
Processor-Time-Optimal Systolic Arrays

Peter Cappello, �Omer E�gecio�glu, and Chris Scheiman

Abstract

Minimizing the amount of time and number of processors needed to perform an application

reduces the application's fabrication cost and operation costs. A directed acyclic graph (dag)

model of algorithms is used to de�ne a time-minimal schedule and a processor-time-minimal

schedule. We present a technique for �nding a lower bound on the number of processors needed

to achieve a given schedule of an algorithm. The application of this technique is illustrated with

a tensor product computation. We then apply the technique to the free schedule of algorithms

for matrix product, Gaussian elimination, and transitive closure. For each, we provide a time-

minimal processor schedule that meets these processor lower bounds, including the one for tensor

product.

Keywords: algebraic path problem, dag, Diophantine equation, Gaussian elimination, matrix prod-

uct, optimal, systolic array, tensor product, transitive closure.

1 Introduction

We consider regular array computations, often referred to as systems of uniform recurrence equations

[26]. Parallel execution of uniform recurrence equations has been studied extensively, from at least

as far back as 1966 (e.g., [25, 31, 29, 7, 37, 9, 10, 38, 39, 13]). In such computations, the tasks to

be computed are viewed as the nodes of a directed acyclic graph, where the data dependencies are

represented as arcs. Given a dag G = (N;A), a multiprocessor schedule assigns node v for processing

during step �(v) on processor �(v). A valid multiprocessor schedule is subject to two constraints:

Causality: A node can be computed only when its children have been computed at previous steps.

Non-con
ict: A processor cannot compute 2 di�erent nodes during the same time step.

1

In what follows, we refer to a valid schedule simply as a schedule. A time-minimal schedule for

an algorithm completes in S steps, where S is the number of nodes on a longest path in the dag. A

time-minimal schedule exposes an algorithm's maximum parallelism. That is, it bounds the number

of time steps the algorithm needs, when in�nitely many processors may be used. A processor-time

minimal schedule is a time-minimal schedule that uses as few processors as any time-minimal schedule

for the algorithm. Although only one of many performance measures, processor-time-minimality is

useful because it measures the minimum processors needed to extract the maximum parallelism from

a dag. Being machine-independent, it is a more fundamental measure than those that depend on a

particular machine or architecture. This view prompted several researchers to investigate processor-

time-minimal schedules for families of dags. Processor-time-minimal systolic arrays are easy to

devise, in an ad hoc manner, for 2D systolic algorithms. This apparently is not the case for 3D

systolic algorithms. There have been several publications regarding processor-time-minimal systolic

arrays for fundamental 3D algorithms. Processor-time-minimal schedules for various fundamental

problems have been proposed in the literature: Scheiman and Cappello [8, 5, 47, 44] examine the

dag family for matrix product; Louka and Tchuente [33] examine the dag family for Gauss-Jordan

elimination; Scheiman and Cappello [45, 46] examine the dag family for transitive closure; Benaini

and Robert [3, 2] examine the dag families for the algebraic path problem and Gaussian elimination.

Each of the algorithms listed in Table 1 has the property that, in its dag representation, every node

is on a longest path: Its free schedule is its only time-minimal schedule. A processor lower bound for

achieving it is thus a processor lower bound for achieving maximum parallelism with the algorithm.

Table 1: Some 3D algorithms for which processor-time-minimal systolic arrays are known.

Algorithm Citation Time Processors

Algebraic Path Problem [3] 5n� 2 n2=3 +O(n)

Gauss-Jordan elimination [33] 4n 5n2=18 +O(n)

Gaussian elimination [3] 3n� 1 n2=4 +O(n)

Matrix product [8, 5] 3n� 2 d3n2=4e

Transitive closure [45] 5n� 4 dn2=3e

Tensor product this article 4n� 3 (2n2 + n)=3

2

Clauss, Mongenet, and Perrin [11] developed a set of mathematical tools to help �nd a processor-

time-minimal multiprocessor array for a given dag. Another approach to a general solution has been

reported by Wong and Delosme [57, 58], and Shang and Fortes [48]. They present methods for

obtaining optimal linear schedules. That is, their processor arrays may be suboptimal, but they

get the best linear schedule possible. Darte, Khachiyan, and Robert [13] show that such schedules

are close to optimal, even when the constraint of linearity is relaxed. Geometric/combinatorial

formulations of a dag's task domain have been used in various contexts in parallel algorithm design

as well (e.g., [25, 26, 31, 37, 38, 18, 17, 39, 11, 48, 54, 58]; see Fortes, Fu, and Wah [16] for a survey

of systolic/array algorithm formulations.)

In x2, we present an algorithm for �nding a lower bound on the number of processors needed

to achieve a given schedule of an algorithm. The application of this technique is illustrated with a

tensor product computation. Then, in x3, we apply the technique to the free schedule of algorithms

for matrix product, Gaussian elimination, and transitive closure. For each, we provide a compatible

processor schedule that meets these processor lower bounds (i.e., a processor-time-minimal schedule)

including the one for tensor product. We �nish with some general conclusions and mention some

open problems.

One strength of our approach centers around the word algorithm: we are �nding processor lower

bounds not just for a particular dag, but for a linearly parameterized family of dags, representing

the in�nitely many problem sizes for which the algorithm works. Thus, the processor lower bound

is not a number but a polynomial (or �nite set of polynomials) in the linear parameter used to

express di�erent problem sizes. The formula then can be used to optimize the implementation of

the algorithm, not just a particular execution of it. The processor lower bounds are produced by:

� formulating the problem as �nding, for a particular time step, the number of processors needed

by that time step as a formula for the number of integer points in a convex polyhedron,

� representing this set of points as the set of solutions to a linearly parameterized set of linear

Diophantine equations,

� computing a generating function for the number of such solutions,

� deriving a formula from the generating function.

3

The ability to compute formulae for the number of solutions to a linearly parameterized set of linear

Diophantine equations has other applications for nested loops [12], such as �nding the number of

instructions executed, the number of memory locations touched, and the number of I/O operations.

The strength of our algorithm|its ability to produce formulae|comes, of course, with a price:

The computational complexity of the algorithm is exponential in the size of the input (the number of

bits in the coe�cients of the system of Diophantine equations). The algorithm's complexity however

is quite reasonable given the complexity of the problem: Determining if there are any integer solutions

to the system of Diophantine equations is NP-complete [19]; we produce a formula for the number

of such solutions.

Clauss and Loechner independently developed an algorithm for the problem based on Ehrhart

polynomials. In [12], they sketch an algorithm for the problem, using the \polyhedral library" of

Wilde [56].

2 Processor Lower Bounds

We present a general and uniform technique for deriving lower bounds:

Given a parametrized dag family and a correspondingly parametrized linear schedule,

we compute a formula for a lower bound on the number of processors required by the

schedule.

This is much more general than the analysis of an optimal schedule for a given speci�c dag. The lower

bounds obtained are good; we know of no dag treatable by this method for which the lower bounds

are not also upper bounds. We believe this to be the �rst reported algorithm and its implementation

for automatically generating such formulae.

The nodes of the dag typically can be viewed as lattice points in a convex polyhedron. Adding to

these constraints the linear constraint imposed by the schedule itself results in a linear Diophantine

system of the form

az = nb+ c ; (1)

where the matrix a and the vectors b and c are integral, but not necessarily non-negative. The

number dn of solutions in non-negative integers z = [z1; z2; : : : ; zs]
t to this linear system is a lower

4

bound for the number of processors required when the dag corresponds to parameter n. Our algo-

rithm produces (symbolically) the generating function for the sequence dn, and from the generating

function, a formula for the numbers dn. We do not make use of any special properties of the system

that re
ects the fact that it comes from a dag. Thus in (1), a can be taken to be an arbitrary r� s

integral matrix, and b and c arbitrary integral vectors of length r. As such we actually solve a more

general combinatorial problem of constructing the generating function
P

n�0 dnt
n , and a formula

for dn given a matrix a and vectors b and c, for which the lower bound computation is a special

case. There is a large body of literature concerning lattice points in convex polytopes and numerous

interesting results: see for example Stanley [50] for Ehrhart polynomials (Clauss and Loechner [12]

use these), and Sturmfels [51, 52] for vector partitions and other mathematical treatments. Our

results are based mainly on MacMahon [34, 36], and Stanley [49].

