
Two Stage Optimization of Job Scheduling and Assignment
in Heterogeneous Compute Farms.

Lev Markov,
Sun Microsystems, Inc.
lev.markov@sun.com

Abstract

 Distributed networked computing in a compute farm
environment has attracted great attention in recent years.
Specialized management system for a
compute farm enables heterogeneous distributed resources
to be shared in a seamless way between various
competing jobs. A key functionality of such system is a
scheduler that controls the assignment of jobs to
resources. This paper outlines a range of scheduling
constrains as well as a list of required scheduling features
for a state-of-the-art management system in distributed
farm computing. It also presents a novel two stage static-
dynamic scheduling algorithm to deal with the scheduling
complexity.

1. Introduction

 Distributed networked computing in a compute farm
environment has attracted great attention in recent years
[1,2,3,4]. A compute farm is an environment in which any
number of heterogeneous compute resources, like
workstations, servers, storage arrays, are networked
together with specialized management system to form a
single entity available to all users. Compute farm
hardware by itself cannot ensure that enough computing
power is available when needed, and that computing
resources are not over or underutilized. Specialized
management system for a compute farm enables
heterogeneous distributed resources to be shared in a
seamless way between various competing jobs. It
optimizes utilization of software and hardware resources
in a networked environment and distributes
computational workload across networked servers and
workstations in order to simultaneously increase
productivity of machines and application licenses while
maximizing the number of jobs that can be completed.
 A key functionality of a management system is a
scheduler that controls the assignment of jobs to
resources. It analyzes the pending workload and the
available computing resources to create a schedule, a

time-ordered assignment of jobs to resources. Both the
efficiency and the flexibility of a distributed computing
depend critically on the quality and features of the system
scheduler. Scheduling for a heterogeneous networked
environment is complex since it involves scheduling over
two dimensions, time and space, and on two levels, jobs
and computing resources [2].
 There are many different approaches to job scheduling
in networked environment [1,4] but none of them is
capable to deal with an entire wide range of constraints
and requirements presented by the compute farm users. In
many cases system administrators have a great deal of
responsibilities in making complex manual decisions
related to job/resource management. They are required to
set or change job priorities as well as to select the most
appropriate resources for each job with a very little help of
automation. This task becomes extremely complex in case
of data or time dependencies between jobs, various job
requirements including deadlines, quite non-uniform
nature of the computing resources, etc.
 This paper outlines a range of scheduling constraints as
well as a list of required scheduling features for a state-of-
the-art management system in distributed farm computing.
It also presents a novel two stage static-dynamic
scheduling algorithms to deal with the scheduling
complexity. The scheduler continually re-evaluates (with
a specified frequency) all of the submitted jobs and
selects them for an assignment based on globally
calculated static job priorities. For each job the best
suitable resource is calculated dynamically taking into
account a current status of already scheduled jobs.

2. Problem specification

 In general terms a job scheduling and assignment
problem can be stated as a problem of selecting a resource
for every job from the pool of submitted jobs (a job
assignment task) and finding for every resource the best
order of the jobs assigned to it (a job scheduling task).
Obviously, any solution has to satisfy all resource and job
constraints and requirements.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 11, 2009 at 18:47 from IEEE Xplore. Restrictions apply.

 Constraints and requirements for the resource
management system are separated into two main groups.
The first group represents constraints imposed by the
natural job-to-job, resource-to-resource and job-to-
resource relations. These constraints are dealing with 3
different type of properties: job properties, resource
properties and job-to-resource relation properties.
 Examples of these groups of properties are:

 Properties of jobs.

Initial priority
Dependence on other jobs (time or data)
Processor type required
Licenses required
Partitionable into parallel sub-jobs
Preemptability (can a job be stopped)
Restartability (can a job be restarted)
Completion deadline

 Properties of resources.

