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SUMMARY

Javelin is a Java-based infrastructure for global computing. This paper presents Javelin++, an extension of
Javelin, intended to support a much larger set of computational hosts. Contributions to scalability and fault
tolerance are presented. This is the focus of the paper. Two scheduling schemes are presented: probabilistic
work stealing and deterministic work stealing. The distributed deterministic work stealing is integrated
with a distributed deterministic eager scheduler, which is one of the paper’s primary original contributions.
An additional fault tolerance mechanism is implemented for replacing hosts that have failed or retreated.
A Javelin++ API is sketched, then illustrated on a raytracing application. Performance results for the two
schedulers are reported, indicating that Javelin++, with its broker network, scales better than the original
Javelin. Copyright  2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Our goal is to harness the Internet’s vast, growing, computational capacity for ultra-large, coarse-
grained parallel applications. Some other research projects based on a similar vision includeCONDOR
[1,2], Legion[3], andGLOBUS[4]. By providing a portable, secure programming system, Java holds
the promise of harnessing this large heterogeneous computer network as a single, homogeneous, multi-
user multiprocessor [5,6,7]. Some research projects that work to exploit this includeCharlotte[8], Atlas
[9], Popcorn[10], Javelin [11], and Bayanihan[12]. While there are many issues related to global
computing, five fundamental issues that affect every Java-based global computing application are:

• Performance—If there is no niche where Java-based global computing outperforms existing
multiprocessor systems, then there is no reason to use it.
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• Correctness—If the system does not produce correct results, then there is no reason to use it.
• Scalability—In order for the system to outperform existing multiprocessor systems, it must

harness a much larger set of processors. To do so, it must scale to a higher degree than existing
multiprocessor systems, such as networks of workstations (NOW) [13].

• Fault tolerance—It is unreasonable to assume that such a large set of components will have zero
failures: Fault tolerance must attend systems of this order.

• Incentive—Full use of global computing ultimately implies using a set of computers that is too
large for any single person or organization to own or control. Where the authority to command
is lacking, incentives must be provided [14,15]. To date, global computing has used fame, fun,
or prizes as an incentive (e.g., the Great Internet Mersenne Prime Search [16], code-cracking
(a money prize),‡ and SETI@home§). The Popcorn project [10] has explored computational
markets.

Existing Java-based global computing projects have bottlenecks that currently prevent them from
scaling to the thousands of computers that could be brought to bear. For example, the authors of
Charlotte note:

‘We have adopted a solution that does not scale for settings such as the World Wide Web,
but it is an effective solution for our network at New York University.’

Bayanihan [17] has limited scalability now. However, its authors note:

‘Currently, some ideas we are exploring include formingserver poolsto handle large
numbers of clients, and using volunteer servers to form networks with more flexible
topologies.’

Work apparently stopped on Atlas [9] after it had been tested using only a few workstations.
The focus of this paper is on the fundamental issues of scalability and fault tolerance. We compare

two scalable versions of Javelin, called Javelin++: one version that schedules work deterministically,
and another that schedules work probabilistically. We integrate our distributed, deterministic work-
stealing scheduler with a distributed deterministic eager scheduler. This adds a powerful level of fault
tolerance.

The computational model for both versions is a simple kind of adaptively parallel computation [18],
that we call apieceworkcomputation. Such an adaptively parallel computation decomposes into a set
of sub-computations, each of which iscommunicationally autonomous, apart from scheduling work
and communicating results. Piranha and Bayanihan, for example, are architecturally suited to support
piecework computations. Raytracing is a well known piecework computation, often used by global
computing researchers. Matrix product also can be considered a piecework computation, since it can
be decomposed into a set of block sub-products, whose results are simply added to produce the matrix
product. Piecework computations are particularly attractive; they can get arbitrarily large, but their
communication requirements are in harmony with global computing’s intrinsic constraint: Internet
communication latency is large.

‡http://www.rsa.com/rsalabs/97challenge
§http://setiathome.ssl.berkeley.edu
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Absolute communication efficiency depends on the communication protocol used. However,
Javelin++’s architecturalscalability does not depend on the communication protocol used. Hence,
even though we use RMI (remote method invocation) (as opposed to, say, using TCP directly), this is
not the focus of our investigation.

The remainder of the paper is organized as follows. Section2briefly presents the Javelin architecture,
and the architectural changes Javelin++ introduces. Section3 discusses scalability in the context
of global computing: dynamic code distribution; distributed task scheduling, including a distributed
integrated work stealer/eager scheduler; and a basic fault tolerance scheme for replacing hosts
that have failed or retreated. Section4 presents the Javelin++ API, and illustrates its use on a
raytracing application. Section5 presents experimental results for the deterministic and probabilistic
versions of Javelin++, indicating the sensitivity of their scalability to granularity. The final section
concludes the paper, indicating some immediately fruitful areas of global computing research and
development.

2. ARCHITECTURE

The Javelin++ system architecture is essentially the same as its predecessor, Javelin [11]. There are still
three system entities—clients, brokers, and hosts: aclient is a process seeking computing resources; a
hostis a process offering computing resources; and abroker is a process that coordinates the allocation
of computing resources. We did, however, introduce a few changes to the architecture. The most
important ones are:

• Communication is now based on Java RMI instead of TCP sockets. The application programmer
thus no longer needs to implement a communication protocol.¶ Of course, the use of RMI
requires the presence of JDK 1.1.x or later or compatible software at any host participating
in Javelin++.

• For a number of reasons, we found it desirable to base our system mainly on Java applications
instead of applets, as was done before. The reasons that compelled us to make this switch are
outlined below.

• Javelin++ is the first version that actually implements a distributed broker network. Although
the concept was already included in the old architecture, it was never practically achieved.
Section3.1talks about the broker network.

In the remainder of this section, we first briefly recap the architecture of the old Javelin system. This
is followed by a discussion of the advantages and disadvantages of using Java applications instead of
applets.

¶We are aware that, since RMI is implemented on top of TCP, we will suffer a slight performance penalty. However, since the
focus of this research is on enhancing scalability, we are more interested in a convenient distributed object technology that hides
the peculiarities of the communication subsystem from the developer. In any case it would be easy to replace Sun’s RMI by a
much faster RMI package, e.g., KaRMI [19]. JavaParty [20] and HORB [21] are alternatives to RMI, which however lack RMI’s
widespread installed base.
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Figure 1. The Javelin architecture.

