

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#166
P

at
te

rn
s

o
f

M
o

d
u

la
r

A
rc

h
it

ec
tu

re

By Kirk Knoernschild

Patterns of Modular Architecture

ABOUT THE MODULARITY PATTERNS

Module frameworks are gaining traction on the Java platform. Though
modularity isn’t a new concept, it promises to change the way we
develop software applications. You’ll only be able to realize the benefits
of modularity if you understand how to design more modular software
systems.

The modularity patterns lay the foundation necessary to incorporate
modular design thinking into your development initiatives. No module
framework is necessary to use these patterns, and you already have many
of the tools you need to design modular software. This refcard provides a
quick reference to the 18 modularity patterns discussed in the book Java
Application Architecture: Modularity Patterns with Examples Using OSGi.

The modularity patterns are not specific to the Java platform. They can
be applied on any platform by treating the unit of release and deployment
as the module. Each pattern, except for base patterns, includes a diagram
description, and implementation guidance.

Base Patterns: Fundamental modular design concepts upon which several
other patterns exist.

Dependency Patterns: Used to help you manage dependencies between
modules.

Usability Patterns: Used to help you design modules that are easy to use.

Extensibility Patterns: Used to help you design flexible modules that you
can extend with new functionality.

Utility Patterns: Used as tools to aid modular development.

Logical vs. Modular Design
Almost all well-known principles and patterns that aid software design
address logical design. Identifying the methods of a class, relationships
between classes, and the system package structure are all logical design
issues. The vast majority of development teams spend their time dealing
with logical design issues. A flexible logical design eases maintenance and
increases extensibility.

Logical design is just one piece of the software design and architecture
challenge, however. The other is modular design, which focuses on
the physical entities and the relationships between them. Identifying
the entities containing your logical design constructs and managing
dependencies between the units of deployment are examples of modular
design. Without modular design, you may not realize the benefits you
expect from your logical design. The modularity patterns help you:

•	 Design software that is extensible, reusable, maintainable, and
adaptable.

•	 Design modular software today, in anticipation of future platform
support for modularity.

•	 Break large software systems into a flexible composite of
collaborating modules.

•	 Understand where to place your architectural focus

•	 Migrate large-scale monolithic applications to applications with
a modular architecture.

The Two Facets of Modularity
There are two facets of modularity.

The runtime model focuses on how to manage software systems at
runtime. A module system, such as OSGi, is required to take advantage of
the runtime model.

The development model deals with how developers create modular
software. The development model can be broken down into two sub-
categories. The programming model is how you interact with a module
framework to take advantage of the runtime benefits of modularity. The
design paradigm is the set of patterns you apply to design great modules.

A module framework gives you runtime support and a programming
model for modularity. But a module framework won’t help you design
great software modules. The patterns in this refcard address the design
paradigm and help you design modular software.

Module Defined
A software module is a deployable, manageable, natively reusable,
composable, stateless unit of software that provides a concise interface
to consumers. On the Java platform, a module is a JAR file, as depicted in
the diagram. The patterns in this refcard help you design modular software
and realize the benefits of modularity.

CONTENTS INCLUDE:

❱ Base Patterns

❱ Dependency Patterns

❱ Usability Patterns

❱ Extensibility Patterns

❱ Utility Patterns

❱ Hot Tips... and More!

http://www.dzone.com
http://www.refcardz.com
http://answerhub.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

2 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

BASE PATTERNS

The base patterns are the fundamental elements upon which the other
patterns exist. They establish the conscientious thought process that
goes into designing systems with a modular architecture. They focus on
modules as the unit of reuse, dependency management, and cohesion.

Manage Relationships
Design module relationships.

Description
A relationship between two modules exists when a class within one module
imports at least a single class within another module. In other words:

Hot
Tip

If changing the contents of a module, M2, may impact the contents
of another module, M1, we can say that M1 has a physical
dependency on M2.

Excessive dependencies will make your modules more difficult to maintain,
reuse, and test.

Implementation Guidance
•	 Avoid modules with excessive incoming and outgoing

dependencies.

•	 Modules with many incoming dependencies should be stable.
That is, they should change infrequently

•	 Use module dependencies as a system of checks and balances.
For instance, enforce relationships between software layers using
modularity (see Physical Layers).