2.1 Example: Tensor product

We examine the dag family for the 4D mesh: the n � n � n � n directed mesh. This family is

fundamental, representing a communication-localized version of the standard algorithm for Tensor

product (also known as Kronecker product). The Tensor product is used in many mathematical

computations, including multivariable spline blending and image processing [20], multivariable ap-

proximation algorithms (used in graphics, optics, and topography) [28], as well as many recursive

algorithms [27].

The Tensor product of an n�m matrix A and a matrix B is:

A
B =

2
6664

a11B a12B : : : a1mB

: : :

an1B an2B : : : anmB

3
7775

The 4D mesh also represents other algorithms, such as the least common subsequence problem

[23, 22], for 4 strings, and matrix comparison (an extension of tuple comparison [24]). An example

dag is shown in Figure 1, for n = 3.

2.1.1 The dag

The 4D mesh can be de�ned as follows. Gn = (Nn; An), where

� Nn = f(i; j; k; l) j 0 � i; j; k; l � n� 1g.

5

� An = f[(i; j; k; l); (i0; j0; k0; l0)] j(i; j; k; l) 2 Nn; (i
0; j0; k0; l0) 2 Nn and exactly 1 of the following

conditions holds:

1. i0 = i+ 1; j0 = j; k0 = k; l0 = l;

2. j0 = j + 1; i0 = i; k0 = k; l0 = l;

3. k0 = k + 1; i0 = i; j0 = j; l0 = l;

4. l0 = l+ 1; i0 = i; j0 = j; k0 = k:g

2.1.2 The parametric linear Diophantine system of equations

The computational nodes are de�ned by non-negative integral 4-tuples (i; j; k; l) satisfying

i � n� 1

j � n� 1

k � n� 1

l � n� 1 :

Introducing nonnegative integral slack variables s1; s2; s3; s4 � 0, we obtain the equivalent linear

Diophantine system describing the computational nodes as

i + s1 = n� 1

j + s2 = n� 1

k + s3 = n� 1

l + s4 = n� 1

A linear schedule for the corresponding dag is given by �(i; j; k; l) = i+j+k+ l+1. For this problem

� ranges from 1 to 4n� 3. The computational nodes about halfway through the completion of the

schedule satisfy the additional constraint

i+ j + k + l = 2n� 2

6

0
1
2

1
2
3

2
3
4

1
2
3

2
3
4

3
4
5

2
3
4

3
4
5

4
5
6

1
2
3

2
3
4

3
4
5

2
3
4

3
4
5

4
5
6

3
4
5

4
5
6

5
6
7

2
3
4

3
4
5

4
5
6

3
4
5

4
5
6

5
6
7

4
5
6

5
6
7

6
7
8

Figure 1: The 4-dimensional cubical mesh, for n = 3.

7

Adding this constraint we obtain the augmented Diophantine system

i + j + k + l = 2n� 2

i + s1 = n� 1

j + s2 = n� 1

k + s3 = n� 1

l + s4 = n� 1

(2)

Therefore, a lower bound for the number of processors needed for the Tensor Product problem

is the number of solutions to (2). The corresponding Diophantine system is az = nb+ c where

a =

2
6666666664

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

3
7777777775
; b =

2
6666666664

2

1

1

1

1

3
7777777775
; c =

2
6666666664

�2

�1

�1

�1

�1

3
7777777775

(3)

2.1.3 The Mathematica program input & output

Once the Mathematica program DiophantineGF.m for this computation1 has been loaded by the

command << DiophantineGF.m, the user may request examples and help in its usage. The program

essentially requires three arguments a;b; c of the Diophantine system (1). The main computation

is performed by the call DiophantineGF[a;b; c]. The output is the (rational) generating function

f(t) =
P

n�0 dnt
n, where dn is the number of solutions z � 0 to (1). After the computation of

f(t) by the program, the user can execute the command formula, which produces formulas for dn

in terms of binomial coe�cients (with certain added divisibility restrictions), and in terms of the

ordinary power basis in n when such a formula exists. The command formulaN[c] evaluates dn

for n = c. If needed, the generating function f(t) computed by the program subsequently can be

manipulated by various Mathematica commands, such as Series[].
The DiophantineGF run on the data for the Tensor product problem gives (verbatim)

In[1]:= << DiophantineGF.m

Loaded. Type "help" for instructions, "example" for examples.

In[2]:= a = {{1,1,1,1,0,0,0,0},

{1,0,0,0,1,0,0,0},

1http://www.cs.ucsb.edu/~omer/personal/abstracts/DiophantineGF.m

8

{0,1,0,0,0,1,0,0},

{0,0,1,0,0,0,1,0},

{0,0,0,1,0,0,0,1}};

In[3]:= b = {2,1,1,1,1}; c = {-2,-1,-1,-1,-1};

In[4]:= DiophantineGF[a,b,c]

2

t (1 + t)

Out[4]= ----------

4

(-1 + t)

In[5]:= formula

Binomial Formula : C[n, 3] + 2 C[1 + n, 3] + C[2 + n, 3]

2

n (1 + 2 n)

Power Formula : ------------

3

Therefore
2n3

3
+
n

3

is a processor lower bound for the Tensor Product problem.

2.2 General Formulation

We now generalize this example and consider the problem of computing a lower bound for the number

of processors needed to satisfy a given linear schedule. That is, we show how to automatically

construct a formula for the number of lattice points inside a linearly parameterized family of convex

polyhedra, by automatically constructing a formula for the number of solutions to the corresponding

linearly parameterized system of linear Diophantine equations. The algorithm for doing this and its

implementation is, we believe, a signi�cant contribution.

The use of linear Diophantine equations is well-motivated: the computations of an inner loop

are typically de�ned over a set of indices that can be described as the lattice points in a convex

polyhedron. Indeed, in two languages, SDEF [14] and Alpha [54], one expressly de�nes domains of

computation as the integer points contained in some programmer-speci�ed convex polyhedron.

The general setting exempli�ed by the Tensor Product problem is as follows: Suppose a is an

r � s integral matrix, and b and c are integral vectors of length r. Suppose further that, for every

9

n � 0, the linear Diophantine system az = nb+ c, i.e.

a11z1 + a12z2 + : : : + a1szs = b1n+ c1

a21z1 + a22z2 + : : : + a2szs = b2n+ c2
...

...
... =

...

ar1z1 + ar2z2 + : : : + arszs = brn+ cr

(4)

in the non-negative integral variables z1; z2; : : : ; zs has a �nite number of solutions. Let dn denote

the number of solutions for n. The generating function of the sequence dn is f(t) =
P

n�0 dnt
n.

For a linear Diophantine system of the form (4), f(t) is always a rational function, and we provide

an algorithm to compute f(t) symbolically. The Mathematica program implementing the algorithm

also constructs a formula for the numbers dn from this generating function.

Given a nested for loop, the procedure to follow is informally as follows:

1. Write down the node space as a system of linear inequalities. The loop bounds must be a�ne

functions of the loop indices. The domain of computation is represented by the set of lattice

points inside the convex polyhedron, described by this system of linear inequalities.

2. Eliminate unnecessary constraints by translating the loop indices (so that 0 � i � n � 1 as

opposed to 1 � i � n, for example). The reason for this is that the inequality 0 � i is implicit

in our formulation, whereas 1 � i introduces an additional constraint.

3. Transform the system of inequalities to a system of equalities by introducing non-negative

slack variables, one for each inequality.