2.1. The Javelin architecture

Figure1 illustrates our architecture. Clients register their tasks to be run with their local broker; hosts
register their intention to run tasks with the broker. The broker assigns tasks to hosts that, then, run the
tasks and send results back to the clients. The role of a host or a client is not fixed. A machine may
serve as a Javelin host when it is idle (e.g., during night hours), while being a client when its owner
wants additional computing resources.

One of the most important goals of Javelin issimplicity, i.e. to enable everyone connected to the
Internet or an intranet toeasilyparticipate in Javelin. To this end, the design is based on widely used
components: Web browsers and the portable language Java. By simply pointing their browser to a
known URL of a broker, users automatically make their resources available to host parts of parallel
computations. This is achieved by downloading and executing an applet that spawns a small daemon
thread that waits and ‘listens’ for tasks from the broker. The simplicity of this approach makes it easy
for a host to participate—all that is needed is a Java-capable Web browser and the URL of the broker.

Tasks are represented as applets embedded in HTML pages. This design decision implies certain
limitations due to Java applet security: e.g., all communication must be routed through the broker and
every file access involves network communication. Therefore, in general, coarse-grained applications
with a high computation to communication ratio are well suited to Javelin. For more information on
the original Javelin prototype, see [11].

2.2. Java applets versus applications

As the underlying distributed object technology, Java RMI is used. In the original Javelin prototype
all applications run as Java applets, which has the advantage of extreme ease of use from the point
of view of a participating host—the user only needs to point a Java-capable browser to a broker’s
Web page to get started. Until the arrival of Sun’s JDK 1.2, another advantage of using applets was
the strict security model: the applet was effectively sandboxed by the browser. A user could trust the
established security policy of his or her favorite browser when running untrusted code. In JDK 1.2,
this has changed—the new security model no longer makes a principal distinction between applets and
applications. Instead, it allows the user and/or site administrator to define a specific security policy
using Sun’spolicytool . With this tool it is possible to sandbox any kind of Java code, giving
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selective permissions, for example, for local file access and communication, based on where the code
is loaded from or whose electronic signature it is carrying. As a consequence, with the new security
model it is possible to run Java applications just as securely as applets.

In addition, increasing browser heterogeneity makes it hard to program to all platforms, defeating
the original idea of Java’s platform independence. Since the arrival of JDK 1.1, browser developers
have been sluggish in implementing the complete API, leading to various subsets of the JDK being
supported by different platforms. A prominent example is Microsoft’s outright denial of support for
Java RMI in Internet Explorer, making it impossible to use the most convenient and natural object
technology for Java in conjunction with their browser. Sadly, in the browser world JDK 1.0.2 remains
the only agreed-upon standard as of today.

Together, these developments, and the other previous disadvantages of using applets (i.e., no local
file I/O, no direct point-to-point communication, no native code interface, etc.), compelled us to
base our application development on Java applications instead of applets. It is important to note that
Javelin++ is not abandoning Java applets in any way—if an application programmer wishes to develop
an applet he or she can certainly do so. The problem will simply be one of finding a browser that
supports RMI. For the moment, the JDK 1.2 appletviewer will work just fine, in conjunction with a
suitable security policy for the user.

Compared to applets, applications might appear to lack ease of use for hosting users. However, we
are providing ascreen saversolution that arguably is even easier for hosting: users can download
and install a Javelin++ screen saver on a host machine running MS Windows. This screen saver runs
the JVM and the Javelin++ daemon while the host machine is idle. In this way, the user need not
do anything to invoke the host; it is done for him precisely when his machine is available. A Unix
daemon functioning similarly, based on the machine’s load factor, is also provided. Although this has
the disadvantages of requiring user installation and developer implementation for each OS, thus losing
some of the platform independence of Java, it makes hosting essentially effortless.

To sum up, at the expense of asking users to have JDK 1.1.x or later installed, we are gaining the
extra flexibility of Java applications, and independence of any specific browser implementation. With
JDK 1.2 the user already has a powerful security mechanism to protect his or her environment. Under
JDK 1.1, the security problem remains. Therefore, we recommend either using 1.2, or restricting use
of Javelin++ to secure intranets.

Alternatively, on certain operating systems, for example, Solaris and Linux, it is possible to sandbox
a process externally through the so-called ‘/proc’ interface. This has been successfully demonstrated
in the Berkeley Janus project [22] and the UCSB Consh project [23].

This approach can lead to an even more secure execution environment than a browser itself can
provide. For instance, the experiment of the Knitting Factory project [24] found that, when using
Java RMI, at least one browser, Sun’s HotJava, allowed direct point-to-point communication between
applets once RMI handles had been exchanged through the server! Under the old security model, this
was not supposed to happen.

3. JAVELIN++: A SCALABLE ARCHITECTURE

In this section we present our approach of a scalable global computing system. Other projects have
tried or are currently trying to achieve greater scalability, for example, Atlas [9] through its tree-based
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approach and Bayanihan [17] with its volunteer server concept; but to date, no large-scale experiments
have shown that these concepts work in practice. The original Javelin achieved good results up to about
60 hosts, when the single broker/router bottleneck became noticeable.

Without modifying the original Javelin architecture, Javelin++ introduces a number of scalability
enhancements, described below. The most prominent are:

• a distributed broker network that overcomes the single broker bottleneck and permits much
greater host participation,

• the switch from Java applets to applications as described in Section2, which permits point-to-
point communication and thus allows arbitrary graph configurations, and

• two different schemes of work distribution, a probabilistic one and a deterministic one, both
of which offer the potential to accommodate large numbers of hosts participating in a single
application.

Let us begin by clarifying what we mean byscalable: If a global computational infrastructure is
scalable, its components have bounded power—bounded computational rate, bounded communication
rate, and bounded state.‖ In particular, for Javelin++ to be scalable, its clients, brokers, and hosts have
bounded power. These bounds imply that, for example, clients, brokers, and hosts can communicate
with only a fixed number of other components during a fixed interval of time. Thus, at any point in
time there are bounds on the number of connections between hosts, between brokers, between brokers
and hosts, and between the client and brokers. Bounded state similarly implies bounds on the number
of brokers that a broker can know about at any point in time.

