
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 7,20 1-23 1 ( 1989) 

The SDEF Programming System 

BRADLEY R. ENGSTROM AND PETER R. CAPPELLO* 

Department of Computer Science, University of Calijomia, Santa Barbara, Cahfomia 93106 

Received August 20, 1987 

SDEF, a systolic array programming system, is presented. It is intended to provide 
( 1) systolic algorithm researchers/developers with an executable notation, and (2) 
the software systems community with a target notation for the development of higher- 
level systolic software tools. The design issues associated with such a programming 
system are identified. A spacetime representation of systolic computations is de- 
scribed briefly in order to motivate SDEF’s program notation. The programming 
system treats a special class of systolic computations, called atomic systolic computa- 
tions, any one of which can be specified as a set of properties: the computation’s ( 1) 
index set (S), (2) domain dependencies (D), (3) spacetime embedding (E), and 
nodal function ( F) . These properties are defined and illustrated. SDEF’s user inter- 
face is presented. It comprises an editor, a translator, a domain type database, and a 
systolic array simulator used to test SDEF programs. The system currently runs on a 
Sun 3/50 operating under Unix and Xwindows. Key design choices affecting this 
implementation are described. SDEF is designed for portability. The problem of port- 
ing it to a Transputer array is discussed. 0 1989 Academic press, Inc. 

1. INTRODUCTION 

1.1. Systolic Arrays 

Systolic Arrays were first reported by Kung and Leiserson [ 171. As origi- 
nally conceived, systolic arrays are special-purpose peripheral processor ar- 
rays implemented with VLSI technology. Such arrays use only a small num- 
ber of processor types and have regular, nearest-neighbor interconnection 
patterns. These characteristics reduce the cost of both their design and their 
operation. Kung and Leiserson point out [ 17 1, 

The important feature common to all of our algorithms is that their data flows are very 
simple and regular, and they are pipeline algorithms. 

* This work was supported by the Office of Naval Research under Contracts NOOO14-84-K- 
0664 and NOOOl4-85-K-0553. 
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1.2. Programmable Systolic Arrays 
While research concerning special-purpose systolic arrays is still ongoing, 

the view of systolic arrays has broadened to include arrays of general-purpose 
processors. These arrays, which share the regular interconnection structure 
of their special-purpose counterparts, are programmable. Examples of gen- 
eral-purpose systolic arrays include the Transputer, ’ the Warp [ 21, and the 
Matrix- 1 [ 121. General-purpose systolic arrays have spurred development 
of systolic programming languages. Relative to algorithmic and hardware 
development, work on tools for systolic software development is just begin- 
ning. An explanation for this is given by Snyder [ 291. 

Because systolic algorithms are commonly thought of as being directly implemented 
as hardware arrays, writing systolic programs would appear to be an activity without 
need for a programming environment. But the appearance is deceiving. There are 
many times when one indeed does program systolic algorithms: when the systolic array 
is programmable, during the design process (for simulation purposes) of hard-wired 
array implementations, when a systolic algorithm is used on a general purpose parallel 
computer, or when one is engaged in research on systolic algorithms. 

Many efforts are being made to meet the need for systolic programming 
environments. Occam is a concurrent programming language based on 
Hoare’s model of communicating sequential processes. Occam produces 
code for Transputer arrays, also developed by INMOS. A Transputer is a 
general-purpose processor which may be connected to up to four other 
Transputers using on-chip data links. At Carnegie-Mellon University, the 
Warp project has developed a language, W2 [ 31, and its compiler and run- 
time system in support of a high-speed programmable systolic array. W2 is 
syntactically similar to Pascal but also provides interprocessor communica- 
tion primitives based on message passing. Poker [ 281 uses several program 
abstractions that unify parallel programming. The Poker environment has 
been targeted to ( 1) the Chip [ 141, (2) hypercubes [ 301, and (3) systolic 
arrays (Hearts [ 291). Hearts, a specialization of the Poker programming en- 
vironment, integrates the process of specifying, compiling, loading, and trac- 
ing systolic computations. Occam, W2, and Poker are significant achieve- 
ments in systolic array programming. These systems are intended to facilitate 
the production of executable software for hardware arrays: they must provide 
a usable programming environment. Designers of such systems must attend 
to such issues as the operating system and user interfaces, and the interpro- 
cessor communication protocol. 

1.3. The SDEF System 
The SDEF system constitutes a programming environment for describing 

systolic algorithms. It includes a notation for expressing systolic algorithms, a 
translator for the notation, and a systolic array simulator with trace facilities. 

’ Transputer and Occam are trademarks of INMOS, Ltd. 
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The translator generates a C program that performs the computation spec- 
ified by the SDEF description. After being compiled, this C program can be 
run on the SDEF systolic array simulator. Figure 1 shows the overall struc- 
ture of the SDEF environment. 

An SDEF program specifies both the computation and the communica- 
tion requirements of a systolic algorithm. The SDEF program also specifies 
how the systolic algorithm is to be “embedded” in spacetime [ 5 1. This ap- 
proach differs from that used by Occam, W2, and Hearts. These differences 
are examined in Section 2. The goals of the SDEF system are to: 

l Increase the productivity of systolic algorithm researchers. SDEF pro- 
vides a notation for systolic computations that is precise and executable. Al- 
gorithms can be communicated succinctly in a form that is suitable for inde- 
pendent testing and use by others. 

l Increase the productivity of systolic algorithm developers. Data com- 
munication ( 1) between array processors, and (2) between peripheral pro- 
cessors and the file system is described implicitly in an SDEF program. The 
SDEF translator (and not the user) creates a C program wherein all data 
communication is made explicit. 

