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1 Introduction

Branch-and-bound intelligently searches the set of feasible solutions to a combinatorial optimization problem:
It, in effect, proves that the optimal solution is found without necessarily examining all feasible solutions.
The feasible solutions are not given. They can be generated from the problem description. However, doing
so usually is computationally infeasible: The number of feasible solutions typically grows exponentially as
a function of the size of the problem input. For example, the set of feasible tours in a symmetric Traveling
Salesman Problem (TSP) of a complete graph with 23 nodes is 22!/2 or around 8 × 1014 tours. The space
of feasible solutions is progressively partitioned (branching), forming a search tree. Each tree node has a
partial feasible solution. The node represents the set of feasible solutions that are extensions of its partial
solution. For example, in a TSP branch and bound, a search tree node has a partial tour, representing the
set of all tours that contain that partial tour. As branching continues (progresses down the problem tree),
each search node has a more complete partial solution, and thus represents a smaller set of feasible solutions.
For example, in a TSP branch and bound, a tree node’s children each represent an extension of the partial
tour to a more complete tour (e.g., one additional city or one additional edge). As one progresses down the
search tree, each node represents a larger partial tour. As the size of a partial tour increases, the number of
full tours containing the partial tour clearly decreases.

In traversing the search tree, we may come to a node that represents a set of feasible solutions, all of
which are provably more costly than a feasible solution already found. When this occurs, we prune this
node of the search tree: We discontinue further exploration of this set of feasible solutions. In the example
of the TSP problem, the cost of any feasible tour that has a given partial tour surely can be bounded from
below by the cost of the partial tour: the sum of the edge weights for the edges in the partial tour. (In our
experiments, we use a Held-Karp lower bound, which is stronger but more computationally complex.) If the
lower bound for a node is higher than the current upper bound (i.e., best known complete solution), then
the cost of all complete solutions (e.g., tours) represented by the node is higher than a complete solution
that is already known: The node is pruned. Please see Papadimitriou and Steiglitz [23] for a more complete
discussion of branch-and-bound. Fig. 8 gives a basic, sequential branch-and-bound algorithm.

The framework that we present here is designed for deployment in a distributed setting. Moreover, the
framework supports adaptive parallelism: During the execution, the set of compute servers can grow (if new
compute servers become available) or shrink (if compute servers become unavailable or fail): The branch
and bound computation thus cannot assume a fixed number of compute servers.

The branch and bound computation is decomposed into tasks, each of which is executed on a compute
server: Each element of the active set (please see Fig. 8) is a task that, in principle, can be scheduled for
execution on any compute server. Indeed, parallel efficiency requires load balancing of tasks among compute
servers. This distributed setting implies the following compute server requirements:

• Tasks (activeset elements) are generated during the computation — they cannot be scheduled a priori ;
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• When a compute server discovers a new best cost, it must be propagated to the other compute servers;

• Detecting termination requires “knowing” when all branches (children) have been either fully examined
or pruned. In a distributed setting, the implied communication must not be a bottleneck.

Our goal is to facilitate the development of branch and bound computations for deployment as a dis-
tributed computation. We provide a development-deployment infrastructure that requires the developer to
write code for only the particular aspects of the branch and bound computation under development, pri-
marily the branching rule, the lower bound computation, and the upper bound computation. We present
this framework and some experimental results of its application to a medium complexity Traveling Salesman
Problem (TSP) code running on a beowulf cluster.

2 Related Work

Held, Hoffman, Johnson, and Wolfe give a short history of the Traveling Salesman Problem [10]. In it, they
note that, in 1963, Little, Murty, Sweeney, and Karel [17] were the first to use the term “branch and bound”
to describe their enumerative procedure for solving TSP instances. As we understand it, Little et al. and
Land and Doig [16] independently discovered the technique of branch and bound. This discovery led to “a
decade of enumeration”.

