presented by E. Goto in lectures at MIT in 1963.]

107. (a) a1 +---+ar > b1+ ---+byifandonly if k—a1 —---—ar < k—b1 —---— bg.
(b) Let at = (a1,a1+az,...,a1+ -+ +an). Then the vector (ci,...,c,) obtained

by componentwise minimization of o and 8% is (¢ AB)T. (Clearly ¢; = ¢j—1 +0or 1.)

(c) Proceed as in (b) but with componentwise mazimization; or take & A B.

(d) True, because max and min satisfy these distributive laws. (In fact, we obtain
a distributive mized-radiz majorization lattice in a similar way from the set of all n-
tuples a; ...a, such that 0 < a; <my for 1 <j < n.)
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(e) a1 covers a0 and 108 covers a01f3. [This characterization is due to R. O.
Winder, IEEE Trans. EC-14 (1965), 315-325, but he didn’t prove the lattice property.
The lattice is often called M (n); see B. Lindstrom, Nordisk Mat. Tidskrift 17 (1969),
61-70; R. P. Stanley, SIAM J. Algebraic and Discrete Methods 1 (1980), 177-179.]

(f) Because of (e) we have r(a) =na1 + (n —1)az + -+ + an.

(g) The point is that 08 > O« if and only if 8 > « and that 13 > O« if and only
if 18> 10...0Va = lo'.

(h) That is, how many a; .. .a, have the property that ai ... ar contains no more
1s than 0s? The answer is (Ln7zj)? see, for example, exercise 2.2.1-4 or 7.2.1.6-42(a).

108. (a) If z C y then z < y, hence f(z) < f(y); QED.

(b) Noj; a threshold function need not be monotone (see (79)). But we can show
that f is regular if we also require w, > 0: For if f(z) = 1 and y covers = we then have
Wy >w-T.

(c) Whenever f(z) =1 and z; < zj4+1, we have f(y) = 1 when y covers z with
Zj > Tj4+1; hence s; > s;41. (This argument holds even when w, < 0.)

(d) No; consider, for example, (z,z3z3), which equals (z1z223). Counterexamples
can arise even when the weights minimize w; + -+ + wn, because the solution to the
linear program in exercise 101 is not always unique. One such case, found by Muroga,
Tsuboi, and Baugh, is (mymg zSxS el xd z3x3x3), a function that is actually symmetric
in ¢4 and xs. But if s; > s;j41 we must have w; > wj41, because of (c).

109. (a) Find an optimum self-dual function f pointwise as in exercise 14; in case of
ties, set f(z1,...,%Tn) = Tn. Then if f(z1,...,2n—1,0) =1 but f(z1,...,zn-1,1) =0,
we have ar, < b and a > br, for some a and b, contradicting the fact that r, > 1. And
if f(z1,...,2-2,0,1,2j41,...,2n) = 1 but f(z1,...,25-2,1,0,2j41,...,2n) = 0, we
have ar;b > crj_1d and ar;_1b < cr;d for some (a,b,c,d), contradicting r;_1 > r;.

(b) Let p(z) be the vector (z1p1 +Z1p1,-- -, TnPn +Tnpn), where p = 1 —p. Then
the availability function is F(p(z)).

If z < 2’ we have F(p(z)) < F(p(z')), by part (a). Now if = is any vector with
f(xz) = 1, we want to prove the optimality condition F(p(Z)) < F(p(z)). There is a
minimal y < z such that f(y) = 1. And if we have verified that F(p(3)) < F(p(y)),
then indeed F(p(Z)) < F(p(7)) < F(p(y)) < F(p(z)). [H. Makino and T. Kameda,
SIAM Journal on Discrete Mathematics 14 (2001), 381-407.]

For example, there are only seven self-dual regular Boolean functions when n = 5,
generated by the following minimal elements in Fig. 6: 10000; 01111, 10001; 01110,
10010; 01101, 10011, 10100; 01100; 01011, 11000; 00111. So the optimum coterie can
be found by examining only a few function values.

(c) Suppose p, < 3. If n = 1, the only possibility is f(z1) = x1. Otherwise
F(p(zy...2n-11)) < F(p(z1...2n-10)), so we can prove that n is not in any optimum
quorum: Let ¥y = y1...Yn—1 be minimal with f(yl) = 1. We can assume that y #
0...0; otherwise f(z) = z,, and f(z) = x1 would be no worse. By minimality we
have f(y0) = 0; hence, by self-duality, f(gl) = 1. But the optimum solution satisfies
F(p(z)) < F(p(z)) for all z with f(z) = 1 (see exercise 68). So we have a contradiction:
F(p(y1)) < F(p(y0)) < F(p(y1)) < F(p(y0)) < F(p(y1)).