The Javelin prototype offers just a single broker/router that becomes a bottleneck when too many
hosts participate in a computation. Clearly, a network of brokers must be created in order to achieve
scalability. Internet-wide participation means that all hosts must be largelyautonomousand able to
work in the presence of node and network failures. Scalability implies that the architecture cannot be
centralized. Bounded state implies that no site can, in general, have a global system view (e.g. a table
with the names of all participating brokers). We have identified two key problems in building a scalable
architecture.

1. Host allocation and code distribution—How does a client find hosts for its computation, and how
does the code get distributed efficiently to a potentially very large number of hosts?

2. Data communication at runtime—How is data exchanged between participating hosts after an
application has been successfully started?

In the following we describe our approach to solve these problems. The section is structured
according to the different states a Javelin++ host can be in during its lifetime. The complete state
transition diagram is shown in Figure2. There are four states:NoHost, Standby, Ready, and
Running. If a host has not joined Javelin++ it is in stateNoHost. The transition toStandby is made by
downloading and starting the Javelin++ daemon and then registering with a broker. In the next section
we describe how brokers are managed, hosts are allocated, and code is shipped so that an application
is ready to start, causing a state transition fromStandby to Ready. In Section3.2.2we present two

‖In this context, bounded stands forbounded by some constant.
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RunningReadyStandbyNoHost

Figure 2. State transition diagram for Javelin++ hosts.

Hosts BrokersBroker... ...

Figure 3. Broker connections.

different data exchange mechanisms that allow the host to run the application and therefore transition to
Running. The first is a probabilistic approach based on adistributed, double ended queueand address
hashing; the second is a deterministic, tree-based approach. The performance of these two approaches
is compared in Section5.

The diagram has two more sets of transitions, a ‘natural’ way back from each state to the previous
state when a phase has terminated, and a set of ‘interrupt’ transitions (shown in dashed lines) that lead
back to theNoHost state when a user withdraws the host from the system.

3.1. Scalable code distribution via a broker network

3.1.1. Network topology and broker management

The topology of the broker network is anunrestricted graph of bounded degree. Thus, at any time a
broker can only communicate with a constant number of other brokers. This constant may vary among
brokers according to their computational power. Similarly, a broker can only handle a constant number
of hosts. If that limit is exceeded adequate steps must be taken to redirect hosts to other brokers, as
described below. The bounds on both types of connection give the broker network the potential to scale
to arbitrary numbers of participants. At the same time, the degree of connectivity is higher than in a
tree-based topology like that used in the ATLAS project [9]. Figure3 shows the connection set up of a
broker.
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In principal, a broker is just another Javelin++ application. That means that it runs on top of the
Javelin++ daemon thread. However, since brokers are expected to be a lot more stable and reliable
than other hosts, certain conditions have to be met: a broker must run on a host with a ‘permanent’
connection to the Internet, i.e. slow modem connections are not acceptable, and the user donating
a broker host must be prepared to run the broker for a ‘long’ duration and give the system ‘ample
warning’ before withdrawing the host, so that connected hosts can be moved to other brokers.

We distinguish between two types of broker:primary brokersandsecondary brokers. Technically,
there is not much difference, except for the way the broker starts up. A primary broker is a broker that
starts up without logging in to another broker as a host first. This is to guarantee that there is a minimal
broker network at system startup. Primary brokers can start up from shell commands and link to other
primary brokers by reading in a configuration file. In contrast, secondary brokers start up as normal
Javelin++ hosts by linking to their local broker. At registration time the host indicates whether or not
it is prepared to run a broker according to the above rules.

A secondary broker comes to life when the broker it is connected to exceeds its individual limit for
host connections. In order to accommodate the host that causes this overflow, the broker chooses one of
its hosts that is prepared to be a broker and preempts the application running on that host. Then it sends
the broker code to the new broker host and moves some of its hosts to the new broker. Also, the new
broker gets connected to other brokers by using the same (or part of the same) configuration file of the
primary broker which is also sent to it by the old broker. All this can be achieved through the Javelin++
daemon. Next, the daemons of the hosts that were moved are notified of their new broker. This should
be entirely transparent to the users who donated the hosts. In the same way, the system can collapse
again if the number of hosts connected to the secondary broker drops below a certain threshold, say for
example 25% of its host capacity.

3.1.2. Code distribution

A client and its local broker do not actively look for hosts to join a computation. Hosts can join at any
time, either by contacting the same broker as the client or indirectly through some other broker.

If every host that participates in a computation had to go to the client to download the code this
would soon lead to a bottleneck for large numbers of hosts. Therefore, first the local broker and then
every other broker that joins in a computation will act as acacheon behalf of the client. The loading
and caching mechanism is implemented as a modification to the standard JavaClassLoader —
whenever aloadClass() command fails at a host it is translated to an RMI call to the local broker,
which in turn will either deliver the requested class from its cache or make a recursive RMI call to
the broker it retrieved the application from. If all calls in this chain fail to deliver the requested class,
the client will finally be contacted and deliver the original class file, which will then be cached at all
intermediate brokers in the chain. Subsequent requests by other hosts will not reach the client again,
thus eliminating another bottleneck in the system. At present, like the standardClassLoader , the
Javelin++ClassLoader loads all classeson demand, i.e. only when they are needed. To increase
execution performance it might be beneficial to preload application classes in the future. However, this
issue is completely orthogonal to the question of scalable code distribution.

In the following we describe the sequence of steps from the moment a client application is willing
to execute until the moment when a host has received the code to participate in the computation.
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1. The client registers with its local broker.
2. If the broker is willing to accept jobs, the client then sends a description of the application to the

broker.∗∗ Depending on the type of application, the client may now start up and execute on its
own.

3. A host joins the system by downloading the Javelin++ daemon class and starting a JVM that
executes the daemon.

4. The host daemon contacts the local broker asking for code to execute.
5. If the local broker has work, it returns the name of the application class and client ID. If not,

it contacts its neighboring brokers and asks for code until it either finds an application or
all neighbors have denied the request. If this search is successful, the broker also returns the
application information to the host.