Parallel branch and bound also has been widely studied. See, for example, [28, 29]. Rather early on
it was discovered that there are speedup anomalies in parallel branch and bound [15]: Completion times
are not monotonically non-increasing as a function of the number of processors. In the discussion that
follows, let T denote the search tree, c∗ denote the cost of a minimum cost leaf in T , T ∗ ⊆ T denote the
subtree of T whose nodes cost less than or equal to c∗, n denote the number of nodes in T ∗, and h denote
the height of T ∗. In [13], Karp and Zhang present a universal randomized method called Local Best-First
Search for parallelizing sequential branch-and-bound algorithms. When executing on a completely connected,
message-passing multiprocessor, the method’s computational complexity is asymptotically optimal with high
probability: O(n/p+h), where p is the number of processors. The computational complexity of maintaining
the local data structure and the communication overhead are ignored in their analysis. When n > p2 log p,
Liu, Aiello, and Bhatt [18] give a method for branch and bound that is asymptotically optimal with high
probability, assuming that interprocessor communication is controlled by a central FIFO arbiter. Herley,
Pietracaprina, and Pucci [11], give a deterministic parallel algorithm for branch and bound based on the
parallel heap selection algorithm of Frederickson [9], combined with a parallel priority queue. The complexity
of their method is O(n/p + h log2(np)) on an EREW-PRAM, which is optimal for h = O(n/(p log2(np))).
This bound includes communication costs on a EREW-PRAM.

Distributed branch and bound also has been widely studied. Tschoeke, Lueling, and Monien contributed
experimental work on distributed branch and bound for TSP [27] using over 1,000 processors. When the
number of processors gets large, fault tolerance becomes an issue. Yahfoufi and Dowaji [31] present perhaps
the first distributed fault-tolerant branch and bound algorithm.

There also has been a lot of work on what might be called programming frameworks for distributed
branch and bound computation. This occurs for two reasons: 1) branch and bound is best seen as a meta-
algorithm for solving large combinatorial optimization problems: It is a framework that must be completed
with problem-specific code; 2) programming a fault tolerant distributed system is sufficiently complex to
motivate a specialization of labor: distributed systems research vs. operations research. In 1995, Shinano et
al. [26] presented PUBB, a Parallel Utility for Branch-and-Bound, based on the C programming language.
They illustrate the use of their utility on TSP and 0/1 ILP. They introduce the notion of a Logical Computing
Unit (LCU). Although in parts of their paper, an LCU sounds like a computational task, we are persuaded
that it most closely resembles a processor, based on their explanation of its use: “The master process
maintains in a queue, all the subproblems that are likely to lead to an optimal solution. As long as this
queue is not empty and an idle LCU exists, the master process selects subproblems and assigns them to an idle
LCU for evaluation one after the other.” When discussing their experimental results, they note “The results
indicate that, up to using about 10 LCUs, the execution time rapidly decreases as more LCUs are added.
When the number of LCUs exceeds about 20, the computing time for one run, remains almost constant.”
Indeed, from their Fig. 9, we can see that PUBB’s parallel efficiency steadily goes down when the number
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of LCUs is above 10, and is well below 0.5, when the number of LCUs is 55. Aversa et al. [3] report on a
the Magda project for mobile agent programming with parallel skeletons. Their divide-and-conquer skeleton
is used to implement branch and bound, which they provide experimental data for on up to 8 processors.
Moe [20] reports on GRIBB, and infrastructure for branch and bound on the Internet. Experimental results
on an SGI Origin 2000 with 32 processors machines shows good speedups when the initial bound is tight, and
about 67% of ideal speedup, when a simple initial bound is used. Dorta et al. [8] present C++ skeletons for
divide-and-conquer and branch-and-bound, where deployment is intended for clusters. Their experiments,
using a 0/1 Knapsack problem of size 1000. On a Linux cluster with 7 processors, the average speedup
was 2.25. On an Origin 3000 with 16 processors, the average speedup was 4.6. On a Cray T3E with 128
processors, the average speedup was 5.02. They explain “Due to the fine grain of the 0/1 knapsack problem,
there is no lineal increase in the speed up when the number of processor increase. For large numbers of
processors the speed up is poor.”