Thus f(y0) = 0 for all y; we can use the optimum coterie for {1,...,n — 1}.
[Y. Amir and A. Wool, Information Processing Letters 65 (1998), 223-228.]

110. (a) The leading terms are respectively 0, +zy, —zy, +z, —zy, +y, —2zy, —zY,
+£l7y, +2Iy, -Y +£l7y, -, +$y7 -y, 1; S0 F(f) =1 when f is /\7 Ly IRy \77 =G D, T.
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(b) The coefficient corresponding to exponents 01101, say, is fos«o« in the notation
of answer 12; it is a linear combination of truth table entries, always lying in the range
k-t < forsox < 251 when there are k asterisks. Thus the leading coefficient is
positive if and only if the mixed-radix number

f**...*, fO*...* ey f*O...Oy fOO...O
omy1, 2m=141, ..., 2141, 2041
is positive, where the f’s are arranged in reverse order of Chase’s sequence and the
radix 2% + 1 corresponds to an f with k asterisks. For example, when m = 2 we have
F(_f) =1 lf and only lf the sum 18f** + 6f0* + 2f*0 + foo = 18(f11 — f01 — _f10 + foo) +
6(f01 — foo) =+ 2(_f10 — foo) + foo = 18f11 — 12f01 — 16f10 + 11f00 is positive; so the
threshold function can be written {fit fot fis foo )-
(In this particular case the much simpler expression (fi1f11 for f10f00> is actually
valid. But part (c¢) will show that when m is large we can’t do a great deal better.)
(c) Suppose F(f) = [>, va(fa — 3) > 0], where the sum is over all 2™ binary
strings « of length m and where each v, is an integer weight. Define

wo =Y (-1)"*Pyg —2" a=00...0] and  Fa=» (1" fy
B B

thus, for example, wo1 = —vgo +vo1 —v10+v11 and Fi1 = foo — fo1 — fio+ fi1- One can
show that Fyxor = 2! f.xq1, if k > 0 and if Fl, = 0 whenever v(a) > k; therefore the signs
of the transformed truth coefficients F,, determine the sign of the leading coefficient in
the multilinear representation. Furthermore, we now have F(f) = [}, waFa > 0].

The general idea of the proof is to choose test functions f from which we can
derive properties of the transformed weights w,. For example, if f(z1,...,2m) =
1 ® - @ xp, we find Fy = 0 for all @ except that Fiegm—« = (=1)*7'2™71. The
multilinear representation of z1 @ --- ® xx has leading term (—2)’“711‘1 ...Zk; hence
we can conclude that wirgm-+x > 0, and in a similar way that we > 0 for all a. In
general if m changes to m + 1 but f does not depend on xp,4+1, we have Foo = 2F,
and F,; = 0.

The test function x2 @& -+ @ x, B T1T2 . . . Ty, proves that

m—1
wim > (2™ 1) wgym-1 + Z Wykgym—1-k + smaller terms,
k=1
where the smaller terms involve only wo with v(a) < m — 2. In particular, w11 >
wo1 + wig + woo. The test function 1 @ -+ B Tm—1 B T1 ... Tm—2(Tm-1 D Tm) proves
m—3
—Dwym—210 + Z (wykgym—3-k1g + Wikgym—3-kgy) + smaller terms,
k=0

Wim—-2q7 > (2m72

where the smaller terms this time have v(a) < m — 3. In particular, wio1 > w110 +
wo10 + weo1. By permuting subscripts, we obtain similar inequalities leading to

wy, > 2V _ 1y,

J j—1

for0 < j < 2™,

because the w’s begin to grow rapidly. But we have v, = Zﬁ(—l)”(BLa)wg/n;
hence |vo| = wi1..1/n + O(wn___l/nZ). [SIAM J. Discrete Math. 7 (1994), 484-492.
Important generalizations of this result have been obtained by N. Alon and V. H. V1,
J. Combinatorial Theory A79 (1997), 133-160.]

111. The stated g3 is SQ 3,6,8,9 because the stated g2 is SQ 3,4,5,8,9,10,11,12-

19,0, 19,%,9,8,9,
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For the more difficult function 51,3,5,8, let g1 = [vx>6]; g2 = [ve>3]; g3 =
[ve — 591 — 292 >2] = S2,4,5,9,10,11,12; 94 = [2vx — 1591 — 993 >1] = S1358. [See
M. A. Fischler and M. Tannenbaum, IEEE Transactions C-17 (1968), 273-279.]

112. [dxz 4+ 2y+2€{3,6}] = (EAyAz) V (xAyAZ). In the same way, any Boolean
function of n variables is a special case of a symmetric function of 2" — 1 variables.