4. Augment the system with a linear schedule for the associated dag, \frozen" in some intermedi-

ate time value: � = �(n); In other words, we augment the linear system with a parameterized

constraint that speci�es a hyperplane. Points that are in the polyhedron and also are in this

hyperplane are scheduled to execute on the same time step, and hence require di�erent proces-

sors. This number of processors is a lower bound on the number of processors needed for the

entire computation.

5. Run the program DiophantineGF.m on the resulting data. The program calculates the ratio-

nal generating function f(t) =
P

dnt
n, where dn is the number of solutions to the resulting

linear system of Diophantine equations, and produces a formula for dn.

10

2.3 The Algorithm

We demonstrate the algorithm on a speci�c instance, and sketch its proof. Consider the linear

Diophantine system

z1 � 2z2 = n

z1 + z2 = 2n
(5)

in which z1 and z2 are non-negative integers. Let dn denote the number of solutions to (5). Associate

indeterminates �1 and �2 to the �rst and the second equations, respectively, and also indeterminates

t1 and t2 to the �rst and the second columns of the system. Consider the product of the geometric

series

R =
1

1� �11�
1
2t1

1

1� ��2
1 �12t2

=

0
@X

�1�0

(�11�
1
2t1)

�1

1
A
0
@X

�2�0

(��2
1 �12t2)

�2

1
A

where the exponents of �1 and �2 in the �rst factor are the coe�cients in the �rst column and the

exponents of �1 and �2 in the second factor are the coe�cients in the second column. Individual

terms arising from this product are of the form

��1�2�2
1 ��1+�22 t�11 t�22 ; (6)

where �1; �2 are non-negative integers. Following Cayley, MacMahon [35] makes use of the operator

=
which picks out those terms (6) in the power series expansion whose exponents of �1 and �2 are

both equal to zero (this is the �-free part of the expansion). Thus, the contribution of the term in

(6) to

=
(R) is non-zero if and only if the exponents of �1 and �2 are equal to zero. If this is the

case, the contribution is t�11 t�22 if and only if z1 = �1 and z2 = �2 is a solution
2 to the homogeneous

system

z1 � 2z2 = 0

z1 + z2 = 0
(7)

This means, in particular, that what MacMahon calls the \crude" generating function of the solutions

to the homogeneous system (7) is

1

1� �11�
1
2t1

1

1� ��2
1 �12t2

;

2There is only a single solution to (7) in this case, but this does not e�ect the general nature of the demonstration

of the algorithm on this example.

11

and

=

�
1

(1� �11�
1
2t1)(1� ��2

1 �12t2)

�
=
X

t�11 t�22

where the summation is over all solutions z1 = �1 and z2 = �2 of (7). Let Rn = ��n1 ��2n
2 R; where

the exponents of �1 and �2 are the negatives of the right hand sides of �rst and the second equations

of (5), respectively. Then

=
(Rn) =

X
t�11 t�22

where now the summation is over all non-negative integral solutions z1 = �1, z2 = �2 of (5), since

generic terms arising from the expansion of R are now of the form

��1�2�2�n
1 ��1+�2�2n

2 t�11 t�22 :

If we let t1 = t2 = 1, then

=
(Rn) specializes to the number of solutions dn to (5). Let L denote

the substitution operator that sets each ti equal to 1. Then dn = L

=
(Rn), and the operator

=

commutes both with L operation and addition of series. Thus,

f(t) =
X
n�0

L

=
(Rn) t

n

=

=

0
@X

n�0

L(Rn) t
n

1
A (8)

=

=

0
@ 1

(1� �1�2)(1� ��2
1 �2)

X
n�0

��n1 ��2n
2 tn

1
A : (9)

Since X
n�0

��n1 ��2n
2 tn =

1

1� ��1
1 ��2

2 t
; (10)

the generating function f(t) can be obtained by applying the operator

=
to the crude generating

function

F =
1

(1� �1�2)(1� ��2
1 �2)(1� ��1

1 ��2
2 t)

: (11)

Now, we make use of the identity that appears in Stanley [49] for the computation of the homo-

geneous case above, namely

1

(1�A)(1�B)
=

1

(1�AB)(1�A)
+

1

(1�AB)(1�B)
�

1

1�AB
: (12)

12

We demonstrate the usage of this identity on the example at hand. Taking the �rst two factors

of (11) as (1�A)�1 and (1�B)�1 (i.e. A = �1�2, B = ��2
1 �2), and using (12),

F =
1

(1� ��1
1 �22)(1� �1�2)(1� ��1

1 ��2
2 t)

(13)

+
1

(1� ��1
1 �22)(1� ��2

1 �2)(1� ��1
1 ��2

2 t)

�
1

(1� ��1
1 �22)(1� ��1

1 ��2
2 t)

which we can write as F = F1 + F2 � F3, where F1; F2, and F3 denote the three summands above.

By additivity,

f(t) =

=
(F) =

=
(F1) +

=
(F2)�

=
(F3) :

Continuing this way by using the identity (12), this time on F3 with (1 � A)�1 and (1 � B)�1 as

the two factors, we obtain the expansion

F3 =
1

(1� ��2
1 t)(1� ��1

1 �22)
+

1

(1� ��2
1 t)(1� ��1

1 ��2
2 t)

�
1

(1� ��2
1 t)

= F31 + F32 � F33 : (14)

Call a product of the form
�1

(1�A)(1�B) � � � (1� Z)
(15)

that may arise during this process uniformly-signed if the exponents of �1 that appear in A, B; : : : ; Z

are either all non-negative, or all non-positive; the exponents of �2 that appear in A, B; : : : ; Z are

either all non-negative, or all non-positive, etc.. Clearly if U is such a uniformly-signed product,

then

=
(U) is obtained from U by discarding the factors which are not purely functions of t, as there

can be no \cross cancellation" of any of the terms coming from di�erent expansions into geometric

series of the factors (1�A)�1, (1�B)�1; : : : ; (1� Z)�1 of U .

The idea, then, is to use identity (12) repeatedly using pairs of appropriate factors in such a way

that the resulting products of the form (15) that arise are all uniformly-signed. The contribution

of a uniformly-signed product to f(t) is simply the product of the terms in it that are functions of

t only, and all other factors can be ignored. Each of the summands of F3 given in (14) above, for

13

example, are uniformly signed. Since neither term contains a factor which is a pure function of t,

the contribution of each is zero.

The problem is to pick the (1�A)�1, (1�B)�1 pairs at each step appropriately to make sure that

the process eventually ends with uniformly-signed products only. This cannot be done arbitrarily,

however. For example in the application of the identity (12) to

1

(1� ��1
1 �12)(1� �21�

1
2)(1� �11�

�1
2)

(16)

with 1�A = 1���1
1 �12 and 1�B = 1��21�

1
2 (in which the �1 exponents have opposite sign), one

of the three terms produced by the identity to be further processed is

1

(1� ��1
1 �12)(1� �11�

2
2)(1� �11�

�1
2)

:

Continuing with the choice 1�A = 1� �11�
2
2 , and 1�B = 1� �11�

�1
2 (in which the �2 exponents

have opposite sign), one of the three terms produced is

1

(1� ��1
1 �12)(1� �21�

1
2)(1� �11�

�1
2)

;

which is identical to (16). In particular the weight argument in Stanley [49] does not result in an

algorithm unless the �i are processed to completion in a �xed ordering of the indices i (e.g. �rst all

exponents of �1 are made same signed, then those of �2, etc.)

Accordingly, we use the following criterion: Given a term of the form (15), pick the �i with

the smallest i for which a negative and a positive exponent appears among A, B; : : : ; Z. Use two

extremes (i.e. maximum positive and minimum negative exponents) of such opposite signed factors

(1�A)�1 and (1� B)�1 of the current term in (15), and apply identity (12) with this choice of A

and B. This computational process results in a ternary tree whose leaves are functions of t only,

after the application of the operator

=
. The generating function f(t) can then be read o� as the

(signed) sum of the functions that appear at the leaf nodes. The reader can verify that the example

at hand results in the generating function

f(t) =
1

(1� t)(1 + t+ t2)

after the functions of t at the leaf nodes of the resulting ternary tree are summed up and necessary

algebraic simpli�cations are carried out.