Neary, Phipps, Richman, and Cappello [22, 21] present an infrastructure/framework for distributed com-
puting, including branch and bound, that tolerates faulty compute servers, and is in pure Java, allowing
application codes to run on a heterogeneous set of machine types and operating systems. They experimen-
tally achieved about 50% of ideal speedup for their TSP code, when running on 1,000 processors. Their
schemes for termination detection and fault tolerance of a branch and bound computation both exploit its
tree-structured search space. The management of these schemes is centralized. Iamnitchi and Foster [12]
build on this idea of exploiting branch and bound’s tree-structured search space, producing a branch and
bound-specific fault tolerance scheme that is distributed, although they provide only simulation results.

3 The Deployment Architecture

Jicos, a Java-centric network computing service that supports high-performance parallel computing, is
an ongoing project that: virtualizes compute cycles, stores/coordinates partial results - supporting fault-
tolerance, is partially self-organizing, may use an open grid services architecture [24, 25] frontend for service
discovery (not presented), is largely independent of hardware/OS, and is intended to scale from a LAN
to the Internet. Jicos is designed to: support scalable, adaptively parallel computation (i.e., the
computation’s organization reduces completion time, using many transient compute servers, called hosts,
that may join and leave during a computation’s execution, with high system efficiency, regardless of how
many hosts join/leave the computation); tolerate basic faults: Jicos must tolerate host failure and
network failure between hosts and other system components; hide communication latencies, which may
be long, by overlapping communication with computation. Jicos comprises 3 service component classes.

Hosting Service Provider (HSP): Jicos clients (i.e., processes seeking computation done on their be-
half) interact solely with the hosting service provider component. A client logs in, submits computa-
tional tasks, requests results, and logs out. When interacting with a client, the hosting service provider
thus acts as an agent for the entire network of service components. It also manages the network of
task servers described below. For example, when a task server wants to join the distributed service,
it first contacts the hosting service provider. The HSP tells the task server where it fits in the task
server network.

Task Server: This component is a store of Task objects. Each Task object that has been spawned but has
not yet been computed, has a representation on some task server. Task servers balance the load of
ready tasks among themselves. Each task server has a number of hosts associated with it. When a
host requests a task, the task server returns a task that is ready for execution, if any are available. If
a host fails, the task server reassigns the host’s tasks to other hosts.

Host: A host (aka compute server) joins a particular task server. Once joined, each host repeatedly requests
a task for execution, executes the task, returns the results, and requests another task. It is the central
service component for virtualizing compute cycles.

When a client logs in, the HSP propagates that login to all task servers, who in turn propagate it to
all their hosts. When a client logs out, the HSP propagates that logout to all task servers, which aggregate
resource consumption information (execution statistics) for each of their hosts. This information, in turn, is
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aggregated by the HSP for each task server, and returned to the client. Currently, the task server network
topology is a torous. However, scatter/gather operations, such as login and logout, are transmitted via a
task server tree: a subgraph of the torous. See Figure 80.2.

Task objects encapsulate computation: Their inputs and outputs are managed by Jicos. Task execution
is idempotent, supporting the requirement for host transience and failure recovery. Communication latencies
between task servers and hosts are reduced or hidden via task caching, task pre-fetching, and task execution
on task servers for selected task classes.

3.1 Tolerating Faulty Hosts

To support self-healing, all proxy objects are leased [19, 2]. When a task server’s lease manager detects an
expired host lease and the offer of renewal fails, the host proxy: 1) returns the host’s tasks for reassignment,
and 2) is deleted from the task server. Because of explicit continuation passing, recomputation is minimized:
Systems that support divide-and-conquer but which do not use explicit continuation passing [4], such as
Satin [30], need to recompute some task decomposition computations, even if they completed successfully.
In some applications, such as sophisticated TSP codes, decomposition can be computationally complex.
On Jicos, only the task that was currently being executed needs to be recomputed. This is a substantial
improvement. In the TSP problem instance that we use for our performance experiments, the average task
time is 2 sec. Thus, the recomputation time for a failed host is, in this instance, a mere 1 sec, on average.