Processor type
Licenses available
Memory size
Number of processing slots
Link bandwidth with other resources

 Properties of job-to-resource relations

Processing speed
Memory required
Number of processing slots required

 The second group of constraints represents constraints
dealing with desirable scheduling features and
capabilities imposed by the users. Examples of required
scheduling features are:

Job advance reservation
Job back filling
Job preemption
Parallel job partitioning

 It has to be noted that constraints from the first group
determine the mathematical model to be used for the
scheduling problem, while constraints from the second
group determine algorithms to be selected. Both the
mathematical model and the algorithms have to be flexible
enough to be able to incorporate additional constraints and
requirements.
 In choosing among alternative job assignments and the
corresponding feasible schedules, the scheduler minimizes
a cost function. The cost function has to be flexible
enough to be changed and/or adjusted depending on the
administrator’s requirements. There are many examples of
an acceptable cost function, e.g., total processing time,

average job waiting time, maximum deadline violation, or
a weighted combination of these costs.

3. Scheduling implementation

 The mathematical model for the job scheduling and
assignment is represented by two partially connected
graphs. The first directed graph deals with the jobs (job
graph) and the other non-directed graph deals with the
resources (resource graph). The nodes in the job graph
represent individual jobs while the directed links between
nodes represent data/time dependencies. Each link has an
associated weight representing a time delay or amount of
data to be sent from the source job to the sink job. The job
graph is a partially connected graph with links only
between inter-dependent jobs. The nodes in the resource
graph represent individual network resources, while the
links between them represent available data channels.
Each link has an associated weight representing different
quality of the channels. Each node in the resource graph
has attached available capacities of the corresponding
resource, i.e. memory size, number of processing slots,
license availability, etc. Each node in the job graph has
attached processing requirements and constraints of the
corresponding job, i.e. permission to be preempted, way
of being re-started, permission of parallel assignment into
multiple queues, application licenses needed, etc. Each
node on the job graph has an association with part of the
resource graph. The part of the resource graph
corresponding to a node in a job graph represents
resources suitable for a given job. It is called a suitable
resource sub-graph. Any two suitable resource sub-graphs
corresponding to different nodes of a job graph can
overlap.
 The goal of the job scheduling and assignment task is to
find for each node in the job graph an appropriate
node/nodes from the corresponding suitable resource sub-
graph in such a way that all constraints attached to the
nodes on the job graph and resource graph are satisfied
and the cost function is minimized.
 A state-of-the-art resource management system has to
be able to deal with several important scheduling features.
Some of them have a very significant effect on the
complexity of the algorithms as well as on the quality of
the results. The most effective scheduling features are
automatic partitioning for large parallel jobs, preemption
capability of low priority jobs by jobs with higher
priorities and advance reservation for high priority jobs
with back filling by low priority jobs. Dealing with
advance reservations will also resolve any issue related to
the job starvation problem.
 Partitioning of a large parallel job creates several
corresponding sub-jobs that are assigned to several
resources so that they are processed in parallel. These sub-
jobs must be run concurrently because they may need to
communicate with each other. Obviously, if a parallel

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 11, 2009 at 18:47 from IEEE Xplore. Restrictions apply.