6. The host daemon executes the above-mentioned recursive class loading mechanism to load the
application. A new thread is created and the application starts to execute on this host.

3.2. Scalable computation

After distributing the code successfully, we can now tackle the next problem of managing a scalable
computation. In Javelin++ we follow two distinct approaches to solve this problem, a probabilistic
and a deterministic model. Whereas the probabilistic approach is somewhat ‘chaotic’ in the sense that
communication between hosts is completely unstructured, the deterministic approach structures the
participating hosts into a tree in which some hosts become ‘managers’ for other hosts. Both approaches
offer high potential for scalability, and a performance comparison is attempted in Section5. We now
give a brief description of our strategies.

3.2.1. Work stealing

The fundamental concept underlying both our approaches iswork stealing, a distributed scheduling
scheme made popular by the Cilk project [25]. Work stealing is entirely demand driven—when a host
runs out of work it sends a work request to some other host it knows. How exactly that host is selected
depends on whether the probabilistic or deterministic strategy is used, see below. One advantage of
work stealing is its natural way of balancing the computational load, as long as the number of tasks
remains high in relation to the number of hosts; a property that makes it well suited for adaptively
parallel systems.

For our work-stealing schedulers we use two main data structures that are local to each host: a
table of host addresses(technically, Java RMI handles), and adistributed, double-ended task queue
containing ‘chunks of work’. For the reader who knows our previous Javelin prototype [11] the deque
will sound familiar. Indeed we have only further refined this approach since it promised good scalability
from the beginning.

The working principle of the deque is as follows: the local host picks work off one end of the
queue, whereas remote requests get served at the other end. Jobs get split until a certain minimum

∗∗Currently consisting of the name of the application class and the ID of the client.
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granularity—determined by the application—is reached, then they are processed. When a host runs out
of local jobs, it picks one of its neighbors from its address table and issues a work request to that host.

3.2.2. The probabilistic approach

In the probabilistic model, the host selects the target of its work request at random from the list of
hosts it currently knows. In doing so the host piggybacks its own address information onto the request
so that address information can propagate through the set of participants. Regardless of whether the
request is successful, the callee returns a constant number of his own addresses for the same purpose.
The caller will then merge its address table with the set of returned addresses. Thus, its knowledge of
participants will increase until its table fills up and ‘older’ addresses must be evicted, which can be
taken care of by a standard replacement policy like, for example, LRU. All this will result in aworking
setof connections for each host.

Since the list of known hosts can grow relatively large for big applications, ahash tableis used to
store the addresses. From the point of view of scalability, using a hash table allows for fast retrieval in
the average case and scales to very large numbers. In addition, there is no centralized site in this set-up,
and host autonomy is guaranteed since sufficient information is kept locally to remain functional in the
presence of failures. It is important to observe that the address table isbounded in size—the hash table
is preallocated to some fixed size that remains manageable.

3.2.3. The deterministic approach

Our second approach implements a deterministic scheme. Here, we use a balanced tree—similar
to a heap—as the underlying structure of our deterministic model. Again, the fundamental concept
employed is work stealing. The main difference is that the selection of the host to steal work from
follows a deterministic algorithm based on the tree structure.

Initially, each host retrieves a piece of work from its parent and will perform computation on the
work one piece at a time. When a host is done with all the work in its deque, it will attempt to steal
work, first from its children and, if that fails, from its parent. We chose this strategy to ensure that all
the work assigned to a subtree gets done before a node requests new work from its parent. To facilitate
this scheme, each host keeps a counter of the total work assigned to its subtree, plus a counter for each
of its children. It is important to observe that the counters are not likely to reflect the exact state of the
tree, but rather serve asupper boundson the amount of work left in a subtree. This way, a host can
make an ‘educated guess’ as to which of its children is most likely to have more work, and direct its
request to that child first. The counters are updated on each reply to a work request.

Work stealing within a balanced tree of hosts ensures that each host gets amount of work
commensurate with its capabilities. The client is always located at the root of the tree and manages
the tree, i.e., it maintains a heap data structure for that purpose. When a new host joins, it is assigned
a leaf position in the tree by the tree manager. The tree fanout can be chosen individually for each
application at startup.

Figures4–6 illustrate the deterministic work-stealing process. In Figure4, three hosts have joined
in the computation of a simple raytracing scene. At first, only Host 0—the client—started work on the
whole image. Then, Host 1 joined and stole the left half of the image from Host 0. Next, Host 2 joined
and stole the upper right quarter of the image from the client. The figure depicts the situation when all
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Figure 4. Work stealing: three hosts working on a raytracing scene.
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Figure 5. Work stealing: Client and Host 1 have stolen work from each other.

hosts have already completed some atomic pieces of their work. Consequently, the work counters at
Host 1 and Host 2 show the exact number of atomic pieces remaining in the deques of these hosts, 6
and 3, respectively.

The client only has an upper bound on these counters, indicating the initial amount of work given to
each of its children—8 and 4, respectively. However, it does know that the client itself has completed
3 units of work, so it can adjust the upper bound on the total work—its own work counter—to a value
of 13.

In Figure5, the computation has progressed to the point where first the client was able to steal the
upper left quarter of the image back from Host 1, and then Host 1 in turn stole the upper left eighth
of the image back from the client. Host 2 still has work remaining from its initial share of the image.
Through this exchange the client has gained information on the amount of work Host 1 has completed,
and therefore it knows that there can be at most seven pieces left to compute, with at most two pieces
for Host 1 and, since it has not heard from Host 2 yet, at most four pieces for that host. Of course,
Hosts 1 and 2 know the exact workloads in their deques, just as before.

Finally, Figure6 shows the end of the computation with all counters down to zero.

3.3. Fault tolerance

For fault tolerance purposes, the current version of Javelin++ employsdistributed eager scheduling,
where pieces of work can be reassigned to idle hosts in case results are still outstanding. Eager
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Figure 6. Work stealing: image complete.

scheduling was made popular by the Charlotte project [8] and has also been used successfully in
Bayanihan [17]. It is a low-overhead way of ensuring progress towards the overall solution in the
presence of failures or varying processor speeds.