4 Performance Considerations

Jicos’s API includes a simple set of application-controlled directives for improving performance by reducing
communication latency or overlapping it with task execution.

Task caching: When a task constructs subtasks, the first constructed subtask is cached on its host, obviat-
ing its host’s need to ask the TaskServer for its next task. The application programmer thus implicitly
controls which subtask is cached.

Task pre-fetching: The application can help hide communication latency via task pre-fetching:

Implicit: A task that never constructs subtasks is called atomic. The Task class has a boolean
method, isAtomic. The default implementation of this method returns true, if and only if the
task’s class implements the marking interface, Atomic. Before invoking a task’s execute method,
a host invokes the task’s isAtomic method. If it returns true, the host pre-fetches another task
via another thread before invoking the task’s execute method.

Explicit: When a task object whose isAtomic method returned false (it did not know prior to the
invocation of its execute method that it would not generate subtasks) nonetheless comes to a
point in its execute method when knows that it is not going to construct any subtasks, it can
invoke its environment’s pre-fetch method. This causes its host to request a task from the task
server in a separate thread.

Task pre-fetching overlaps the host’s execution of the current task with its request for the next task.
Application-directed pre-fetching, both implicit and explicit, thus motivates the programmer to 1)
identify atomic task classes, and 2) constitute atomic tasks with compute time that is at least as long
as a Host—TaskServer round trip (on the order of 10s of milliseconds, depending on the size of the
returned task, which affects the time to marshal, send, and unmarshal it).

Task server computation When a task’s encapsulated computation is little more complex than reading
its inputs, it is faster for the task server to execute the task itself than to send it to a host for execution.
This is because the time to marshal and unmarshal the input plus the time to marshal and unmarshal
the result is more than the time to simply compute the result (not to mention network latency). Binary
boolean operators, such as min, max, sum (typical linear-time gather operations) should execute on the
task server. All Task classes have a boolean method, executeOnServer. The default implementation
returns true, if and only if the task’s class implements the marking interface, ExecuteOnServer. When
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a task is ready for execution, the task server invokes its executeOnServer method. If it returns true,
the task server executes the task itself: The application programmer controls the use of this important
performance feature.

Taken together, these features reduce or hide much of the delay associated with Host—TaskSever communi-
cation.

5 The Computational Model

Computation is modeled by an directed acyclic graph (DAG) whose nodes represent tasks. An arc from
node v to node u represents that the output of the task represented by node v is an input to the task
represented by node u. A computation’s tasks all have access to an environment consisting of an immutable
input object and a mutable shared object. The semantics of “shared” reflects the envisioned computing
context—a computer network: The object is shared asynchronously. This limited form of sharing is of value
in only a limited number of settings. However, branch and bound is one such setting, constituting a versatile
paradigm for coping with computationally intractable optimization problems.

6 The Branch and Bound API

Tasks correspond to nodes in the search tree: Each task gives rise to a set of smaller subtasks, until it
represents a node in the search tree that is small enough to be explored by a single compute server. We refer
to such a task as atomic; it does not decompose into subtasks.

6.1 The Environment

For branch and bound computations, the environment input is set to the problem instance. For example, in
a TSP, the input can be set to the distance matrix. Doing so materially reduces the amount of information
needed to describe a task, which reduces the time spent to marshal and unmarshal such objects.

The cost of the least cost known solution at any point in time is shared among the tasks: It is encapsulated
as the branch and bound computation’s shared object. (Please see IntUpperBound below.) In branch and
bound, this value is used to decide if a particular subtree of the search tree can be pruned. Thus, sharing the
cost of the least cost known solution enhances the pruning ability of concurrently executing tasks that are
exploring disjoint parts of the search tree. Indeed, this improvement in pruning is essential to the efficiency
of parallel branch and bound. When a branch and bound task finds a complete solution whose cost is less
than the current least cost solution, it sets the shared object to this new value, which implicitly causes Jicos
to propagate the new least cost throughout the distributed system.