[See W. H. Kautz, IRE Transactions EC-10 (1961), 378.]

113. Both sides are self-dual, so we may assume that o = 0. Then
S; = [wj+"'+xj+mf1>xj+m+"'+$j+2m,1].

Ifx1+---4+x2m is odd, we have s; = 5j4m; hence s1+- - -+ s2,m = m and the result is 1.
But if z1 + - - - + 2, is even, the difference z; + -+ + Tj4m-1 — Tj4m — -+ — Tjram—1
will be zero for at least one j < m; that makes s; = sj+m = 0, so we will have
81+ + Sam < M.

114. (a) It’s an implicant if and only if f(z) = 1 whenever j < vz <n—k+j. It’s a
prime implicant if and only if we also have f(z) = 0 when vz = j—1 orve = n—k+j+1.

(b) Consider the string v = vovs ... v, such that f(z) = [v,s]. By part (a), there
are (a:g:tc) prime implicants when v = 021°710°. In the stated case, a = b = ¢ = 3, so
there are 1680 prime implicants.

(c¢) For a general symmetric function, we add together the prime implicants for
each run of 1s in v. Clearly there are more for v = 0°7*1°+10°~! than for v = 0°1°70°
when a < ¢ — 1; so v contains no two consecutive 0s when the maximum is reached.

Let lAJ(m, n) be the maximum number of prime implicants possible when v,, =1
and v; =0 for m < 7 < n. Then when m < %n we have

b(m,n) = max ((k,m—k,n—m) —l—l;(ku,n))

0<k<m
)+ b(m/21 - 2,m),

n

n

- ([mm, Im/2],n—m

with b(—2,n) = b(—1,n) = 0. And the overall maximum is

I;(n) = ( n ) +I;(n171,n)+5(n271,n), nj = \‘

Nno, N1, N2

n+ jJ
5|
In particular we have b(9) = 1698, with the maximum occurring for v = 1101111011.
(d) By Stirling’s approximation, b(n) = 3"+3/2/(2wn) 4+ O(3"/n?).
(e) In this case the appropriate recurrence for m < [n/2] is

~ n n ~
b(m, n) _orgr}cagxm(<k,mfk,nfm> + (kf 1,0,nfk+1> +b("’_2’")>
n

= (el ozt — ) * (g = 1) 80/ = 200

and b(n) = b([n/2] — 1,n) maximizes min(prime implicants(f), prime implicants(f)).
We have (b(1),b(2),...) = (1,1,4,5,21,31, 113,177, 766, 1271, 4687, 7999, 34412, . . . );
for example, l~7(9) = 766 corresponds to So,2,3,4 3(:(:1, . ,179) Asymptotlcally, b( ) =
2(3n+3+(n mod 2)) 2/(27rn) + 0(23n/2/ )

References: Summaries, Summer Inst. for Symbolic Logic (Dept. of Math., Cor-
nell Univ., 1957), 211-212; B. Dunham and R. Fridshal, J. Symbolic Logic 24 (1959),
17-19; A. P. Vikulin, Problemy Kibernetiki 29 (1974), 151-166, which reports on work
done in 1960; Y. Igarashi, Transactions of the IECE of Japan E62 (1979), 389-394.

([n
)b
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115. The maximum number of subcubes of the n-cube, with none contained in another,
is obtained when we choose all subcubes of dimension |[n/3|. (It is also obtained by

choosing all subcubes of dimension |[(n 4 1)/3]; for example, when n = 2 we can
choose either {0%,1%,%0,%1} or {00,01,10,11}.) Hence b*(n) = (LnT/’SJ)Z"*L"/SJ =

3"/ Varn + 0(3"/n3/?). [See the paper of Vikulin in the previous answer, pages 164—
166; A. K. Chandra and G. Markowsky, Discrete Math. 24 (1978), 7-11; N. Metropolis
and G. C. Rota, SIAM J. Applied Math. 35 (1978), 689—694.]

116. Several authors have conjectured that b(n) = b(n); M. M. Gadzhiev has proved
that equality holds for n < 6 [Diskretnyi Analiz 18 (1971), 3-24].

117. (a) Every prime implicant is a minterm, since no adjacent points of the n-cube
have the same parity. So the full disjunctive form is the only decent DNF in this case.

(b) Now all prime implicants consist of two adjacent points. We must include the
14 subcubes 09%0°~7 and 17%1%~7 for 0 < j < 6, in order to cover the points with vz = 1
and vz = 6. The other (g) + (Z) = 70 points can be covered by 35 well-chosen prime
implicants (see, for example, exercise 6.5-1, or the “Christmas tree pattern” in Section
7.2.1.6). Thus the shortest DNF has length 49. [An ingeniously plausible but fallacious
argument that 70 prime implicants are necessary was presented by S. B. Yablonsky in
Problemy Kibernetiki 7 (1962), 229-230.]