14

In the case above, c = 0. Now, we consider the more general case with c 6= 0. These are the

instances for which the description and the proof of the algorithm is not much harder, but the extra

computational e�ort required justi�es the use of a symbolic algebra package.

As an example, consider the Diophantine system

z1 � 2z2 = n� 2

z1 + z2 = 2n+ 3
(17)

As before, let dn be the number of solutions to (17) in non-negative integers z1; z2, and let f(t) be

the generating function of the dn. As in the derivation of the identity (9) for f(t), this time we

obtain

f(t) =

=

0
@ 1

(1� �1�2)(1� ��2
1 �2)

X
n�0

��n+2
1 ��2n�3

2 tn

1
A : (18)

Since X
n�0

��n+2
1 ��2n�3

2 tn =
�21�

�3
2

1� ��1
1 ��2

2 t
;

the generating function f(t) is obtained by applying the operator

=
to the crude generating function

F =
�21�

�3
2

(1� �1�2)(1� ��2
1 �2)(1� ��1

1 ��2
2 t)

: (19)

Now, we proceed as before using the identity (12), ignoring the numerator for the time being. It

is no longer true that there can be no \cross cancellation" of any of the terms coming from di�erent

expansions into geometric series of the factors (1� A)�1, (1�B)�1; : : : ; (1� Z)�1 in a product U

of the form (15) even if the term is uniformly-signed. It could be that the exponents of all of the �1

that appear in U are negative, and the exponents of all of the �2 that appear in U are all positive,

but there can be ��free terms arising from the expansions of the products that involve �'s, since

the numerator �21�
�3
2 can cancel terms of the form ��2

1 �32t
k that may be produced if we expand

the factors into geometric series and multiply. The application of

=
would then contribute tk from

this term to the �nal result coming from U , for example. The important observation is that the

geometric series expansion of the terms that involve � in U need not be carried out past powers of

�1 larger than 2, and past powers of �2 smaller than �3. This means that we need to keep track of

only a polynomial in �1; �2 and t before the application of

=
to �nd the �-free part contributed by

this leaf node. In this case, this contribution may involve a polynomial in t as well. Therefore when

c 6= 0, we need to calculate with truncated Taylor expansions at the leaf nodes of the computation

15

tree. It is this aspect of the algorithm that is handled most e�ciently (in terms of coding e�ort) by

a symbolic algebra package such as Mathematica.

2.4 Complexity and remarks

Some detailed remarks concerning implementation are given in [6], which, for reasons of space, we

omit here.

The number of leaves in the generated ternary tree is exponential in n =
P

faig
jaij, where faig

is the set of coe�cients describing the set of Diophantine equations. The depth of recursion can be

reduced somewhat, when the columns to be used are picked carefully. It is also possible to prune

the tree when the input vector c determines that there can be no �-free terms resulting from the

current matrix (e.g., some row is all strictly positive or all negative with c = 0, or the row elements

are weakly negative but the corresponding ci is positive, etc.). Furthermore, the set of coe�cients

describing the Diophantine system coming from an array computation is not unique. Translating

the polyhedron, and omitting super
uous constraints (i.e., not in their transitive reduction) reduces

the algorithm's work. Additional preprocessing may be possible (e.g., via some unitary transform).

The fact that the algorithm has worst case exponential running time is not surprising however;

the simpler computation: \Are any processors scheduled for a particular time step?", which is

equivalent to \Is a particular coe�cient of the series expansion of the generating function non-

zero?" is already known to be an NP-complete problem [42, 19]. This computational complexity is

further ameliorated by the observation that, since a formula can be automatically produced from the

generating function, it needs to be constructed only once for a given algorithm. In practice, array

algorithms typically have a description that is su�ciently succinct to make this automated formula

production feasible.

3 Processor Upper Bounds

Minimizing the amount of time and number of processors needed to perform an application reduces

the application's fabrication cost and operation costs. This can be important in applications where

minimizing the size and energy of the hardware is critical, such as space applications and consumer

electronics. In this section, we present schedules that are processor-time-minimal. They are exact,

16

not just asymptotic.

Again, for each of the dags discussed below, the free schedule is its only time-minimal schedule.

A processor lower bound for achieving it is thus a processor lower bound for achieving maximum

parallelism with the algorithm, not just one schedule for it, much less one instance of one schedule

for it (i.e., one value of n for one parameterized schedule)

3.1 Matrix Product

3.1.1 Problem

Program fragment: The standard program fragment for computing the matrix product C = A�B,

where A and B are given n� n matrices is given below.

for i = 0 to n� 1 do:

for j = 0 to n� 1 do:

C[i; j] 0;

for k = 0 to n� 1 do:

C[i; j] C[i; j] +A[i; k] � B[k; j];

endfor;

endfor;

endfor;

Dag: The cube-shaped 3D mesh (i.e., the n� n� n mesh) can be de�ned as follows.

Gn�n�n = (N;A), where

� N = f(i; j; k) j 1 � i; j; k � ng.

� A = f[(i; j; k); (i0; j0; k0)] j where exactly 1 of the following conditions holds

1. i0 = i+ 1

2. j0 = j + 1

3. k0 = k + 1

for 1 � i; j; k � ng.

17

3.1.2 Lower bound

Parameterized linear Diophantine system of equations: The computational nodes are de-

�ned by non-negative integral triplets (i; j; k) satisfying

i � n� 1

j � n� 1

k � n� 1 :

Mathematica input/output: The DiophantineGF run for even n gives

In[1]:= << DiophantineGF.m

Loaded. Type "help" for instructions, "example" for examples.

In[2]:= a = {2,2,2,0,0,0},

{1,0,0,1,0,0},

{0,1,0,0,1,0},

{0,0,1,0,0,1}};

In[3]:= b = {3,1,1,1}; c = {-2,-1,-1,-1};

In[4]:= DiophantineGF[a, b, c]

2 2

-3 t (1 + t)

Out[4]= ------------------

3 3

(-1 + t) (1 + t)

In[5]:= formula

-9 + n -7 + n

Binomial Formula : (-3 (3 C[2 + ------, 2] - 7 C[2 + ------, 2] +

2 2

-5 + n -4 + n -3 + n

> 5 C[2 + ------, 2] - 8 C[2 + ------, 2] + 15 C[2 + ------, 2] -

2 2 2

-2 + n

> 8 C[2 + ------, 2] - 3 C[-4 + n, 2] + 9 C[-3 + n, 2] -

2

> 11 C[-2 + n, 2] + 9 C[-1 + n, 2] - 8 C[n, 2])) / 16

Recall that C[x; k] denotes the binomial coe�cient
�
x

k

�
= x!

k!(x�k)! when x is a non-negative

integer, and zero otherwise. This means that in the above formula C[2+ (n� 9)=2; 2] vanishes

for even n, for example. In this way the formula simpli�es to

3

4
n2; (n even):

18

For odd n we obtain the generating function and the formula below:

3

-6 t

Out[4]= ------------------

3 3

(-1 + t) (1 + t)

and a similar formula, which simpli�es to

3

4
n2 �

3

4
; (n odd):

These cases can be combined to obtain the processor lower bound b 34n
2c.

3.1.3 Upper bound

Schedule: The map m : N 7! Z3 (i.e., from nodes to processor-time) can be de�ned formally as

follows. 0
BBB@

time

space1

space2

1
CCCA =

0
BBB@

t(i; j; k)

s1(i; j; k)

s2(i; j; k)

1
CCCA ;where

t(i; j; k) = i+ j + k � 2

s1(i; j) = (i+ j � dn=2e � 1) mod n

s2(i; j) =

8>>><
>>>:

i� j; if n is even or dn=2e+ 1 � i+ j � d3n=2e

i� j + 1; if n is odd and dn=2e+ 1 > i+ j

i� j � 1; if n is odd and i+ j > d3n=2e

Proof of optimality: [5].