6.2 The Jicos Branch and Bound Framework

The classes comprising the JICOS branch and bound framework are based on 2 assumptions:

• The branch and bound problem is formulated as a minimization problem. Maximization problems
typically can be reformulated as minimization problems.

• The cost can be represented as in int.

Should these 2 assumptions prove troublesome, we will generalize this framework.
Before giving the framework, we describe the problem-specific class that the application developer must

provide: A class that implements the Solution interface. This class represents nodes in the search tree: A
Solution object is a partial feasible solution. For example, in a TSP, it could represent a partial tour. Since it
represents a node in the search tree, its children represent more complete partial feasible solutions. For exam-
ple, in a TSP, a child of a Solution object would represent its parent’s partial tour, but including[excluding]
one more edge (or including one more city, depending on the branching rule).

The Solution interface has the following methods:
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getChildren returns a queue of the Solution objects that are the children of this Solution. The queue’s
retrieval order represents the application’s selection rule, from most promising to least promising. In
particular, the first child is cached (please see § 4 for an explanation of task caching).

getLowerBound returns the lower bound on the cost of any complete Solution that is an extension of this
partial Solution.

getUpperBound returns an upper bound on the cost of any complete Solution, and enables an upper
bound heuristic for incomplete solutions.

isComplete returns true if and only if the partial Solution is, in fact, complete.

reduce Omit loose constraints. For example, in a TSP solution, this method may omit edges whose cost
is greater than the current best solution, and therefore cannot be part of any better solution. This
method returns void, and can have an empty implementation.

The classes that comprise the branch and bound framework—provided by Jicos to the application
programmer—are described below:

BranchAndBound This is a Task class, which resides in the jicos.applications.branchandbound package,
whose objects represent a search node. A BranchAndBound Task either:

• constructs smaller BranchAndBound tasks that correspond to its children search nodes, or

• fully searches a subtree, returning:

– null, if it does not find a solution that is better than the currently known best solution
– the best solution it finds, if it is better than the currently known best solution.

IntUpperBound A object that represents the minimum cost among all known complete solutions. This
class is in the jicos.services.shared package. It implements the Shared interface (for details about this
interface, please see the JICOS API), which defines the shared object. In this case, the shared object
is an Integer that holds the current upper bound on the cost of a minimal solution. Consequently,
IntUpperBound u “is newer than” IntUpperBound v when u < v.

MinSolution This task is included in the jicos.services.tasks package. It is a composition class whose
execute method:

• receives an array of Solution objects, some of which may be null;

• returns the one whose cost is minimum, provided it is less than or equal to the current best
solution. Equality is included to ensure that the minimum cost solution is reported: It is not
enough just to know the cost of the minimum cost solution.

• From the standpoint of the Jicos system (not a consideration for application programming), the
compose tasks form a tree that performs a gather operation, which, in this case, is a min operation
on the cost of the Solution objects it receives. Each task in this gather tree is assigned to some
task server, distributing the gather operation throughout the network of task servers. (This task
is indeed executed on a task server, not a compute server - please see § 4.)

Q A queue of Solution objects.

Using this framework, it is easy to construct a branch and bound computation. The Jicos web site
tutorial [1] illustrates this, giving a complete code for a simple TSP branch and bound computation.

7 Experimental Results

7.1 The Test Environment

We ran our experiments on a Linux cluster. The cluster consists of 1 head machine, and 64 compute machines,
composed of two processor types. Each machine is a dual 2.6GHz (or 3.0GHz) Xeon processor with 3GB
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(2GB) of PC2100 memory, two 36GB (32GB) SCSI-320 disks with on-board controller, and an on-board 1
Gigabit ethernet adapter. The machines are connected via the gigabit link to one of 2 Asante FX5-2400
switches. Each machine is running CentOS 4 with the Linux smp kernel 2.6.9-5.0.3.ELsmp, and the Java
j2sdk1.4.2. Hyperthreading is enabled on most, but not all, machines.