(c) For each of 2"* choices of (z1,...,Zn—1) we need at most one implicant to
account for the behavior of the function with respect to .

[Asymptotically, almost all Boolean functions of n variables have a shortest DNF
with ©(2"/(lognloglogn)) prime implicants. See R. G. Nigmatullin, Diskretnyi Analiz
10 (1967), 69-89; V. V. Glagolev, Problemy Kibernetiki 19 (1967), 75-94; A. D.
Korshunov, Metody Diskretnogo Analiza 37 (1981), 9-41; N. Pippenger, Random
Structures & Algorithms 22 (2003), 161-186.]

118. (a) Let = z1... 2y and y = y1...yn. Since f is a function of (vz,vy), there
are altogether 20D (1) pogsibilities.

(b) In this case vz < vz’ and vy < vy’ implies f(z,y) < f(z',y'). Every such
function corresponds to a zigzag path from ap = (—%, n+ %) t0 Gm4nt2 = (m+ %, — %),
with a;j = aj_1+(1,0) or aj = aj—1 —(0,1) for 1 < 5 < m+n+2; we have f(z,y) =1
if and only if the point (vz,vy) lies above the path. So the number of possibilities is
the number of such paths, namely (m;:i-lm)

(c) Complementing = and y changes vz to m — vz and vy to n —vy. So there are
no such functions when m and n are both even; otherwise there are 2(m+1(n+1)/2

(d) The path in (b) must now satisfy a;+am+n+2—; = (m,n) for 0 < j < m+n+2.
Hence there are ((m/ﬁ];g?/ﬂ) [m odd or n odd] such functions. For example, the ten
cases when m = 3 and n = 6 are

oolee cleee cleee cle e e DN ecee DN ecee seee eeee
oolee oolee cleee ocleee oolee cleee oleee LN LN ecee
©ooee oolee oolee Oeee ©ooee oolee oleee oolee Oleee ecee
oolee ocolee ocolee oolee oolee ocolee oolee ocolee oole e oole e
OO0 ee 0O ee 0O0ee 000 e OO0 ee 0o ee 000 e oo ee 000 0000
oojee ocolee ocoole ocoole oojee ocoole ocoole ocooo oooo ocooo
oolee ocoole ocoole ocoole oooo ocooo ocooo ocooo ©oo0o ocooo

119. A function of this kind is regular with the z’s to the left of the y’s if and only if
the zigzag path does not contain two points (z,y) and (z + 2,y) with 0 < y < n; it is
regular with the y’s left of the z’s if and only if the zigzag path does not contain both
(z,y+2) and (z,y) with 0 < z < m. It is a threshold function if and only if there is
a straight line through the point (m/2,n/2) with the property that (s,t) is above the
line if and only if (s,t) is above the path, for 0 < s < m and 0 < ¢ < n. So cases 5
and 8, illustrated in the previous answer, fail to be regular; cases 1, 2, 3, 7, 9, and 10
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are threshold functions. The regular non-threshold functions that remain can also be
expressed as follows: ((z1V z2V 3) A {Z12223Y1Y2Y3Yaysye)) V (1 A z2 A x3) (case 4);
(0021 2223Y1Y2ysyaysye) V ({(T12223) A (L1z12223Y1Y2Y3Y4Y5Y6)) (case 6).

120. Self-dual regular functions are relatively easy to enumerate, but the numbers grow
rapidly; when n = 9 there are 319,124 of them, found by Muroga, Tsuboi, and Baugh
in 1967. (The corresponding numbers for n < 6 appear in Table 5, because all such
functions are threshold functions when n < 9. There are 135 when n = 7, and 2470
when n = 8.) The threshold condition can be tested quickly for any such function by
improving on the method of exercise 101, because constraints are needed only for the
minimal vectors z (with respect to majorization) such that f(z) = 1.

121. The 222 equivalence classes listed in Table 5 include 24 classes of size 2" n! =
768; so there are 24 x 768 = 18432 answers to this problem. One of them is the function
(A (yV2)VEANGTA(wS z)).
122. izzzAy;zAyAz;zA(yVe);zA(yd z).
123. (a) The function is canalizing if and only if it has a prime implicant with at most
one literal, or a prime clause with at most one literal.

(b) The function is canalizing if and only if at least one of the components of
(f) is equal to 0, 2", N(f), or N(f) — 2" ', [See I. Shmulevich, H. Lahdesmiki,
and K. Egiazarian, IEEE Signal Processing Letters 11 (2004), 289292, Proposition 6.]