We first explain our distributed eager scheduling strategy, then we give a brief description of
an additional fault tolerance feature of Javelin++—detecting and correcting host failures in the
deterministic tree.

3.3.1. Distributed eager scheduling

The Javelin++ eager scheduling logic is located on the client. Although this may seem like a bottleneck
with respect to scalability, it is not, as we shall explain below. The mechanism employed is lightweight,
introducing little overhead, as our experiments in Section5 demonstrate.

The basic data structure required is a heap-likeproblem tree, which the client maintains to keep
track of the computation status. The tree has a node for every piece of work the problem can possibly
generate, and is structured as follows: at its root is the complete, undivided problem itself; its children
are the subproblems resulting from a single split of the root problem; and so on, until the atomic pieces
of the problem appear at the leaves of the tree. Each node can be in one of three states:done, meaning
the result for the subproblem has been received by the client;partly done, meaning that results have
been received by the client for some but not all descendants of this subproblem (i.e., some but not all
subproblems of this subproblem); andundone, meaning that no results whatsoever have been received
by the client for this subproblem. Initially, all nodes are in theundonestate. The processing itself
consists of two distinct routines.

1. Result processing—this is the ‘normal’ mode of operation, in which the client records all
incoming results. Specifically, the client marks the subproblem corresponding to the incoming
result asdone, and then recurses up the tree marking ancestors of the subproblem eitherdone
or partly donedepending on their current status. At present, the first result for a subproblem is
always recorded and passed to the client’s result handler. Any subsequent results for the same
subproblem are simply discarded. Another alternative, to ensure correctness, would be to wait
until several results have been received and compare them, and possibly employ some form of
quorum-consensus mechanism in case of mismatching results.
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Figure 7. Eager scheduling: Result 4 arrives.

2. Eager scheduling selection—this routine is invoked only when regular work stealing fails for the
client, i.e. theclient cannot get work from its children in the host tree. In this case, the client
selects the next piece of work markedundonefor rescheduling. Since the tree is organized as a
circular array with piece sizes monotonically decreasing, this piece is guaranteed to be the largest
available undone piece. The next time selection is invoked, it will proceed from the current point
to select the next largest undone piece, and so on. At the end of the array, the selection process
simply wraps around to the beginning and enters another round.

It is important to note that the scheme employed is actually distributed: by selecting the largest
available piece of work and re-issuing it for processing, the distributed work stealing ensures that this
work will be split up and distributed among the participating hosts just as the pieces were initially. The
eager scheduling strategy thus is integrated very naturally into the distributed work stealing.

Figures7–9give an example of Javelin++ eager scheduling. In Figure7 we see how the result of the
atomic piece with ID 4 arrives at the client. The client subsequently marks all its ancestors including
the root aspartly done. In Figure8 another result arrives for the atomic piece with ID 3. Now the client
can also mark the parent of this piece, node 1, asdone. Finally, in Figure9 we show how, assuming no
further results arrive at the client and work stealing has failed, the client selects piece number 2 as the
largestundonepiece of work. This piece will now be re-issued for host work. It subsequently may be
split, and parts of it stolen by other hosts.

Our variation of eager scheduling principally works with both scheduling approaches. In the
deterministic case, eager scheduling proceeds in rounds. Work is re-issued, starting a new round, only
when all work in the current round has been split into atomic pieces and all atomic pieces have been
assigned to some host. In the probabilistic case, however, it is difficult to detect when all work in the
current round has been split into atomic pieces and all atomic pieces have been assigned to some host.
Rather, work is re-issued in the probabilistic case when the client is out of work and fails to find work
afterk attempts to steal work from randomly selected hosts (for somek, a parameter of the probabilistic
eager scheduling strategy).
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Figure 8. Eager scheduling: Result 3 arrives.
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Figure 9. Eager scheduling: Piece 2 selected.

3.3.2. Fixing the deterministic tree

If a host fails (or retreats from the system) in the probabilistic scheme, it does not affect other hosts very
much, since communication is unstructured and the failed host, when detected, will just be taken off the
detecting host’s address list. In the deterministic setting, however, a host failure has more consequences.
Depending on its position in the host tree, a failed host blocks communication among its children, and
a portion of the undone computation residing at the failed host may never be assigned to any host in
its subtree. Eager scheduling guarantees that the work will be done eventually by the hosts that remain
accessible to the client, but it still would be desirable to fix a broken tree structure as fast as possible,
especially if the failed host is the root of a large subtree of hosts.

Javelin++ provides a feature that automatically fixes a tree as soon as a host failure is detected. As a
precondition we make the assumption that the client is astable participant. This is reasonable because
the client is the initiator of the whole computation.

The tree repair scheme works as follows: When a host is assigned a position in the tree, it is given
a list of all of its ancestors, with the client being the first element of the list. If a host detects that its
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Figure 10. Host 1 fails, Host 3 detects failure.
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Figure 11. Client preempts Host 6.

parent is dead, it immediately notifies the client of this condition. If the empty position has already
been reported and filled, the tree manager traverses the tree representation, and returns a new ancestor
list to the host. However, if the host is the first to report the failure, the tree manager reheaps the tree.
First, it notifies the last node in the tree, which is to be moved to fix the gap. Figures10–12illustrate
the situation where node 1 has failed and is replaced by node 6.

Node 6 is assigned a new list of ancestors, and is moved to its new position. Then, the tree manager
traverses the tree representation to find the new ancestor chain of the orphaned node, and returns that
chain.

Currently, the tree is managed by a single entity and therefore presents a potential bottleneck if
the host failure rate is high. However, it would be possible to modify the existing implementation to
distribute tree management throughout the broker network. In this case, the host failure rate which the
system could recover from would increase as the number of brokers increased.

At present, the tree repair scheme can only cope with host failures, i.e., all hosts that detect a
failure must agree on that observation. A single host is not able to distinguish between host and link
(communication) failures; the result is the same from the point of view of the host. In case of a link
failure between a host and only one of its children, the present scheme reports a failure to the client
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Figure 12. Host 6 takes over for Host 1.

even when sibling hosts can still communicate with the ‘failed’ parent host. Clearly, what is needed
is a form ofquorum consensusalgorithm. Therefore, our basic scheme needs to respond in a more
sophisticated way to link failures. This is a current topic of research in Javelin++.