3.2 Gaussian Elimination

3.2.1 Problem

We examine the dag family for the Gaussian elimination algorithm. One use of this algorithm is to

transform a linear system Ax = b into an upper-triangular system Ux = c. In this algorithm, there

is no pivoting and the vector b is transformed as well as the matrix A. This dag is a subgraph of an

n� (n+ 1)� n rectilinear mesh. An example dag is shown in Figure 2, for n = 5.

The Gaussian elimination dag can be de�ned as follows. Gn = (N;A), where

19

� N = f(i; j; k) j 0 � i � n� 1; 0 � j � n; 0 � k � min(i; j)g.

� A = f[(i; j; k); (i0; j0; k0)] j(i; j; k) 2 N; (i0; j0; k0) 2 N and exactly 1 of the following conditions

holds:

1. i0 = i+ 1; j0 = j; k0 = k;

2. j0 = j + 1; i0 = i; k0 = k;

3. k0 = k + 1; i0 = i; j0 = j:g

3.2.2 Lower Bound

The longest directed path in the dag clearly has (n + 1) + (n � 1) + (n � 1) = 3n� 1 nodes. Any

time-minimal schedule of the Gaussian elimination dag Gn requires at least dn2=4+n=2e processors.

For Gaussian Elimination without pivoting of an n� n matrix the Diophantine system is az =

Nb+ c where

a =

2
6666666664

1 1 1 0 0 0 0

1 �1 0 1 0 0 0

0 1 0 0 1 0 0

1 0 �1 0 0 1 0

0 0 1 0 0 0 1

3
7777777775
: (20)

Here b = [3; 0; 2; 0; 2]t and c = [�2;�1;�1;�1;�1]t, for n = 2N . The generating function computed

is
t2(3 + t)

(1� t)3(1 + t)
:

The actual formula that DiophantineGF.m produces for the coe�cient of tN in the expansion

of this function is

(3C[(N � 2)=2; 0]� C[(N � 4)=2; 0]� 2C[(N � 3)=2; 0])=8 + (21)

(C[N � 3; 2] + 3C[(N � 2)=2; 0]� C[N � 2; 2]� 5C[N � 1; 2] + 21C[N; 2])=8

However, note that C[x; 0] = 0 unless x is an integer. This means that

3C[(N � 2)=2; 0]� C[(N � 4)=2; 0]� 2C[(N � 3)=2; 0] =

8<
:

2 N even;

�2 N odd:

20

0 1 2 3 4 5

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

6 7 8 9 10

7 8 9 10 11

8 9 10 11 12

6 7 8 9

7 8 9 10

8 9 10 11

9 10 11 12

10 11 12 13

9 10 11

10 11 12

11 12 13

12 13 14

12 13

13 14

14 15

15

16

Figure 2: The Gaussian elimination dag, for n = 5.

21

Simplifying the other binomial coe�cients in (21), we get the lower bound for n = 2N as

2N2 �N

2
if N is even;

2N2 �N � 1

2
if N is odd;

which can be combined into b 2N
2�N
2 c for n = 2N . When n = 2N + 1, c = [�1;�1; 0;�1; 0]t and a

and b are the same as above. The generating function computed by the program is

t(1 + 3t)

(1� t)3(1 + t)
:

Simplifying the automatically produced formula as before,

(C[(N � 1)=2; 0]� 3C[(N � 3)=2; 0] + 2C[(N � 2)=2; 0])=8 +

(3C[N � 2; 2]� 11C[N � 1; 2] + 17C[N; 2] + 7C[N + 1; 2])=8;

we obtain
2N2 �N

2
if N is even;

2N2 �N � 1

2
if N is odd:

Therefore the lower bound for n = 2N + 1 is also b 2N
2�N
2 c. Combining with the previous case, we

obtain the processor lower bound

b
bn2 c(2b

n
2 c � 1)

2
c

for n� n Gaussian elimination without pivoting for arbitrary n.

3.2.3 Upper Bound

A. Benaini and Yves Robert [3, 2] presented a processor-time-minimal solution for Gaussian elimi-

nation via an example solution for n = 9, which is generalizable for odd n. The mapping below is a

formal generalization of their approach, and is valid for all n 2 N .

We map the 3D mesh onto a 2D mesh of processors with map m : Nn 7! N 3. Given a mesh node

(i; j; k) 2 Nn, m(i; j; k) produces a time step (its �rst component), and a processor location (its last

2 components). The map m can be de�ned as follows.

m

0
BBB@

i

j

k

1
CCCA =

0
BBB@

time

�1

�2

1
CCCA =

0
BBB@

�(i; j; k)

�1(i; j)

�2(i; j)

1
CCCA ;where

22

�(i; j; k) = i+ j + k;

�1(i; k) =

8>>><
>>>:

bn=2c � i+ k if i < dn=2e � 1

i� dn=2e if i � dn=2e � 1 and k � dn=2e and n even

i� dn=2e+ 1 if i � dn=2e � 1 and (k < dn=2e or n odd)

�2(i; k) =

8<
:

i+ 1 if i < dn=2e � 1

k mod dn=2e if i � dn=2e � 1

The geometrical interpretation of this mapping is as follows:

Each j-column of nodes is computed by the same processor. Each processor computes 1 to 3

columns of nodes.

We divide the columns into three regions: two triangles and a rectangle as shown in Figure 3.

The rectangular region de�nes the processor space: That is, every column of nodes in the rectangle

will be computed by a distinct processor. We then map the remaining columns onto these processors.

The top triangle is mapped using a simple mod function, shown in the term �2(i; k) = k mod

dn=2e. The other triangle, labeled ABC in Figure 3, is �tted into the top right portion of the

rectangle after linearly transforming it. In Figure 3, triangle abc is the transformed triangle, with

column A mapping to the same processor as column a, etc.

3.3 Transitive Closure

3.3.1 Problem

Aho, Hopcroft, and Ullman [1] de�ne transitive closure as follows:

\Suppose our cost matrix C is just the adjacency matrix for the given digraph. That

is, C[i; j] = 1 if there is an arc from i to j, and 0 otherwise. We wish to compute the

matrix A such that A[i; j] = 1 if there is a path of length one or more from i to j, and 0

otherwise. A is often called the transitive closure of the adjacency matrix."

Perhaps the best known parallel algorithm for transitive closure is by Guibas, Kung, and Thomp-

son [21, 53], operating on a toroidally connected mesh. This problem has seen progress in the research

of Rote [41], Robert and Trystram [40], Benaini, Robert, and Tourancheau [4], and Kung, Lo, and

Lewis [30]. This last algorithm (the KLL algorithm) is a clever reindexing of the Floyd-Warshall

[55, 15] algorithm (see also [32]). It is the KLL algorithm which is analyzed below.

23

33-34

30-32 31-33

27-30 28-31 29-32

24-28 25-29 26-30 27-31

21-26 22-27 23-28 24-29 25-30

18*24 19-25 20-26 21-27 22-28 23-29

15*22 16*23 17*24 18*25 19-26 20-27 21-28

12*20 13*21 14*22 15*23 16*24 17*25 18*26 19-27

9*18 10*19 11*20 12*21 13*22 14*23 15*24 16*25 17*26

6-16 7-17 8*18 9*19 10*20 11*21 12*22 13*23 14*24 15*25

3-14 4-15 5-16 6-17 7*18 8*19 9*20 10*21 11*22 12*23 13*24

0-12 1-13 2-14 3-15 4-16 5-17 6*18 7*19 8*20 9*21 10*22 11*23

i

k

A B

C

a

c
b

Figure 3: The Gaussian elimination dag for n = 12, projected along the j-axis. The rectangular

region de�nes the processor space. The remaining columns, which form two triangles, are mapped

into the rectangular region to complete the processor allocation.

24

The KLL dependence dag [30] for computing the transitive closure, illustrated in Fig. 4, can be

de�ned as follows.

Gtc(n) = (N;A), where

� N = f(i; j; k) j 1 � i; j; k � ng.