sub-job is preempted, the scheduling algorithm has to
preempt processing of the other sub-jobs as well.
 A job preemption capability allows a high priority job to
preempt processing of a low priority job. Not every job
can be preempted. Ability to preempt any given job is
controlled by the corresponding parameter attached to the
job node in the job graph. Also, even if it is allowed to
preempt a given job, the preemption itself can take place
only in very specific situations. There are several global
parameters specified by the system administrator that
control preemption situations. Two parameters controlling
preemption strategy are the minimum ratio between
priorities of a preempting job and a job to be preempted
and the minimum ratio between execution time remaining
and execution time already invested. Preemption of a job
will not be allowed if its processing is “almost” done. A
third parameter controls assignment of a job that may be
preempted in the future. This parameter is the minimum
ratio between execution time spent before a job is
preempted and the total required execution time. If the
ratio is too small for a job to be started in the particular
open time spot, it is not started.
 Advance reservation for high priority jobs allows an
assignment of resources that don't have enough processing
capacity (memory and/or processing slots) at a given open
time slot, but will be capable of processing in the future.
This situation can arise if a high priority job also requires
a large amount of memory and/or processing slots and
some of the resource capacities are consumed by already
pre-assigned jobs. In such a case, a high priority job will
be assigned to the resource but it will be scheduled to start
after the required resource capacities are freed. A back
filling capability allows the idle time created by an
advance reservation on a resource to be filled with a
number of low priority jobs. The back filling has to be
done in such a way that the filling jobs do not prevent the
job with an advance reservation from being started on
time. This can be achieved if the filling jobs will be
completed in time or if they can be preempted.
 Advance reservation is the key strategy to avoid a
problem called “job starvation” experienced by many
management systems. A term of “job starvation”
addresses the situation in which low priority job
assignments repeatedly delay scheduling a high-priority
job with high processing requirements. If there is not
enough resources to schedule a high-priority job at the
time when it is ready, then it will be scheduled at the
earliest feasible “advance” time and the gabs will be filled
with low-priority jobs.
 In order to deal with size and complexity issues of the
job scheduling and assignment task, we implemented it as
two stage optimization process. This constructive heuristic
approach uses on both stages priority functions calculated
with a global view on the entire problem. In the first stage
of the process, every node of the job graph gets a static
priority calculated based on the weighted trade-off costs
associated with the corresponding job. In the second stage

of the process, job nodes are taken according to their static
global priorities and assigned to the best suitable resource
selected based on the dynamic priorities. For every job
selected for an assignment all of the suitable resources are
ordered based on the global dynamic priorities
recalculated for every new job assignment. A resource
with the highest dynamic priority is used for the selected
job. This process is repeated for every non-assigned job.
 The trade-off costs used to calculate static job priorities
deal with job required memory, number of required
processing slots, available deadline slack, job waiting time
and initial job priority set by the system administrator.
Importance weights between different trade-off costs are
flexible and easily modifiable. Dynamic resource
priorities for every selected job are calculated based on
the current resource load, total demand on a given
resource and the earliest time slot available for the job
assignment.
 The entire scheduling and job assignment procedure is
repeated with a frequency specified by the system
administrator, e.g., every 40-50 seconds. Any job partially
executed during the previous scheduling cycle and not
finished before the beginning of the current scheduling
cycle will be marked as a “pre-assigned” job and will
continue execution without being disturbed (although it
may be preempted if so allowed). On every scheduling
cycle estimations of run times for every presented job are
used. These estimations could be adjusted from cycle to
cycle if it is required. Because the scheduler is being
called frequently to build a schedule based on changing
workload and resource situations, the speed of the
algorithm is important.

4. Scheduling example

 The algorithm described above has been implemented
within Sun Grid Engine environment. The following
example can give a good illustration of the power and
flexibility of the algorithm.

Job description:

 18 sequential jobs (with job ID numbers from 1 till 28)
are presented to the scheduler. The first 17 jobs require 1
processing slot and 50 MB of memory. A job #18 requires
3 processing slots and 100 MB of memory. The first 5
jobs (numbered from 1 till 5) were scheduled during the
previous scheduling cycle and are already running on all 5
machines of the compute farm.
 Also, the scheduler is presented with a large parallel job
#19 which requires 5 slots and
600MB of memory.
 Any job preemption is not allowed. There are no data or
time dependencies between jobs.

Compute farm:

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 11, 2009 at 18:47 from IEEE Xplore. Restrictions apply.

Compute farm consist of 5 machines. The first 4
machines have 1 slot and 128 MB of memory each.
The last machine has 3 slots and 512 MB of memory.

 Static job priorities:

Static global job priorities were calculated by the
algorithm. Based on the calculated static priorities the
jobs were ordered in the following way (starting with
the highest priority job and finishing with the lowest
priotity job):
#1, #10, #2, #3, #4, #5, #18, #6, #19, #7, #11, #12,
#13, #8, #14, #15, #16, #17, #9

 Scheduling process:

 To ilustrate the scheduling process a few key steps of
the algorithm are presented:
1. Already running jobs are assigned back to the

 corresponding queues (see Table 1).
1. The next job in the priority list (job #10) is selected to

be scheduled. Queue #5 is found to be the best queue
for this job. The queue has enough resources to start
job #10 at time 0. Finish time is 10800.