Module Reuse
Emphasize reusability at the module level.

Description
An oft-cited benefit of object-oriented development is reuse. Unfortunately,
objects (or classes) are not an adequate reuse construct. The Reuse
Release Equivalence Principle explains why.

Hot
Tip

The unit of reuse is the unit of release.

Modules are a unit of release and are, therefore, an excellent candidate as
the unit of reuse.

Implementation Guidance
•	 Separate horizontal modules (those that span business domains)

from vertical modules (those specific to a business domain).

•	 Module granularity and weight play a significant role in reuse.
Carefully consider each.

•	 Fine-grained modules with external configuration come with a
higher likelihood of reuse. But beware, these modules may be
more difficult to use.

Cohesive Modules
Module behavior should serve a singular purpose.

Description
Cohesion is a measure of how closely related and focused the various
responsibilities of a module are. Modules that lack cohesion are more
difficult to maintain.

Implementation Guidance
•	 Pay careful attention to how you allocate classes to their

respective modules.

•	 Classes changing at the same rate and typically reused together
belong in the same module.

•	 Classes changing at different rates and typically not reused
together belong in separate modules.

DEPENDENCY PATTERNS

The dependency patterns focus on managing the relationships between
modules. They provide guidance on managing coupling that increase the
likelihood of module reuse.

Acyclic Relationships
Module relationships must be acyclic.

Description
Cyclic relationships complicate the module structure. Apply the following
rule to identify cyclic relationships.

Hot
Tip

If beginning with module A, you can follow the dependency
relationships between the set of modules that A is directly or
indirectly dependent upon and you find any dependency on module
A within that set, then a cyclic dependency exists between your
module structure.

You should avoid cyclic dependencies.

Implementation Guidance
•	 Escalation breaks cycles by moving the cause of the cyclic

dependency to a managing module at a higher level.

•	 Demotion breaks cycles by moving the cause of the cyclic
dependency to a lower-level module.

•	 Callbacks break a cycle by defining an abstraction that is injected
into the dependent module. This implementation resembles the
Observer [GOF] pattern.

Levelize Modules
Module relationships should be levelized.

Description
Levelization is similar to layering, but is a finer-grained way to manage
acyclic relationships between modules. With levelization, a single layer may
contain multiple module levels. To levelize modules, do the following:

Assign external modules level 0. Modules dependent only on level 0
modules are assigned level 1. Modules dependent on level 1 are assigned
level 2. Modules dependent on level n are assigned level n + 1.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

Implementation Guidance
•	 Levels are more granular than the layers in your system. Use

levels to manage relationships within layers.

•	 Levelization demands module relationships be acyclic. You
cannot levelize a module structure with cycles.

•	 A strict levelization scheme, where modules are dependent
only on the level directly beneath it, is conceptually ideal but
pragmatically difficult.

Physical Layers
Module relationships should not violate the conceptual layers.

Description
Layering a system helps ease maintenance and testability of the
application. Common layers include presentation (i.e., user interface),
domain (i.e., business), and data access. Any conceptually layered software
system can be broken down into modules that correspond to these
conceptual layers. Physical layers helps increase reusability because each
layer is a deployable unit.

Implementation Guidance
•	 Begin by creating a single coarse-grained module for each layer.

•	 Enforce the layers using Levelize Build.

•	 Break out each layer into more cohesive modules and use
Levelize Modules to understand and manage the relationships
within the layer.

•	 It’s fine if modules within a layer have relationships between
them. These modules will be at different levels.

Container Independence
Modules should be independent of the runtime container.

Description
Heavyweight modules are dependent upon a specific runtime environment
and are difficult to reuse across contexts. Environmental dependencies also
negatively affect your ability to test modules. Modules independent of the
runtime container are more likely reused, and are more easily maintained
and testable.

Implementation Guidance
•	 Avoid importing container-dependent packages in your module’s

code.

•	 Use External Configuration to configure a module so that it can
operate in different runtime environments.

•	 Use dependency injection to abstract container dependencies.

Independent Deployment
Modules should be independently deployable units.

Description
The less outgoing dependencies a module has, the easier the module
is to reuse. A module with no outgoing dependencies is independently
deployable and can be reused without the worry of identifying which
additional modules might be necessary. Lower-level modules inherently
have fewer outgoing dependencies and increase the opportunity for reuse.