� A =

f[(i; j; k); (i0; j0; k)] j where i0 = i+ 1 exclusive-or j0 = j + 1, for 1 � i; j; k < ng

S
f[(i; j; k); (i0; j0; k0)] j i0 = i� 1; j0 = j � 1; k0 = k + 1 for 1 < i; j � n, 1 � k < ng

S
f[(i; j; k); (i0; j0; k0)] j i0 = i� 1; j0 = j = n; k0 = k + 1 for 1 < i � n, 1 � k < ng

S
f[(i; j; k); (i0; j0; k0)] j i0 = i = n; j0 = j � 1; k0 = k + 1 for 1 < j � n, 1 � k < ng.

3.3.2 Lower Bound

The longest directed path in this dag has 5n� 4 nodes (see [30]). Any time-minimal schedule of the

Gtc(n) dag requires at least
l
n2

3

m
processors.

3.3.3 Upper Bound

Schedule: The schedule depends on n mod 3. We show the schedule for the case where n mod 3 = 0.

The remaining cases, as well as the proofs of optimality are found in [46].

The map m0 : N 7! Z3 (i.e., from nodes to spacetime) can be de�ned formally as follows.

0
BBB@

time

space1

space2

1
CCCA =

0
BBB@

�(i; j; k)

�1(j; k)

�2(j)

1
CCCA ;where

�(i; j; k) = 3(k � 1) + i+ j � 1

�1(j; k) = k0 = dn=2e � b j�1
3 c+ (k � (dn=2e � b j�1

3 c)) mod
n
3

�2(j) = j0 = j

For this mapping, �(i; j; k) is found by examining the dag of Fig. 4. It is the earliest time a

particular node can be processed. �1(j; k) is the mod n=3 function, with an o�set to assure that the

�rst processor of the top row is located in the middle k column.

25

0 1 2 3 4 5

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

8 9 10 11 12 13

6 7 8 9 10 11

7 8 9 10 11 12

8 9 10 11 12 13

9 10 11 12 13 14

10 11 12 13 14 15

11 12 13 14 15 16

9 10 11 12 13 14

10 11 12 13 14 15

11 12 13 14 15 16

12 13 14 15 16 17

13 14 15 16 17 18

14 15 16 17 18 19

12 13 14 15 16 17

13 14 15 16 17 18

14 15 16 17 18 19

15 16 17 18 19 20

16 17 18 19 20 21

17 18 19 20 21 22

15 16 17 18 19 20

16 17 18 19 20 21

17 18 19 20 21 22

18 19 20 21 22 23

19 20 21 22 23 24

20 21 22 23 24 25

Figure 4: The dag Gtc(6). Each node is labeled with its time step in a time minimal schedule.

Maximal concurrent sets (with 12 nodes) are associated with time steps 9{18. Such time steps are

referred to as processor maximal. The black nodes comprise the maximal concurrent set for processor

maximal time step 12.

26

The mapping is done with a simple mod n
3 function applied along the k axis. There are n=3

real processors for each k-row. For a particular row, the remaining 2n=3 columns map to the n=3

real processors such that krealmod n=3 = kremainingmod n=3. Thus, each real processor handles

3 columns: its �rst column �nishes execution just before its second column begins execution, and

its second column �nishes execution just before its third column begins execution (i.e., scheduling

constraints are met). For the example in Fig. 5, we use a (mod12=3) function so that each of the

remaining 2 � 12=3 columns per row are mapped to a processor. The connectivity implied by this

mapping requires, for example, that the processor assigned to column A must communicate directly

to the processor assigned to column D. To realize these boundary connections, we map the array of

Fig. 5 onto the surface of a cylinder.

Proof of optimality: [43].

Processor layout: The processor layout is shown in Figure 5, as described above.

3.4 Tensor Product

3.4.1 Upper Bound

The processor lower bound for any time-minimal schedule for this computation was presented in x2:

directed mesh clearly has 4n�3 nodes. Any time-minimal schedule of the 4D mesh requires at least

(2=3)n3 + n=3 processors.

We now show that there is a systolic array that achieves this lower bound for processor-time-

minimal multiprocessor schedules.

We map the 4D mesh onto a 3D mesh of processors with map m : Nn 7! N 4. Given a mesh node

(i; j; k; l) 2 Nn, m(i; j; k; l) produces a time step (its �rst component), and a processor location (its

last 3 components). The map m is de�ned as follows.

m

0
BBBBBB@

i

j

k

l

1
CCCCCCA

=

0
BBBBBB@

time

�1

�2

�3

1
CCCCCCA

=

0
BBBBBB@

�(i; j; k; l)

�1(i; j; k)

�2(i; j; k)

�3(i; j; k)

1
CCCCCCA
;where

27

1-12 4-15 7-18 10-21 13-24 16-27 19-30 22-33 25-36 28-39 31-42 34-45

2-13 5-16 8-19 11-22 14-25 17-28 20-31 23-34 26-37 29-40 32-43 35-46

3-14 6-17 9-20 12-23 15-26 18-29 21-32 24-35 27-38 30-41 33-44 36-47

4-15 7-18 10-21 13-24 16-27 19-30 22-33 25-36 28-39 31-42 34-45 37-48

5-16 8-19 11-22 14-25 17-28 20-31 23-34 26-37 29-40 32-43 35-46 38-49

6-17 9-20 12-23 15-26 18-29 21-32 24-35 27-38 30-41 33-44 36-47 39-50

7-18 10-21 13-24 16-27 19-30 22-33 25-36 28-39 31-42 34-45 37-48 40-51

8-19 11-22 14-25 17-28 20-31 23-34 26-37 29-40 32-43 35-46 38-49 41-52

9-20 12-23 15-26 18-29 21-32 24-35 27-38 30-41 33-44 36-47 39-50 42-53

10-21 13-24 16-27 19-30 22-33 25-36 28-39 31-42 34-45 37-48 40-51 43-54

11-22 14-25 17-28 20-31 23-34 26-37 29-40 32-43 35-46 38-49 41-52 44-55

12-23 15-26 18-29 21-32 24-35 27-38 30-41 33-44 36-47 39-50 42-53 45-56

k
j

AD

Figure 5: Gtc(12), viewed along the i axis. Each entry (i.e., i-column) is indicated by the interval

of time steps for its 12 nodes. Circled i-columns contain a processor maximal time step, tm = 27.

These circled columns also represent the processors.

28

�(i; j; k; l) = i+ j + k + l;

�1(i; j; k) = i+ j + k � 1 mod n

�2(i; j; k) =

8>>><
>>>:

2j + k � n+ 2 if i+ j + k < n� 1

i� j if n� 1 � i+ j + k � 2n� 2

2j + k � 2n+ 1 if 2n� 2 < i+ j + k

�3(i; j; k) =

8>>><
>>>:

i+ j if i+ j + k < n� 1

k if n� 1 � i+ j + k � 2n� 2

i+ j � n+ 1 if 2n� 2 < i+ j + k

.

We now discuss how this mapping was derived, and also give a geometrical interpretation.

One way to �nd a processor-time-minimal schedule for a 4-dimensional cubical mesh is as follows:

� First, we assume that the n points (i; j; k; 0) to (i; j; k; n�1) (for every �xed i; j; k) are mapped

to the same processor. This gives us n3 columns of nodes to be mapped.

� As shown previously, there are at least (2=3)n3 + n=3 nodes which must be computed at the

same time step, in a time-minimal schedule. Therefore, there are (2=3)n3 + n=3 columns

containing these nodes (since the time steps corresponding to each node in a column are

unique.)

We choose these (2=3)n3 + n=3 columns as our processor space. This accomplishes 2 things:

(1) It assigns each of these columns of nodes to the processor that computes it, and (2) It

determines the shape of the 3-dimensional processor array (before any topological changes).

� We then map all of the remaining n3 � (2=3)n3 + n=3 columns to the processors, without

violating the scheduling constraints.

The mapping m was derived by following the 3 steps above. The last step has many valid

solutions. We have chosen one that is convenient.