(c) If, say, V(f) = y1...yn with y; = 0, then f(z) = 0 whenever z; = 1.
Therefore f is canalizing if and only if we don’t have V(f) = V(f) = 1...1 and A(f) =
A(f) = 0...0. With this test one can prove that many functions are noncanalizing
when their value is known at only a few points.
124. (a) Since a self-dual function f(z1,...,z») is true at exactly 2"~ points, it is
canalizing with respect to the variable z; if and only if f(z1,...,2,) = ;.

(b) A proper Horn function is clearly canalizing if (i) it contains any clause with
a single literal, or (ii) some literal occurs in every clause. Otherwise it is not canalizing.
For we have f(0,...,0) = f(1,...,1) =1, because (i) is false; and if x; is any variable,
there is a clause Cy not containing Z; and a clause C; not containing x;, because (ii) is
false. By choosing appropriate values of the other variables, we can make Cy A C; false
when z; = 0 and also when z; = 1.

125. For example, (1 A+ Axn) V(T A~ ATy).

126. 30 (—D)FFH(M) 22" L _o(n — 1) — 4(nmod 2) = n22" 2 + O(n?22" 7).
[See W. Just, I. Shmulevich, and J. Konvalina, Physica D197 (2004), 211-221.]

127. (a) If there are a, functions of n or fewer variables, but b, functions of exactly n
variables, we have a, = Y, (})bk. Therefore b, = 3", (—=1)""*(?)ak. (This rule applies
to all rows of Table 3, except for the case of symmetric functions.) In particular, the
answer sought here is 168 —4-204+6-6 —4 -3+ 2 = 114.

(b) If there are a,, essentially distinct functions of n or fewer variables, and b, of

exactly n variables, we have a;, = Y ;_, bj,. Hence b;, = a;, — aj,_;, and the answer in
this case is 30 — 10 = 20.
128. Let there be h(n) Horn functions and k(n) Krom functions. Clearly lgh(n) >
(Ln72J) and Igk(n) > (3). V. B. Alekseyev [Diskretnaia Matematika 1 (1989), 129-136]
has proved that lgh(n) = (\_n72j)(1 +O(n"Y*logn)). B. Bollobés, G. Brightwell, and
L. Leader [Israel J. Math. 133 (2003), 45-60] have proved that lgk(n) ~ in”.

129. Let pr = 1/(22""+1), so that p = 22" /(22" "+1). [Ph.D. thesis (MIT, 1994).]
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0-1 principle, 22.

2CNF, 11, 26, 4041, 45, see also Krom
functions.

2SAT, 11, 14-16, 26, 40.

2SAT functions, see 2CNF.

3CNF, 10.

3SAT, 10, 58.

4-cycles, 23.

vz (sideways sum), 31, 44, 54.

m (circle ratio), as “random” example,
6, 30, 34-35.

3(f) (true-vector sum), 30-31, 46, 49.

a-codes, 36, see Asterisk codes for subcubes.
Absorption laws, 4.
Acyclic digraphs, 65.
Affirmation (T), 3.
Ajtai, Miklés, 45.
Akers, Sheldon Buckingham, Jr., 41.
Alekseyev, Valery Borisovich (Anekcees,
Baustepuit Bopucosuu), 73.

Alon, Noga ()ox M), 70.
Amir, Yair (7ny PN0), 69.
AND (A), 2-5, 7, 11, 17, 35.

bitwise (&), 12, 28, 36, 38, 52, 54.
Analysis of algorithms, 36—38.
Antisymmetric digraphs, 16, 45.
Aspvall, Bengt Ingemar, 41.
Associative block designs, 10.
Associative laws, 4, 19, 22, 34, 52, 55.
Asterisk codes for subcubes, 36, 38.
Asterisks, 8, 36-38, 51.
Asymptotic methods, 53, 56, 65, 70, 73.
Automated deduction, 63.
Availability polynomials, 34, 35, 38, 47.
Avann, Sherwin Parker, 43.

b-codes, 36, see Bit codes.

Ball, Michael Owen, 57.

Bandelt, Hans-Jiirgen, 66.

Barbara Milld, Daniel, 42.

Barycentric coordinates, 42.

Baugh, Charles Richmond, 68, 69, 73.

Bernays, Paul Issak, 7.

Bernstein, Benjamin Abram, 50.

Betweenness, 19, 43-44.

Bijunctive clauses, see Krom clauses.

Binary majorization lattices, 46-47.

Binary number system, 1, 29-30, 34,
36, 44, 46, 71.