Implementation Guidance
•	 Not all modules can be independently deployable. Some module

dependencies are always necessary.

•	 In addition to reducing outgoing dependencies, container
dependencies must also be minimized for those modules that are
independently deployable.

•	 Highly cohesive modules are easier to make independently
deployable units.

USABILITY PATTERNS

We want modules that other developers find easy to interact with. The
usability patterns help design modules that are easy to understand and
use.

Published Interface
Make a module’s published interface well known.

Description
Modules should encapsulate implementation details so that other modules
don’t need to understand the implementation to use the module. A
module’s published interface exposes the capabilities you want to make
available to other developers.

Hot
Tip

A published interface consists of the public methods within the
public classes within the “exported” packages that other modules
are able to invoke.

In standard Java, there is no way to explicitly state which packages a
module exports, so it’s difficult to enforce a published interface. Module
frameworks, such as OSGi, shine in this situation.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

Implementation Guidance
•	 In standard Java, document the published interface you expect

other clients to invoke.

•	 In standard Java, expose the published interface via abstractions
and discourage other developers from using the concrete
classes.

•	 Module frameworks, such as OSGi, allow you to export packages
and allow you to more easily enforce a published interface.

External Configuration
Modules should be externally configurable.

Description
Module initialization typically requires configuring the module to its
environmental context. Externalizing the configuration decreases context
dependencies and allows you to use the module across a wider array of
environments. External configuration increases a module’s reuse, but
makes it more difficult to use because developers must understand how to
configure the module.

Implementation Guidance
•	 Use External Configuration to eliminate a module’s environmental

dependencies.

•	 Include a configuration file within the module that defines a
default configuration, making the module easier to use.

•	 Remain cognizant of the tradeoff between increased reuse
and decreased usability. In other words, maximizing reuse
complicates use.	

Default Implementation
Provide modules with a default implementation.

Description
To maximize reuse, a module must be flexible enough so that it can
function in a variety of different operating environments. Yet, making a
module easier to use leads us to incorporate more functionality into a
module so developers are required to do less when using the module. A
default implementation with well-defined extension points helps address
this tension.

Implementation Guidance
•	 When defining a Default Implementation, depend upon the

abstract elements of a module (see Abstract Modules or Separate
Abstractions).

•	 Include a default configuration in the module, but make the
module externally configurable, as well.

•	 Always create a Test Module to test the default implementation.

Module Façade
Create a façade serving as a coarse-grained entry point to another fine-
grained module’s underlying implementation.

Description
Fine-grained and lightweight modules are inherently more reusable.
But fine-grained modules are also typically dependent on several other
modules. A Module Façade defines a higher level API that coordinates the
work of a set of fine-grained modules. The façade emphasizes ease of use
while the finer-grained modules emphasize reuse.

Implementation Guidance
•	 Don’t emphasize reuse of the façade. Use it to wire together and

configure multiple fine-grained modules.

•	 Place context and environmental dependencies in the façade.

•	 Use the façade as an entry point for your integration tests.

EXTENSIBILITY PATTERNS

We want software that is easy to extend without modifying the existing
codebase. We also want to deploy this new functionality without affecting
other areas of the system. The extensibility patterns help us achieve this
goal.

Abstract Modules
Depend upon the abstract elements of a module.

Description
Depending on the abstract elements of a module gives you greater
opportunities to extend the system by defining new modules with classes
that implement or extend the abstraction. Any clients of the module also
have the ability to define their own implementations and to plug them into
the module.

Implementation Guidance
•	 Use an Implementation Factory to create a module’s underlying

implementation.

•	 Use Abstract Modules when you have many incoming module
dependencies and you want the flexibility to swap out underlying
implementations.

•	 Strive to make the abstraction within a module as stable as
possible. That is, avoid changes since it will have many many
other modules that are dependent upon it.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

Implementation Factory
Use factories to create a module’s implementation classes.

Description
Any module whose classes depend upon the abstract elements of another
module should avoid referencing any implementation classes. Doing so
will compromise your module design. Consider the following rule.

Hot
Tip

If a class depending on an abstraction must be changed in order to
instantiate a new implementation of the abstraction, the design is
flawed.