The mapping m has the following geometrical interpretation:

As previously mentioned, we collapse the 4-dimensional space to 3 dimensions, by only concerning

ourselves with (i; j; k) columns, where each of the n points in these columns is mapped to the same

processor. For that reason, l is not a factor in the space mapping.

29

X

Y

Z

(0,0,0) (n-1,0,0)

(0,n-1,0)

(0,0,n-1) (n-1,0,n-1)

(n-1,n-1,0)

(0,n-1,n-1)

Figure 6: The 3 regions of the 4D-mesh (after 1 dimension has been collapsed). The middle region,

shaded here, is also the processor space. It is inclusively bounded by the hyperplanes i+ j+k = n�1

and i+ j + k = 2n� 2. The nodes outside of the shaded region are mapped into it.

We divide this 3-dimensional cube of columns into 3 regions: the tetrahedron formed by [the

convex full of] the columns below the hyperplane i+ j + k = n� 1, the tetrahedron formed by the

columns above the hyperplane i + j + k = 2n � 2, and the remaining middle region. The middle

region is the processor space. These 3 regions are shown in Figure 6.

The middle region has 2 triangular faces, along the planes i+j+k = n�1 and i+j+k = 2n�2.

These 2 faces become the bottom and top layers of processors. The planes between these, de�ned

by i+ j + k = c; n � 1 < c < 2n� 2, make up the remaining layers of processors, for a total of n

layers. Columns are mapped to the correct layer by the mapping function �1(i; j; k).

30

We map the lower tetrahedron into the processor space by �rst translating it along the vector

(1; 1; 1) until its upper face, de�ned by the plane i+j+k = n�2, lies in the same plane as the middle

region's upper face, de�ned by the plane i + j + k = 2n � 2. We then rotate the tetrahedron 180

degrees about the line i = j = k, and translate it again so that the integer points of the tetrahedron

lie on integer points of the middle region. This second translation is actually done on a plane by

plane basis for the planes i+ j + k = c to assure a convenient mapping. These transformations are

done by the mapping functions �2(i; j; k) and �3(i; j; k).

The upper tetrahedron is mapped to the processor space similarly, except that it is translated

down to the lower part of the middle region.

Proof of optimality: [43].

Processor layout: The processor layout is shown in Figure 6, as described above.

4 Conclusion

Given a nested loop program whose underlying computation dag has nodes representable as lattice

points in a convex polyhedron, and a multiprocessor schedule for these nodes that is linear in the

loop indices, we produce a formula for the number of lattice points in the convex polyhedron that

are scheduled for a particular time step (which is a lower bound on the number of processors needed

to satisfy the schedule). This is done by constructing a system of parametric linear Diophantine

equations whose solutions represent the lattice points of interest. Our principal contribution to lower

bounds is the algorithm and its implementation for constructing the generating function from which

a formula for the number of these solutions is produced.

Several examples illustrate the relationship between nested loop programs and Diophantine equa-

tions, and are annotated with the output of a Mathematica program that implements the algorithm.

The algorithmic relationship between the Diophantine equations and the generating function is il-

lustrated with a simple example. Proof of the algorithm's correctness is sketched, while illustrating

its steps. The algorithm's time complexity is exponential. However this computational complexity

should be seen in light of two facts:

� Deciding if a time step has any nodes associated with it is NP-complete; we construct a formula

for the number of such nodes;

31

� This formula is a processor lower bound, not just for one instance of a scheduled computation

but for a parameterized family of such computations.

In bounding the number of processors needed to satisfy a linear multiprocessor schedule for a

nested loop program, we actually derived a solution to a more general linear Diophantine problem.

This leads to some interesting combinatorial questions of rationality and algorithm design based on

more general system of Diophantine equations.

Another direction of research concerns optimizing processor-time-minimal schedules: �nding

a processor-time-minimal schedule with the highest throughput: a period-processor-time-minimal

schedule. While such a schedule has been found and proven optimal in the case of square matrix

product [47], this area is open otherwise. Another area concerns k-dimensional meshes. We have

generalized the square mesh lower bounds, yielding a bound for a square mesh of any �xed dimension,

k. We have not however generalized our upper bound: We have no generalized square mesh schedule

that is processor-time-minimal for every k (i.e., for meshes of the form nk, where both n and k are

parameters).

References

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Co, Reading, Mass, 1974.

[2] A. Benaini and Yves Robert. Space-time-minimal systolic arrays for gaussian elimination and

the algebraic path problem. Parallel Computing, 15:211{225, 1990.

[3] Abdelhamid Benaini and Yves Robert. Spacetime-minimal systolic arrays for gaussian elim-

ination and the algebraic path problem. In Proc. Int. Conf. on Application Speci�c Array

Processors, pages 746{757, Princeton, September 1990. IEEE Computer Society.

[4] Abdelhamid Benaini, Yves Robert, and B. Tourancheau. A new systolic architecture for the

algebraic path problem. In John V. McCanny, John McWhirter, and Earl E. Swartzlander Jr.,

editors, Systolic Array Processors, pages 73{82, Killarney, IRELAND, May 1989. Prentice-Hall.

32

[5] Peter Cappello. A processor-time-minimal systolic array for cubical mesh algorithms. IEEE

Trans. on Parallel and Distributed Systems, 3(1):4{13, January 1992. (Erratum: 3(3):384, May,

1992).

[6] Peter Cappello and �Omer E�gecio�glu. Processor lower bound formulas for array computations

and parametric diophantine systems. International Journal of Foundations of Computer Sci-

ence, 9(4):351{375, 1998.

[7] Peter R. Cappello. VLSI Architectures for Digital Signal Processing. PhD thesis, Princeton

University, Princeton, NJ, Oct 1982.

[8] Peter R. Cappello. A spacetime-minimal systolic array for matrix product. In John V. McCanny,

John McWhirter, and Earl E. Swartzlander, Jr., editors, Systolic Array Processors, pages 347{

356, Killarney, IRELAND, May 1989. Prentice-Hall.

[9] Peter R. Cappello and Kenneth Steiglitz. Unifying VLSI array design with geometric transfor-

mations. In H. J. Siegel and Leah Siegel, editors, Proc. Int. Conf. on Parallel Processing, pages

448{457, Bellaire, MI, Aug. 1983.

[10] Peter R. Cappello and Kenneth Steiglitz. Unifying VLSI array design with linear transforma-

tions of space-time. In Franco P. Preparata, editor, Advances in Computing Research, volume

2: VLSI theory, pages 23{65. JAI Press, Inc., Greenwich, CT, 1984.

[11] Ph. Clauss, C. Mongenet, and G. R. Perrin. Calculus of space-optimal mappings of systolic

algorithms on processor arrays. In Proc. Int. Conf. on Application Speci�c Array Processors,

pages 4{18, Princeton, September 1990. IEEE Computer Society.

[12] Philippe Clauss and Vincent Loechner. Parametric analysis of polyhedral iteration spaces.

Journal of VLSI Signal Processing, 19:179{194, 1998.

[13] Alain Darte, Leonid Khachiyan, and Yves Robert. Linear scheduling is close to optimal. In

Jos�e Fortes, Edward Lee, and Teresa Meng, editors, Application Speci�c Array Processors, pages

37{46. IEEE Computer Society Press, August 1992.

[14] Bradley R. Engstrom and Peter R. Cappello. The SDEF programming system. J. of Parallel

and Distributed Computing, 7:201{231, 1989. Listed as \submitted" before Nov. 1987.

33

[15] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5, June 1962.

[16] Jos�e A. B. Fortes, King-Sun Fu, and Benjamin W. Wah. Systematic design approaches for al-

gorithmically speci�ed systolic arrays. In Veljko M. Milutinovi�c, editor, Computer Architecture:

Concepts and Systems, chapter 11, pages 454{494. North-Holland, Elsevier Science Publishing

Co., New York, NY 10017, 1988.

[17] Jos�e A. B. Fortes and Dan I. Moldovan. Parallelism detection and algorithm transformation

techniques useful for VLSI architecture design. J. Parallel Distrib. Comput, 2:277{301, Aug.