4. THE JAVELIN++ API

In this section we illustrate our system from an application programmer’s point of view. We first present
the classes needed by the programmer to create a Javelin++ application. We then give an example that
shows how the API is actually used and how easy it is to create Javelin++ applications.

A Javelin++ application consists of one client and many hosts. The client is responsible for initiating
the computation, managing the problem, and collecting the results. It may or may not do part of
the actual computation. The hosts help the client manage and compute the problem. The client code
executes on a single machine, while the host code is distributed throughout the Javelin++ network and
executed on many different machines.

All of the Javelin++ classes are contained in two packages:JavelinPlusandJavelinPlus.util. The
first package contains all of the core Javelin++ classes and the second one contains data managers and
other helper classes. We follow the convention that all classes and interfaces beginning with the letter
‘J’ are implemented in Javelin++ and can be directly used by the application, whereas interfaces not
beginning with ‘J’ must be implemented by the application in order to work with the system.

The application programmer must provide code for both the client and the host, which may actually
be joined together in a single source file as our example below shows, plus the implementation of three
interfaces needed by the system.

4.1. The JavelinPlus package

This package contains all the core classes needed by clients, hosts, and brokers, including the Javelin++
daemon mentioned in Section3. The programmer writing an application for Javelin++ only needs to
get acquainted with theJavelinClient class.
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public class JavelinClient {
public JavelinClient(String client,

String className,
String broker);

public void begin();
public void terminate();

}

Javelin++ clients must instantiate theJavelinClient class. The only constructor of
JavelinClient takes the local host name, the top-level class name used to load the host classes,
and a broker’s host name. Once the client is ready to start the computation, the client invokes the
begin() method. This causes the client to register with a broker, which in turn allows for the broker
network to assign hosts to the client’s computation. Theterminate() method unregisters the client
allowing the broker network to clean up and stop assigning hosts to that client. It is typically called
after the computation is done and before the client exits.

4.2. The JavelinPlus.util package

To manage the computation, clients and hosts must instantiate one of the data managers in this package.
Data managers dictate how the computation is divided, how hosts obtain work, and how results return
to the client. As discussed in Section3, data managers can either be probabilistic or deterministic, and
they are responsible for providing scalability and fault tolerance. Currently, Javelin++ provides two
data managers: the deterministicJavelinDDeque and the probabilisticJavelinRDeque . Both of
these implement theJDataManager interface shown below:

public interface JDataManager {
public void addWork(Splittable work);
public Splittable getWork();
public void returnResult(Object result);
public void setResultListener(ResultListener rl);
public void setDoneListener(DoneListener dl);

}

The three main methods areaddWork() , getWork() , andreturnResult() . In our model, a
host uses the first method to pass new work to the data manager. In the piecework scenario this method
is typically only executed once by the client to initialize the computation. ThegetWork() method is
used by a host to obtain a piece of the computation. In case the computation produces a usable result,
the host passes that result to the client using thereturnResult() method. However, the exact way
that the result propagates to the client depends on the underlying data manager. For instance, atomic
results can be sent directly to the client or they can be collected, composed, and sent as composite
results.

The programmer must also tell the data manager how to notify his application whenever a new result
arrives and when all the work is complete. This is done by the methodssetResultListener()
and setDoneListener() . The two methods are mainly needed on the client which needs to
process results and is interested in knowing when the computation is complete. For this purpose, the
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programmer must implement the two interfaces below so that the respective methods can be called by
the system:

public interface ResultListener {
public void handleResult(Object result);

}

public interface DoneListener {
public void workDone();

}

We now mention how the client conveys its work to a data manager. For this, the programmer defines
a class, representing the type of work to be done, that implements theSplittable interface, shown
below. The data manager uses the Splittable methods to divide and distribute the work to hosts:

public interface Splittable {
public boolean canSplit();
public Splittable[] split();
public int getObjectSize();

}

The split() method should split the work represented by a particular object into two relatively
equal parts. The two parts are returned in an array of length two.†† For example, assume we have a
class that implements theSplittable interface and represents an image. If we were to invoke the
split() method on an instance representing ann by n image, the returned array should contain
two new instances each representing ann/2 by n image. ThecanSplit() method determines if a
split is possible and is always invoked prior tosplit() method. IfcanSplit() returnsfalse, the
split() method will not be called. Finally, thegetObjectSize() method returns the integer size
of the piece of work: the number of atomic pieces into which this piece decomposes. This is needed
by the deterministic deque which keeps integer counters of all work assigned to a tree node and its
children. The method is ignored by the random deque.

4.3. Examples

The main design goal is to separate the computation engine from the data delivery. The data delivery
interacts with Javelin++ to obtain and format the work for the computation engine. This design
produces two very desirable properties. First, we can reduce application writing to using an off-the-
shelf program/library (computation engine) and only writing a small data delivery part. Second, having
done one such application, it is very easy to change to a different computation engine.

The client must pass the name of the host class into theJavelinClient constructor. This class
has to implement theRunnable interface, since the Javelin++ daemon is going to execute the host
application as a thread. Therefore, the programmer must implement therun() method, which is the
first method that is going to be invoked.

††Although other ways of splitting are conceivable with this interface!
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Prior to the computation, the host is only required to instantiate the same data manager as the client.
Then, the host starts the computational loop: ask data manager for work, compute work, and return
results. Once the data manager returnsnull, indicating that there is no more work, the host can terminate
by simply returning from therun() method.

The skeletons for the client and the host are presented below. To save space and increase readability
much of the error handling code has been omitted.

public class GenericClient
implements ResultListener, DoneListener {
JavelinClient jClient = null;
JDataManager dm = null;
Splittable work = null;

public GenericClient(String broker) {
jClient = new JavelinClient(localHost,

"GenericHost",
broker);

// Create a work object of the class
// that implements Splittable.
work = new ...;

// Create a data manager.
// Here, a deterministic deque
// is instantiated.
dm = new JavelinDDeque();

// Pass the work to the data manager.
dm.addWork(work);
dm.setResultListener(this);
dm.setDoneListener(this);

jClient.begin(); // Begin execution phase.
}

public void handleResult(Object result) {
... // ResultListener Implementation.