7.2 The Test Problem

We ran a branch-and-bound TSP application, using kroB200 from TSPLIB, a 200 city euclidean instance.
In an attempt to ensure that the speedup could not be super-linear, we set the initial upper bound for the
minimal-length tour with the optimum tour length. Consequently, each run explored exactly the same search
tree: Exactly the same set of nodes is pruned regardless of the number of parallel processors used. Indeed, the
problem instance decomposes into exactly 61,295 BranchAndBound tasks whose average execution time was
2.05 seconds, and exactly 30,647 MinSolution tasks whose average execution time was less than 1 millisecond.

7.3 The Measurement Process

For each experiment, a hosting service provider was launched, followed by a single task server on the same
machine. When additional task servers were used, they were started on dedicated machines. Each compute
server was started on its own machine. Except for 28 compute servers in the 120 processor case (which were
calibrated with a separate base case), each compute server thus had access to 2 hyperthreaded processors
which are presented to the JVM as 4 processors (we report physical CPUs in our results). After the
Jicos system was configured, a client was started on the same machine as the HSP (and task server),
which executed the application. The application consists of a deterministic workload on a very unbalanced
task graph. Measured times were recorded by Jicos’s invoice system, which reports elapsed time (wall
clock, not processor) between submission of the application’s source task (aka root task) and receipt of
the application’s sink task’s output. Jicos also automatically computes the critical path using the obvious
recursive formulation for a DAG. Each test was run 8 times (or more) and averages are reported.

One processor in the OS does not correspond to 1 physical processor. It therefore is difficult to get
meaningful results for 1 processor. We consequently use 1 machine, which is 2 physical CPUs, as our base
case. For the 120 processor measurements, we used the speedup formula a heterogeneous processor set [7].
We thus had 3 separate base cases for computing the 120 processor speedup.

For our fault tolerance test, we launched a Jicos system with 32 processors as compute servers. We issued
a kill command to various compute servers after 1,500 seconds, approximately 3/4 through the computation.
The completion time for the total computation was recorded, and was compared to the ideal completion
time: 1500 + (T32 − 1500) × 32/Pfinal), where Pfinal denotes the number of compute servers that did not
fail.

To test the overhead of running a task server on the same machine as a compute server, we ran a 22
processor experiment both with a dedicated task server and with a task server running on the same machine
as one of the compute server. We recorded the completion times and report the averages of 8 runs.

7.4 The Measurements

TP denotes the time for P physical processors to run the application. A computation’s critical path time,
denoted T∞, is a maximum time path from the source task to the sink task. We captured the critical path
time for this problem instance: It is 37 seconds. It is well known [4] that max{T∞, T1/P} ≤ TP . Thus,
0 ≤ max{T∞, T1/P}/TP ≤ 1 is a lower bound on the fraction of perfect speedup that is actually attained.
Figure 80.3 presents speedup data for several experiments: The ordinate in the figure is the lower bound
of fraction of perfect speedup. As can be seen from the figure, in all cases, the actual fraction of perfect
speedup exceeds 0.94; it exceeds 0.96, when using an appropriate number of task servers. Specifically, the
2-processor base case ran in 9 hours and 33 minutes; whereas the 120-processor experiment (2 processors
per host) ran in just 11 minutes!

We get superlinear speedups for 4, 8, 16, and 32 processors. The standard deviation was less than 1.6%
of the size of the average. As such, the superlinearity cannot be explained by statistical error. However,
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differences in object placement in the memory hierarchy can have impacts greater than the gap in speedup
we observe [14]. So, within experimental factors beyond our control, Jicos performs well.

We are very encouraged by these measurements, especially considering the small average task times.
Javelin, for example, was not able to achieve such good speedups for 2 second tasks. Even CX [6, 7] is not
capable of such fine task granularity.