Binary operator: A function of two
variables.
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Boolean binary operators, 1-5, 34, 41, 46.
table, 3.

Binary recurrences, 63.

Binary strings, 8, 21, 44, 46-47.

Binary trees, 39.
complete, 35.

Bioch, Jan Corstiaan, 62.

Birkhoff, Garrett, 63.

Bit codes for subcubes, 36, 38—39.

Bitwise operations, 1, 28, 36, 50.
AND (&), 12, 28, 36, 38, 52, 54.
medians, 21, 25, 26, 45, 63, 64.
OR (]), 4, 28, 38.
saturating subtraction (=), 38.
XOR (@), 44, 54.

Blake, Archie, 55.

Bocheriski, Jézef (= Innocenty) Maria, 3.

Bollobas, Béla, 73.

Boole, George, 2, 6.

Boolean functions, 1-49.
enumeration of, 33.
symmetric, 31-33, 48.
threshold, 29-31, 33, 49.

Boolean games, 40.

Boros, Endre, 57.

Breadth-first search, 24.

Brightwell, Graham Richard, 73.

Buddies, 36.

Burley (= Burleigh), Walter, 5.

Canalizing functions, 32, 33, 49.
Cancellation laws, 30, 34.
Carroll, Lewis (= Dodgson, Charles
Lutwidge), 2, 33.
Cartesian products, 21.
Cat’s game, 40.
Chandra, Ashok Kumar (3¥& GHTT
I=AT), 55, 72.
Chase, Philip John, sequence, 47.
Chess, 59.
Chow, Chaw Kong (J&#3 F), 30.
parameters N(f) and X(f), 30-31, 46, 49.
Christmas tree patterns, 72.
Chung Graham, Fan Rong King
(B 4 35 4%), 64,
Cl-nets, 26-28, 45.
Clause: A disjunction of literals, 8, 35.
CNF, 7, see Conjunctive normal form.
Coalitions, 65.
Coins, biased, 49.
Comedy festival, 14-16, 40.
Commutative laws, 4, 19, 43, 55.
Comparator modules, 26-28, 45, 66.
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Comparator-inverter networks, 26-28, 45.
Comparison of binary numbers, 46.
Compiler technology, 12.
Complementation, 3, 9, 11, 32-33, 50.
laws, 4-5.
Complete binary trees, 35.
Condensation principle, 42.
Conjunction (A), 3, see AND.
Conjunctive normal form (CNF), 7,
10-11, 26, 35, 39.
full, 7.
monotone, 35.
Conjunctive prime form, 8, 35.
Consensus, 37.
Context-free grammar, 39.
Contradiction (1), 3.
Contrapositive, 15.
Converse implication (C), 3.
Converse nonimplication (C), 3, 34.
Convex hulls, 22-23.
Convex sets, 22-23, 44.
Cook, Stephen Arthur, 58.
Core of a Horn function, 12, 40, 58, 60.
Coteries, 42, 47.
Covering in a lattice, 46-47.
Crama, Yves Jean-Marie Mathieu Franz, 57.
Cubes, 20, see also Hypercubes, Subcubes.
Cutler, Robert Brian, 54.

Data replication, 42.
De Morgan, Augustus, 5.
laws, 5, 35, 50.
Decomposition or development laws, 5, 6.
Diameter of a free median graph, 65.
Dictionaries, 1, 2.
Discrete Fourier transforms, 48, 51.
Disjunctive normal form (DNF), 7-9, 35, 39.
full, 7, 35, 38, 72.
irredundant, 48, 54, 56.
monotone, 35, 36.
orthogonal, 38—39, 46.
shortest, 9, 36, 37, 49.
Disjunctive prime form, 8, 18, 25.
Distributed systems, 42.
Distributive lattices, 46, 66.
Distributive laws, 2, 4, 34, 41, 46, 52, 53.
for medians, 19, 21, 41, 43, 63.
DNF, 7, see Disjunctive normal form.
Dominance order, see Majorization.
Dominated coteries, 42.
Dot minus (), 3, 38.
Doubly linked lists, 24.
Dowling, William Francis, 14.
Dual of a Boolean function, 50, 53.
Dual identities, 50.
Dunham, Bradford, 48, 71.
Dynamic programming, 50.
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Egiazarian, Karen, 73.

Ekin, Oya, 57.

Elementary symmetric functions, 51.

Elgot, Calvin Creston, 66.

Enumeration of Boolean functions, 33.
asymptotic, 73.

Equivalence operator (=), 34, 50, 68.
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and complementations, 32—-33.

Erdds, P4l (= Paul), 65.

Ewing, Ann Catherine, 55.

Exclusive disjunction (@), 3, see XOR.