}

public void workDone() {
// DoneListener Implementation.
jClient.terminate();

}

public static void main(String[] argv) {
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GenericClient genClient
= new GenericClient(argv[0]);

}
}

public class GenericHost implements Runnable {
JDataManager dm = null;

public GenericHost() { ... }

public void init() {
// Instantiate the same data manager
// as in the client.

}

public void run() {
init();

// Computational loop.
while ((Object work = dm.getWork()) != null) {

Object result = doWork(work);
dm.returnResult(result);

}
}

}

Next, we give some code extracts from our raytracing application. The raytracer is still the same
application that was used in the original Javelin system [11]. We first show how this application
implements theSplittable interface to tell Javelin++ how objects can be split. Here, the
RectEntry class shown below simply extends thejava.awt.Rectangle class to define the
area that needs to be rendered.

public class RectEntry extends java.awt.Rectangle
implements Splittable {
// minimum size for split
public static final int limit = 32;
private int jsize = 0;

public RectEntry(int x, int y, int ww, int hh) {
super(x, y, ww, hh);
jsize = (ww/limit) * (hh/limit);

}

boolean canSplit() {
return (width > limit || height > limit);
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}

Splittable[] split() {
Splittable[] result = new Splittable[2];

if (width > height) {
result[0] = new RectEntry(x, y,

width/2, height);
result[1] = new RectEntry(x + width/2, y,

width/2, height);
}
else {

result[0] = new RectEntry(x, y,
width, height/2);

result[1] = new RectEntry(x, y + height/2,
width, height/2);

}
return result;

}

public int getObjectSize(){
return jsize;

}
}

Finally, the computational loop for the raytracer is shown below. First, we ask the data manager for
an area to render. Our rendering engine is simple and is totally contained in theRayTrace class. To
render an area, the data delivery simply invokes theraytrace() method. At the end of the loop the
result for this area is returned.

while ((area = (RectEntry)dm.getWork()) != null) {
int [] pixels

= tracer.raytrace(area.x, area.y,
area.width, area.height);

dm.returnResult(new RectResult(area, pixels));
}

5. EXPERIMENTAL RESULTS

Tests were run in campus student computer labaratories under a typical workload for the network and
computers. This environment consists of

• 12 Pentium II, 350 MHz processors with 128 MB RAM,
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• 41 Pentium-S, 166 MHz processors with 64 MB RAM, and
• 10 Sun UltraSparc with 64 MB RAM and processor speeds varying from 143 to 400 MHz.

All machines run under Solaris 2.5.1 and 2.6. The machines are connected by a 100 Mbit network. We
used JDK 1.2 with active JIT for our experiments, although our code is designed to run with JDK 1.1.x
as well.

To test the performance of the probabilistic and the deterministic deque, we ran experiments on the
raytracing application described in Section4. The performance was measured by recording the time to
render the image. The size of the image used for testing is 1024×1024 pixels, consisting of a plane and
993 spheres arranged as a cone. This image is complex enough to justify parallel computing, but small
enough to enable us to run tests in a reasonable amount of time. The image is recursively decomposed
by the splitting process described in Section3 into a set of atomic subimages. The size of such an
atomic piece can be chosen freely by the application, for example, 128× 128 pixels. Each subimage
constitutes an independent task for a host to compute. The computational complexity of a task thus
depends on the size of the subimage and its complexity (i.e. the number of objects in the scene to be
raytraced).

The test image took approximately 6 h to render on one machine. Since the image being tested was
an actual scene, the computational complexity of an individual task varies, depending on which part
of the scene it represents. We manually joined hosts to the computation soon after the client started. In
the future, we plan to have hosts in place, waiting for a client to start.

In the first experiment, we varied the number of hosts on the image decomposed into 1024 subimages
of 32× 32 pixels. In our second experiment, we fixed the total work (image) and number of hosts, and
varied the task size, thus varying the number of tasks to be distributed. In a production environment we
would set the deterministic tree’s branching factor, or fanout in order to maximize efficiency. For test
purposes, the tree’s branching factor was set to four, much less than its maximum efficiency in order to
force the tree to have some depth. Our third experiment compares the performance of the deterministic
deque with eager scheduling against its performance without eager scheduling, thus measuring the
overhead of the result processing in the absence of failures.

The raytracing code used for these measurements is identical to the code used in the previous Javelin
prototype, with the exception of changes necessary to make the application run on Javelin++. This was
done on purpose to make the new results readily comparable to the old set of measurements.

5.1. Measurements

Before we discuss our results it is necessary to clarify what we mean by the term ‘speedup’ in our
setting. Traditionally, speedup is measured on a dedicated parallel multiprocessor, where all processors
are homogeneous both in hardware and in software configuration, and varying workloads between
processors do not exist. Obviously, in such a setting speedup is well defined asT1/Tp, whereT1 is the
time a program takes on one processor andTp is the time the same program takes onp processors.

Therefore, strictly speaking, in a heterogeneous environment like ours the term speedup can no
longer be used. Even though we tried to run our tests in as much a homogeneous set up as possible—
we ran all experiments involving up to 32 hosts only on our slowest but most numerous machines: the
Pentium 166 processors—the varying workloads on both the OS and the network amounted to large
differences in the individual computational powers of the hosts.
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Figure 13. Practical speedup for random and deterministic deques compared against a slow client.

However, from a practical point of view, a user running a client application on Javelin++ that is
joined by a large set of hosts will definitely see ‘speedup’; the application will simply run faster than
on a single machine. This speedup can very well be quantified in the same way as before, only that it is
now relative to the specific client machine, i.e. a user sitting at a fast machine will experience smaller
speedup than someone using a less powerful computer. Also, this type of speedup is not a constant,
since on another run, even with the same set of hosts, the running time is bound to be different. From
our experiments we can say that the running times we measured were relatively consistent for every
given configuration—an experiment involving 16 hosts, for instance, would yield almost the same
performance if repeated with the same parameters, with results varying by at most 20%.

Having considered all this, we believe that we can still speak of speedup in this context. We would
like to suggest the termpractical speedupin this new setting as a means of distinguishing between the
two scenarios. In the following, we may omit the word ‘practical’ when the meaning is clear from the
context.