2. The next job in the priority list is a job #18. This job
needs a lot of resources. These resources are available
only on queue #5. But this queue is busy until time
10800. So, an advance reservation is made for the job
#18. Start time is 10800 and finish time is 14400.

3. Job #6 is assigned on queue #4 starting at time 9600.
Finish time is 14400.

4. The next job in the priority list (job #19) is selected to
be scheduled. This is a large parallel job. It is
automatically partitioned into 5 smaller jobs. These
jobs are scheduled on all 5 machines starting 14400
(this is the time when the job #18 is estimated to be
finished on the queue #5). Table 2 presents a partial
schedule after the job #19 is scheduled.

6. The rest of the job are assigned and scheduled on
different queues to backfill available time slots created
as a result of advance reservation made for the job
#18.
The well balanced final schedule is presented in the

Table 3.

5. Conclusions

 A successful management system in heterogeneous
compute farm demands a highly scalable advance job
scheduler. The scheduler has to be flexible enough to be
able to incorporate a wide range of constraints and
requirements presented by complex compute
environments. This paper presents a novel two stage
static-dynamic scheduling algorithm to deal with
scheduling complexity of heterogeneous compute farms.
 A step-by-step scheduling example is presented to
illustrate the key steps of the algorithm. The algorithm
allows to created optimized, well balanced schedules for
distributed networked computing.
 The algorithm is implemented for the new generation of
Grid Engine software within Sun Grid Engine[TM]
environment.

References

1. http://gridengine.sunsource.net/

2. D.G Feitelson, L.Rudolph, U.Schwiegelshohn,
K.C.Sevick, P.Wong, “Theory and practice in Parallel
Job Scheduling”. In Job Scheduling Strategies for
Parallel Processing,pp.1-34, 1997.

3. C. Ernemann, V.Hamscher, U.Schwiegelshohn,
R.Yahyapour, “On Advantages of Grid Computing for
Parallel Job Scheduling”. In 2nd International
Symposium on Cluster Computing and Grid, pp.39-46,
2002.

4. J. Krallmann, U.Schwiegelshohn, R.Yahyapour, “On
the Design and Evaluation of Job Scheduling
Algorithms”. In 5th Workshop on Job Scheduling
Strategies for Parallel Processing, pp.17-42, 1999.

Appendix

Table 1: Partial schedule after step 1

Queue Assigned Jobs Job Start Time Job Finish Time

1 3 0 10800

2 5 0 9600

3 1 0 8400

4 4 0 7200

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 11, 2009 at 18:47 from IEEE Xplore. Restrictions apply.

Queue Assigned Jobs Job Start Time Job Finish Time

5 2 0 6000

Table 2: Partial schedule after step 5

Queue Assigned Jobs Job Start Time Job Finish Time

1

3

 19-1

0

14400

10800

18720

2

5

 19-2

0

14400

9600

18720

3
1

 19-3

0

14400

8400

18720

4

4

6

 19-4

0

9600

14400

7200

14400

18720

5

2

10

18

 19-5

0

0

10800

14400

6000

10800

14400

18720

Table 3: Final schedule after step 6

Queue Assigned Jobs Job Start Time Job Finish Time

1

3

 19-1

17

0

14400

18720

10800

18720

21120

2

5

 19-2

16

0

14400

18720

9600

18720

21120

3

1

 19-3

15

13

0

14400

18720

21120

8400

18720

21120

21720

4

4

6

 19-4

9

0

9600

14400

18720

7200

14400

18720

21120

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 11, 2009 at 18:47 from IEEE Xplore. Restrictions apply.

Queue Assigned Jobs Job Start Time Job Finish Time

5

2

10

18

 19-5

8

14

7

11

12

0

0

10800

14400

16320

16320

20520

20520

20520

6000

10800

14400

18720

18720

18720

21120

21120

21120

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 11, 2009 at 18:47 from IEEE Xplore. Restrictions apply.