Existential quantifiers, 41.

Exponential growth: 20(n),

Exponential time, 53.

Extended real numbers: Real numbers

together with —oco and +oc0, 17.

Failing units, 34.

Falsehood (1), 3, 17, 33.

Families of subsets, 41.

Feder, Tomas, 27, 66.

Fibonacci, Leonardo, of Pisa
[= Leonardo filio Bonacci Pisano],
threshold functions, 46.
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Fischler, Martin Alvin, 71.

Fiser, Petr, 9.

Forcing functions, 32.

Fredman, Michael Lawrence, 53.

Free median algebras, 24-25, 45.
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Fridshal, Richard, 48, 71.
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Graham, Ronald Lewis (& 37 {f), 44, 64.
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Guilielmus ab Occam (= William of
Ockham), 5.
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Hadamard, Jacques Salomon
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Hagauer, Johann (= Hans), 23.
Haken, Armin, 58.
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Hastad, Johan Torkel, 47.
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clauses, 11, 39, 40, 62.
functions, 12, 33, 49.
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retracts of, 28, 45.
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Implication (D), 2-3.

Imrich, Wilfried, 23, 64.
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Inclusive disjunction (V), 3, see OR.

Incremental changes, 44.

Integer multilinear representation, 34,

38, 47-48, 51.

Interpolating polynomials, 52.

Intersecting families of sets, 41.
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Intervals in a median algebra, 19-20.

Inverter modules, 26-28, 45, 66.

Irredundant DNFs, 48, 54, 56.
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subgraphs, 44, 45, 66.

Isotone functions, 52.
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Jevons, William Stanley, 2, 5, 51.
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IOpuesnu), 57.
Kolibiar, Milan, 63.
Komlés, Janos, 45.
Konvalina, John, 73.
Korshunov, Aleksey Dmitrievich
(Kopwmynos, Asekceii Imurpuesua), 72.
Krom, Melven Robert, 16, 60.
clauses, 11, 26, 39, 41.
functions, 14, 26, 33, 35, 49, see
also 2CNF.
satisfiability, 11, 14-16, 26, 40.

Labels of graph vertices, 21-28, 44.

Laborde, Jean-Marie, 55.

Lahdesmaki, Harri, 73.

Lamport, Leslie B., 42.

Las Vegas hotels, 14-16, 40.

Late neighbors, 23.

Lattices, see Majorization lattices.

Leader, Imre, 73.

Least upper bounds, 46.

Left complementation (L), 3, 34.

Left projection (L), 3, 17, 34, 50.

Lenin, Vladimir Ilyich (Jlenus,
Buraguvup Unsma), 40.

Lexicographic order, 29, 39, 40, 61.

Lindstrom, Bernt Lennart Daniel, 69.

Linear inequalities, 66—68.

Linear ordering, 57.

Linear polynomials, 6.

Linear programming, 46.

Linear time, 11, 36.

Literals, 7.

Long distributive law, 19, 21, 43.

M(n) (binary majorization lattice), 69.
Majority functions, 17, 22, see Medians.
Majority law, 19, 43.
Majority of odd, see Median of odd.
Majorization lattices, of binary vectors,
46—48.
of n-tuples, 68.
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Makino, Kazuhisa (4% ¥ #0 X ), 69.
Marcisova, Tamara, 63.
Markowsky, George, 55, 72.
max (maximum operator), 17-18.
Maximal intersecting families, 41.
Maximal subcubes, 8, 36-37.
Maxterms, see minclauses.
Mayr, Ernst Wilhelm, 65.
McCluskey, Edward Joseph, Jr., 9.
McCulloch, Warren Sturgis, 29.
McCune, William Walker, Jr., 63.
Median algebras, 1821, 43.
Median expansion formula, 41.
Median graphs, 21-28, 44, 65.
Median labels, 21-28, 64.
Median of odd, 18, 29-30, 45—46, 48.
of five, 18, 22, 25, 30, 31, 41, 45.
Median sets, 26—28, 45.
Medians, 16-28, 41-45.
bitwise, 21, 25, 26, 45, 63, 64.
Metropolis, Nicolas Constantine
(Mnrpédmorng, Nixdraog Kwvotavtivov),
72.
Meyerowitz, Aaron David, 43, 65.

Mezei, Jorge Esteban (= Gyorgy Istvan), 46.