P∞ = T1/T∞ is a lower bound on the number of processors necessary to extract the maximum parallelism
from the problem. For this problem instance, P∞ = 1, 857 processors. Thus, 1,857 processors is a lower
bound on the number of processors necessary to bring the completion time down to T∞, namely, 37 seconds.

Our fault tolerance data is summarized in Table 80.1. Overhead is caused by the rescheduling of tasks lost
when a compute server failed as well as some time taken by the TaskServer to recognize a faulty compute
server. Negative overhead is a consequence of network traffic and thread scheduling preventing a timely
transfer of the kill command to the appropriate compute server.

When measuring the overhead of running a task server on a machine shared with a compute server, we
received an average of 3115.1 seconds for a dedicated task server and 3114.8 seconds for the shared case.
Both of these represent 99.7% ideal speedup. This is not too surprising: there is a slight reduction in com-
munication latency having the task server on the same machine as a compute server, and the computational
load of the task server is small due to the simplicity of the compose task (it is a comparison of two upper
bounds). It therefore appears beneficial to place a compute server on every available computer in a Jicos
system without dedicating machines to task servers.

8 Conclusion

We have presented a framework, based on the Jicos API, for developing distributed branch and bound
computations. The framework allows the application developer to focus on the problem-specific aspects of
branch and bound: the lower bound computation, the upper bound computation, and the branching rule.
Reducing the code required to these problem-specific components reduces the likelihood of programming
errors, especially those associated with distributed computing, such as threading errors, communication
protocols, and detecting, and recovering from, faulty compute servers.

The resulting application can be deployed as a distributed computation via Jicos running, for example,
on a beowulf cluster. Jicos [5] scales efficiently as indicated by our speedup experiments. This, we believe,
is because we have carefully provided 1) for divide-and-conquer computation; 2) an environment that is
common to all compute servers for computation input (e.g., a TSP distance data structure, thereby reducing
task descriptors) and a mutable shared object that can be used to communicate upper bounds as they
are discovered; 3) latency hiding techniques of task caching and pre-fetching; and 4) latency reduction by
distributing termination detection on the network of task servers.

Faulty compute servers are tolerated with high efficiency, both when faults occur (as indicated by our
fault tolerance performance experiments), and when they do not (as indicated by our speedup experiments,
in which no faults occur). Finally, the overhead of task servers is shown to be quite small, further confirming
the efficiency of Jicos as a distributed system.

The vast majority of the code concerns Jicos, the distributed system of fault tolerant compute servers.
The Java classes comprising the branch-and-bound framework are few, and easily enhanced, or added to, by
operations researchers; the source code is cleanly designed and freely available for download from the Jicos
web site [1].
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activeSet = { originalTask };

u = infinity; // u = the cost of the best solution known

currentBest = null;

while ( ! activeSet.isEmpty() ) {

k = remove some element of the activeSet;

children = generate k’s children;

for each element of children {

if ( element’s lower bound <= u )

if ( element is a complete solution ) {

u = element’s cost;

currentBest = element;

}

else

add element to activeSet;

}

}

Figure 80.1: A sequential algorithm for branch and bound.

Hosting
Service
Provider

Client

Figure 80.2: A Jicos system that has 9 task servers. The task server topology, a 2D torous, is indicated
by the dashed lines. In the figure, each task server has 4 associated hosts (the little black discs). An actual
task server might serve about 40 hosts (although our experiments indicate that 128 hosts/task server is not
too much). The client interacts only with the HSP.
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Figure 80.3: Number of processors vs. % of ideal speedup.

Table 80.1: Efficiency of compute server fault tolerance. Each experiment started with 32 processors. The
experiment in which 30 processors finished had 2 fail; the experiment in which 4 finished had 28 fail.

Processors (final) 30 26 12 8 6 4

Theoretical Time (s) 2119.43 2214.73 3048.58 3822.87 4597.16 6145.74

Measured Time (s) 2194.95 2300.92 2974.35 4182.62 4884.86 6559.91

Percent Overhead 3.6% 3.9% -2.4% 9.4% 6.3% 6.7%
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