Furthermore, if a module must be changed to accommodate the
instantiation, the module design is compromised.

Implementation Guidance

•	 The factory must be separated from the module containing the
class instances it creates as well as the module dependent upon
the abstractions.

•	 Externalize the creation of a module’s implementation to a
configuration file.

•	 Consider using a dependency injection framework like Spring,
OSGi Blueprint, or OSGi Declarative Services. These will serve as
your factory to wire together the appropriate implementations at
runtime.

Separate Abstractions
Place abstractions and the classes that implement them in separate
modules.

Description
Separating abstractions from their implementation offers the greatest
flexibility to provide new implementations that completely replace existing
implementations. With Separate Abstractions, you can define new behavior
and plug it into your system without affecting existing system modules.
Separate Abstractions can be used to develop a plug-in architecture. As a
general guideline, apply the following rule.

Hot
Tip

Keep the abstraction closer to the classes that depend upon it and
further from the classes that extend or implement it.

Implementation Guidance

•	 If all classes that depend upon an abstraction live in a single
module, then place the classes and the abstraction in the same
module.

•	 If the classes dependent upon an abstraction live in separate
modules, place the abstraction in a module separate from the
classes that depend upon it.

•	 Separating abstractions lends the ultimate flexibility to extend
your system, but also increases its complexity.

UTILITY PATTERNS

The utility patterns are additional tools and techniques that aid modular
development. They help you enforce your modular design and ensure
quality.

Colocate Exceptions
Exceptions should be close to the class or interface that throws them.

Description
Allocation of exceptions to modules has implications on module
dependencies. Putting exceptions close to the classes that catch them
creates a dependency from the module that throws the exception to
the module containing the exception. Because invoking a method can
introduce a module dependency, exceptions should be in the same module
as the class containing the method that throws the exception.

Implementation Guidance
•	 Throw the exception on the interface or abstract class you’re

bound to and place the exception in the same module as the
interface or abstract class.

•	 If abstractions across several modules throw the same exception,
demote the exception to a completely separate module at a lower
level.

Levelize Build
Execute the build in accordance with module levelization.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Patterns of Modular Architecture

Version 1.0

$7
.9

5

RECOMMENDED BOOKABOUT THE AUTHOR

Description

Enforcing module relationships is difficult. Though conceptually you may
believe you have an acyclic module structure and fully comprehend the
module relationships, a single build target with everything on the classpath
allows undesirable cycles and dependencies to creep in. A levelized build
helps you enforce your module dependencies. Any dependencies that
violate your defined module structure will result in a build failure.

Implementation Guidance
•	 Avoid a full classpath build, where all classes are built using a

single compile target.

•	 Define separate build targets for modules in different levels. Level
1 modules can be built with only external level 0 modules. At
higher levels, include only the modules from lower levels that are
required for a successful build.

•	 Defining new module dependencies will require modifying the
build for that module. This is not necessarily undesirable.

Test Module
Each module should have a corresponding test module.

Description

Test modules contain all of the tests for the classes in a specific module.
They allow you to test a module’s underlying implementation. A Test
Module may contain unit tests that test a module’s classes, as well as
integration tests that test the entire module’s functionality.

Implementation Guidance
•	 Depending on Abstract Modules makes it easier to define mocks

and stubs for testing a module independently.

•	 For larger test suites, or situations where performance is
paramount, separate different types of tests (i.e., unit tests,
integration tests, performance tests, etc.) out into separate test
modules.

•	 Ideally, you’ll only include the test module and the module under
test in the classpath when executing the tests. Pragmatically,
some modules may require other dependent modules.

Kirk is a software developer with a passion for building
great software. He takes a keen interest in design,
architecture, application development platforms, agile
development, and the IT industry in general, especially
as it relates to software development. His recent book,
“Java Application Architecture: Modularity Patterns
with Examples Using OSGi” was published in 2012 and
presents 18 patterns that help you design modular
software systems.

This isn’t the first book on Java application
architecture. No doubt it won’t be the last. But rest
assured, this title is different. The way we develop
Java applications is about to change, and this title
explores the new way of Java application architecture.

		 BUY HERE

HTTP
MongoDB
Cypher
Apache HTTPD

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://modularity.kirkk.com/
http://modularity.kirkk.com/
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