Miiller, Henry Sedwick, 18.
Mileto, Franco, 56.
Mills, Burton E., 52, 55.
min (minimum operator), 17-18.
Minclauses, 7.
Minnick, Robert Charles, 31, 67.
Minterms, 6-8, 51.
Mixed-radix majorization lattices, 68.
Mixed-radix numbers, 70.
MMIX, ii.
Monotone Boolean functions, 9, 17, 33,
35, 36, 38, 39, 41, 49, 52.
self-dual, 17, 24, 33, 41, 43.
threshold, 29-30.
Moore, Ronald Williams, 53.
Morgenstern, Oskar, 65.
Morreale, Eugenio, 54.
Mulder, Henry Martyn, 63.
Multilinear representation of a Boolean
function, 6, 34, 52.
integer, 34, 38, 4748, 51.
Multilinked data structures, 14.
Muroga, Saburo (Z & = §f), 31, 54,
6669, 73.
Mutual exclusion, 42.

n-ary Boolean functions, 5-9.
n-cube: The 2" points (z1,...,%n)
withz; = Oorz; = 1ineach
coordinate position, 27.
subcubes of, 8, 36-38, 51, 56, 57, 72.
Name servers, 42.
NAND, 3-4, 34-35.
Nebesky, Ladislav, 63.

INDEX AND GLOSSARY 7

Nembhauser, George Lann, 57.

Neumann, John von (= Margittai
Neumann Jénos), 65.

Neural networks, 29.

Nigmatullin, Roshal’ Gabdulkhaevich
(Hurmarysns, Pomasns
Tabaysnxaesuu), 72.

Nonconjunction (A), 3, see NAND.

Nondisjunction (V), 3, see NOR.

Nonimplication (D), 3.

NOR, 3-4.

Notational conventions:

for Boolean binary operators, 2—4.

for symmetric Boolean functions, 31.

[u..v] (closed interval), 19.

z C y (componentwise <), 9.

(zyz) (median), 16-17.

(z1...23k_1) (median), 18.
NP-complete problems, 9, 53.

Oblivious sorting, 26.

Ockham, William of (= Guilielmus
ab Occam), 5.

ODNFs, 38-39, 46.

Optimum coteries, 47.

OR (inclusive or, V), 2-5, 7, 17, 35.

bitwise (]), 4, 28, 38.
Orthogonal DNFs, 38-39, 46.
Otter theorem-proving program, 63.

P=NP(?),9.

Palindromes, 59.

Parallel computation, 45.

Parity function, 5, 31, 48—49.

Partial cubes, 44.

Partially symmetric functions, 49.

Pehoushek, Joseph Daniel, iv, 41.

Peirce, Charles Santiago Sanders, 2, 4, 7.

Philo of Megara (®ixwv 6 Méyapeitng), 2.

Pi (7), as “random” example, 6, 30, 34-35.

Pigeonhole principle, 39.

Pippenger, Nicholas John, 72.

Pitts, Walter Harry, 29.

PLAs, 7.

Plass, Michael Frederick, 41.

Polish notation, 17.

Polynomials, see Availability polynomials,
Interpolating polynomials, Multilinear
representation.

Positive Boolean functions, 9, 52, see
Monotone Boolean functions.

Positive threshold functions, 29, 30.

Post, Emil Leon, 17, 22, 61.

Precedence of operators, 5.

Prime clauses, 8, 49.

Prime forms, 8, 18, 25, 35.

Prime implicants, 8, 18, 25, 36, 48, 49.

of a majority function, 46, 67.

Programmable logic arrays, 7.

Programming languages, 12.
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Projection functions, 3, 17, 34, 50, 65.
Projections in a median algebra, 21.
Prolog language, 11.

Proper Horn clauses, iv, 12.

Proper Horn functions, iv, 12, 39, 49.
Provan, John Scott, 57.

Pun resisted, 16.

Pure majority functions, 30, 65.
Putzolu, Gianfranco, 56.

Pyramids, tetrahedral, 42—43.

Quantified formulas, 41.

Queues, 58.

Quick, Jonathan Horatio, 35, 58.

Quine, Willard Van Orman, 8, 9, 36, 55.
Quorums, 42.

Random Boolean functions, 10, 37, 56.
Random number generation, 49.
Real numbers, 45.

extended, 17.
Reckhow, Robert Allen, 58.
Recurrences, 25, 53.
Recursive subroutines, 24, 36.
Reduced median sets, 26, 45.
Redundant coordinates, 26.
Redundant implicants, 48, 54, 56.
Regular Boolean functions, 47, 49.
Reliability polynomials, 34, 35, 38, 47.
Resolution principle, 55.
Resolvents, 55.
Retracts, 28, 45.
Retraction mappings, 28, 45.
Right complementation (), 3.
Right projection (R), 3, 17, 50.
Rivest, Ronald Linn, 10.
Robinson, John Alan, 55.
Rota, Gian-Carlo, 72.
Roth, John Paul, 55.
Runs of Os or 1s, 64.
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