1985.

[18] Jos�e A. B. Fortes and F. Parisi-Presicce. Optimal linear schedules for the parallel execution of

algorithms. In Int. Conf. on Parallel Processing, pages 322{328, Aug. 1984.

[19] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

[20] J. Granata, M. Conner, and R. Tolimieri. Recursive fast algorithm and the role of the tensor

product. IEEE Transactions on Signal Processing, 40(12):2921{2930, December 1992.

[21] Leonidas J. Guibas, H.-T. Kung, and Clark D. Thompson. Direct VLSI implementation of

combinatorial algorithms. In Proc. Caltech Conf. on VLSI, pages 509{525, 1979.

[22] Daniel S. Hirschberg. Recent results on the complexity of common-subsequence problems. In

David Sanko� and Joseph B. Kruskal, editors, Time warps, string edits, and macromolecules :

the theory and practice of sequence comparison. Addison-Wesley, Reading, Mass, 1983.

[23] Oscar H. Ibarra and Michael Palis. VLSI algorithms for solving recurrence equations and

applications. IEEE Trans. on Acoust., Speech, and Signal Processing, ASSP-35(7):1046{1064,

July 1987.

[24] Guo jie Li and Benjamin W. Wah. The design of optimal systolic algorithms. IEEE Trans.

Comput., C-34(1):66{77, 1985.

[25] Richard M. Karp, Richard E. Miller, and Shmuel Winograd. Properties of a model for parallel

computations: Determinacy, termination, queueing. SIAM J. Appl. Math, 14:1390{1411, 1966.

34

[26] Richard M. Karp, Richard E. Miller, and Shmuel Winograd. The organization of computations

for uniform recurrence equations. J. ACM, 14:563{590, 1967.

[27] E.V. Krishnamurthy, M. Kunde, M. Schimmler, and H. Schroder. Systolic algorithm for tensor

products of matrices: implementation and applications. Parallel Computing, 13(3):301{308,

March 1990.

[28] E.V. Krishnamurthy and H. Schroder. Systolic algorithm for multivariable approximation using

tensor products of basis functions. Parallel Computing, 17(4-5):483{492, July 1991.

[29] H.-T. Kung and Charles E. Leiserson. Algorithms for VLSI processor arrays. In Introduction

to VLSI Systems, pages 271{292. Addison-Wesley Publishing Co, Menlo Park, CA, 1980.

[30] Sun-Yuan Kung, Sheng-Chun Lo, and Paul S. Lewis. Optimal systolic design for the transitive

closure and the shortest path problems. IEEE Trans. Comput., 36(5):603{614, May 1987.

[31] Leslie Lamport. The parallel execution of Do-Loops. Comm. of the ACM, 17(2):83{93, Feb.

1974.

[32] Wei-Ming Lin and V. K. Prasanna Kumar. A note on the linear transformation method for

systolic array design. IEEE Trans. Comput., 39(3):393{399, 1990.

[33] Basile Louka and Maurice Tchuente. An optimal solution for Gauss-Jordon elimination on 2D

systolic arrays. In John V. McCanny, John McWhirter, and Earl E. Swartzlander Jr., editors,

Systolic Array Processors, pages 264{274, Killarney, IRELAND, May 1989. Prentice-Hall.

[34] Percy A. MacMahon. The diophantine inequality �x � �y. In George E. Andrews, editor,

Collected Papers, Vol. I, Combinatorics, pages 1212{1232. The MIT Press, Cambridge, MASS,

1979.

[35] Percy A. MacMahon. Memoir on the theory of the partitions of numbers- part ii. In George E.

Andrews, editor, Collected Papers, Vol. I, Combinatorics, pages 1138{1188. The MIT Press,

Cambridge, MASS, 1979.

[36] Percy A. MacMahon. Note on the the diophantine inequality �x � �y. In George E. Andrews,

editor, Collected Papers, Vol. I, Combinatorics, pages 1233{1246. The MIT Press, Cambridge,

MASS, 1979.

35

[37] Dan I. Moldovan. On the design of algorithms for VLSI systolic arrays. Proc. IEEE, 71(1):113{

120, Jan. 1983.

[38] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In

Proc. 11th Ann. Symp. on Computer Architecture, pages 208{214, 1984.

[39] Sanjay V. Rajopadhye, S. Purushothaman, and Richard M. Fujimoto. On synthesizing systolic

arrays from recurrence equations with linear dependencies. In K. V. Nori, editor, Lecture

Notes in Computer Science, number 241: Foundations of Software Technology and Theoretical

Computer Science, pages 488{503. Springer Verlag, December 1986.

[40] Yves Robert and D. Trystram. An orthogonal systolic array for the algebraic path problem. In

Int. Workshop Systolic Arrays, 1986.

[41] G. Rote. A systolic array algorithm for the algebraic path problem (shortest paths; matrix

inversion). Computing, 34(3):191{219, 1985.

[42] Sartaj Sahni. Computational related problems. SIAM J. Comput., 3:262{279, 1974.

[43] Chris Scheiman. Mapping Fundamental Algorithms onto Multiprocessor Architectures. PhD

thesis, UC Santa Barbara, Dept. of Computer Science, chriss@cs.ucsb.edu, December 1993.

[44] Chris Scheiman and Peter Cappello. A processor-time minimal systolic array for the 3d rectilin-

ear mesh. In Proc. Int. Conf. on Application Speci�c Array Processors, pages 26{33, Strasbourg,

FRANCE, July 1995.

[45] Chris Scheiman and Peter R. Cappello. A processor-time minimal systolic array for transitive

closure. In Proc. Int. Conf. on Application Speci�c Array Processors, pages 19{30, Princeton,

September 1990. IEEE Computer Society.

[46] Chris Scheiman and Peter R. Cappello. A processor-time minimal systolic array for transitive

closure. IEEE Trans. on Parallel and Distributed Systems, 3(3):257{269, May 1992.

[47] Chris J. Scheiman and Peter Cappello. A period-processor-time-minimal schedule for cubical

mesh algorithms. IEEE Trans. on Parallel and Distributed Systems, 5(3):274{280, March 1994.

36

[48] Weijia Shang and Jos�e A. B. Fortes. Time optimal linear schedules for algorithms with uniform

dependencies. IEEE Transactions on Computers, 40(6):723{742, June 1991.

[49] Richard P. Stanley. Linear homogeneous diophantine equations and magic labelings of graphs.

Duke Math. J., 40:607{632, 1973.

[50] Richard P. Stanley. Enumerative Combinatorics, Volume I. Wadsworth & Brooks/Cole, Mon-

terey, CA, 1986.

[51] Bernd Sturmfels. Gr�obner Bases and Convex Polytopes. AMS University Lecture Series, Prov-

idence, RI, 1995.

[52] Bernd Sturmfels. On vector partition functions. J. Combinatorial Theory, Series A, 72:302{309,

1995.

[53] Je�rey D. Ullman. Computational Aspects of VLSI. Computer Science Press, Inc, Rockville,

MD 20850, 1984.

[54] H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its use for the design of

systolic arrays. J. VLSI Signal Processing, 3:173{182, 1991.

[55] S. Warshall. A theorem on boolean matrices. J. ACM, 9, Jan 1962.

[56] D. K. Wilde. A library for doing polyhedral operations. Master's thesis, Corvallis, Oregon,

December 1993. Also published as IRISA technical report PI 785, Rennes, France, Dec 1993.

[57] Yiwan Wong and Jean-Marc Delosme. Optimization of processor count for systolic arrays.

Dept. of Computer Sci. RR-697, Yale Univ., May 1989.

[58] Yiwan Wong and Jean-Marc Delosme. Space-optimal linear processor allocation for systolic

array synthesis. In V.K. Prasanna and L. H. Canter, editors, Proc. 6th Int. Parallel Processing

Symposium, pages 275{282. IEEE Computer Society Press, Beverly Hills, March 1992.

37