In Figure13, our base machine is a slow Pentium 166. In this case, a user can experience considerable
speedup. Our results show that, for both the deterministic and the probabilistic deque, the speedup
degrades only slightly from linear for the higher host numbers.

The slight degradation, we believe, is associated with transient phenomena: starting up the large
number of processors and winding down the computation, where necessarily a large number of
processors eventually must run out of work. Also, the varying workloads of participating hosts reduce
the potential speedup, as results from slow processors come in late. Work stealing can alleviate this
problem, but overall a loss in performance cannot be overcome.

One phenomenon has to be explained in this context: both curves first show a degradation up to
32 hosts, then a sudden increase in speedup for the largest experiments. This is because only for
our largest experiments (more than 41 processors), we ran out of slower processors and added the
less numerous, but faster, processors, which managed to steal more work from slower processors and
thus improved speedup. For the random deque, our best result was a speedup of 52 for 60 processors.
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Figure 14. Practical speedup for deterministic deque compared against a fast client.

The deterministic deque achieved a comparable speedup of 46 for 52 processors. Thus, our comparison
has no clear winner—both approaches performed equally well in our limited setting.

Figure14 shows the same experiment for the deterministic deque, only that our base machine is
now one of the faster Pentium II processors. Again, by adding the slow hosts first the curve shows the
typical improvement towards the largest experiment with 57 hosts. Obviously, this curve looks much
less favorable, with a maximum speedup of only about 16 for 57 hosts. The bottom line, however, is
that, even if a user has a powerful machine, our system can still speed up such an application by a
considerable factor using large numbers of slower processors.

By varying the number of tasks, our second experiment shows that speedup improves when the hosts
are better utilized. From the bar chart in Figure15 we see that by selecting an adequate task size, and
thus varying the number of atomic pieces, we significantly improve the speedup. With a task size of
32× 32 pixels, yielding 1024 tasks, the speedup reached 23.7 for 32 hosts of the Pentium 166 type.
Further reductions in task size did not result in improved speedup, only in increased communication.
Speedup degraded to 14.98 for a task size of 16×16 pixels (4096 tasks). Increasing the size to 64×64
pixels (256 tasks) resulted in slightly slower performance than for size 32, although the difference
between these two settings is hardly noticeable. In fact, on several runs the size 64 outperformed the
size 32 (the chart reflects only our best results for each granularity). Finally, moving to 128× 128
pixels (64 tasks) again resulted in degraded performance, this time due to load imbalances: since there
are on average only two tasks per host, some hosts end up doing three tasks and slowing down the
whole computation. The experiment clearly shows that the number of tasks should be relatively high
with respect to the number of hosts, so that an even load can be achieved, but not unduly high so that
communication is not excessive. This conforms well to what should happen in theory, and underlines
that an application programmer should take the time to fine-tune the application before running it.

Our final experiment compares the performance of the deterministic deque with and without the
extra overhead of eager scheduling. These tests only reflect what happens in theabsence of failures,
not with actual host failures occurring. Since the only host slowed down by eager scheduling is the
client that does the result processing, and result processing itself is very efficient, the overhead is
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Figure 16. Eager scheduling overhead.

generally insignificant, as can be seen in Figure16. In light of the huge benefit of being able to make
progress in the presence of failures, which are highly likely in the Internet setting, the small cost of the
extra processing must be regarded as negligible.

To sum up, an image that took over 5 h to render on a single computer took less than 7 min on 60
machines that were servicing undergraduate and post-graduate students, who unknowingly stole cycles
from the image rendering as they surfed the web, emailed their friends, and occasionally compiled
code.

In the experiments for the original Javelin, the picture had more than 12 times as many objects,
while the hosts (the Meiko’s Sparc processors) were only about a fifth as fast, yielding tasks with
a much larger computational load than the tasks used for these experiments. The communication
speeds were about the same. We believe that, if our current experiments had a comparable
computation/communication ratio, our speedups would be even closer to optimal. Also, the original
Javelin experiments were run on an otherwise idle set of 64 processors (Meiko). Since the Meiko
has been retired, and a dedicated multiprocessor machine is not the target environment for global
computing, our Javelin++ experiments were run on a student laboratory whose machines were not idle,
reflecting a realistic setting.
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The tree built in the deterministic scheduler wasnot a bottleneck in these experiments; the time
for a host to join the computation was about 70 ms. We are, nonetheless, exploring the option of
incorporating a new host into a waiting host tree as soon as it registers with the broker, potentially
beforeany client requests service.

6. CONCLUSION

Parallel Internet computations need at least an order of magnitude more computers than conventional
NOWs to justify their use. Global computing infrastructures thus must scale to at least an order
of magnitude more computers than conventional NOWs. Such numbers of components indicate the
fundamental need for fault tolerance. Accordingly, the focus of Javelin++ is to provide a Java-
based high-performance network computing architecture that is bothscalableand fault tolerant.
We have presented an approach to distribute application code in a scalable manner through a
network of brokers, each of which acts as a code cache for the hosts connected to it. We have also
implemented two distributed task schedulers: one that distributes work probabilistically and another
that distributes work deterministically. Our design analysis indicates that these versions of Javelin++
scale better than the original Javelin infrastructure. We believe both approaches will scale beyond
what our experiments were able to verify. Our tests have confirmed the scheme’s sensitivity to the
computation/communication ratio. We thus hypothesize that as the computation/communication ratio
increases, the speedups get closer to linear for much higher numbers of hosts. This hypothesis is not
unreasonable; to achieve a computation/communication ratio comparable to that of a NOW, we must
increase the computational load in the Internet setting to compensate for the increased communication
time (relative to NOW communication times).

Our distributed deterministic work-stealing scheduler integrates smoothly with our distributed
deterministic eager scheduler, providing essential fault tolerance (and load balancing). The hosts in
the deterministic setting are organized as a tree. Our system detects and replaces interior hosts that
have failed or retreated from the computation.

In the future we plan to generalize our computational model in order to parallelize any divide-and-
conquer computation; organize hosts as soon as possible, before a client requests service; contribute to
the fundamental issues of correctness checking, and supporting host incentives.
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