Reliability is enhanced because parts of SDEF programs are reusable, 
and because SDEF provides extensive trace facilities for testing algorithm 
descriptions. 

SDEF Trandator I 

C Program 9 

FIG. 1. Overall structure of SDEF system. 
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l Support work by others on very high level systolic languages. The 
SDEF notation is not intended to be the ultimate systolic programming lan- 
guage. Higher-level languages are contemplated. Indeed, some are under de- 
velopment. Chen’s Crystal [ 71, a general framework for synthesizing parallel 
systems, can be specialized to systolic processing [6]. Delosme and Ipsen 
have started work on a system for producing optimal spacetime embedding 
of affine recurrence equations [ 81. The mapping of a systolic computation 
onto an undersized array has been addressed, for example, by Fortes and 
Moldovan [ 11, 221 and Navarro et al. [25]. Much research into tools for 
analyzing [ 4,2 1,26, 5,24,27, 7, 1 ] systolic algorithms, as well as synthesiz- 
ing [ 2 1,5,6,27, 131 and optimizing [ 201 them, has been conducted. SDEF 
does not subsume these tools. Where automated, such tools can be connected 
to SDEF’s front-end: SDEF can be used to express the results of the analyses, 
syntheses, and optimizations performed by other tools. 

2. ISSUESINSYSTOLICCOMPUTATIONSPECIFICATION 

2.1. Systolic Array Programming 

Before discussing the general issues of systolic programming, we examine 
the methods for programming systolic arrays provided by W2 and Hearts. 
Since W2 is different from Hearts, and both are different from SDEF, they 
provide a good basis for comparison. 

2.1.1. w2 

The language W2 was developed to program the Warp processor array. 
The user views the Warp system as a linear array of identical processors 
which can communicate with their left and right neighbors. Communication 
is based on message passing. The receive primitive has four parameters: ( 1) 
the direction from which the data are to be read; (2) the name of the channel; 
( 3) the variable to which the data are to be assigned; and (4) the name of an 
external variable from which to obtain the data, if the receive is performed 
by a peripheral processor. Communication is explicit: It is the programmer’s 
responsibility to ensure that data flow correctly, and that sends match re- 
ceives. Explicit communication is widely used in parallel programming sys- 
tems. A well-known example is the send and receive primitives of Hoare’s 
CSP language. 

2.1.2. Hearts 

Hearts is a derivative of the Poker programming environment. Hearts pro- 
vides an integrated set of tools to create, run, trace, and debug systolic pro- 
grams. The Hearts environment provides graphical metaphors to simplify 
programming. Creating a Hearts program is a five-step process: 
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1. Create the communication structure. The programmer requests a 
one- or two-dimensional array of processors. Then, using the mouse and 
keyboard, the programmer “draws” the communication links between pro- 
cessors, thus specifying the communication graph of the systolic array. Since 
the interconnection structure for systolic arrays is usually regular, commands 
are available for specifying an iterative structure. 

2. Write the nodalfunctions. Using a text editor, the programmer writes 
the sequential code that will run on each processor. The language used incor- 
porates primitives to read and write data to a port (a named communication 
path). There may be more than one nodal function. 

3. Assign processes to processors. After writing one or more nodal func- 
tions each processor is assigned the function it is to execute. Any actual pa- 
rameters to the nodal function are entered at this time. 

4. Assign port names to communication links. Communication links 
between processors are defined in the first step. In order to refer to them in 
the nodal code, each link is given a name, known as the port name. 

5. Assign stream names. Input and output at the periphery of the array 
require data to be read or written to files. A stream name associates file names 
with input and output ports. It also specifies the index of data within the file 
that is to be associated with each port. Record boundaries can be located 
because data item sizes must be fixed. 

Both W2 and Hearts use explicit commands to pass messages. In Hearts, 
a graphical tool is used to specify the communication structure and size of 
the array. Since the Warp has a fixed architecture, this kind of tool is not 
needed in the Warp environment. Hearts obtains external data from the un- 
derlying Unix file system; W2 uses a shared memory paradigm to access data 
on the host computer. 

The differences in these two systems stem from differences in their goals. 
The W2 project is working to create a very high speed parallel processing 
engine. The intent of the Hearts project is to provide a programming envi- 
ronment that facilitates the creation of systolic programs. 

2.2. Higher-Level Notation 

Hearts and W2 are examples of message-based programming: sends and 
receives are used to pass messages. It is the programmer’s responsibility to 
coordinate processes so that sends and receives match. This method is simple 
to understand, in principle, because the program mirrors the underlying op- 
erational mechanisms. It also tends to result in efficient code. Message-based 
programming however can be error prone, especially when the communica- 
tion pattern is complex. Systolic algorithms and applications are becoming 
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increasingly complex. A higher-level notation for programming systolic ar- 
rays is needed to help programmers cope with this increased complexity. 

2.3. Systolic Programming Issues 

Many of the issues in systolic programming have analogs in sequential 
programming. The complexity of parallel programming increases the impor- 
tance of some of these issues, such as program reusability. This section, 
though not exhaustive, examines some of the important issues in the design 
of a systolic programming environment: 

l Interface Issues 

Operating system. The systolic programming system should provide the 
array programmer with a natural interface to the operating system ofthe host 
computer. 

External I/O. Usually in a systolic array, only the peripheral processors 
access the host or external I/O devices. This complicates the programmed 
communication of data and program to, and from, the systolic array. The 
programming system must enable the user to handle gracefully this con- 
straint on external communication. The environment should help the user 
to ensure that data are ordered and formatted correctly. 

l Program Issues 

The reason for creating a programming environment is to make pro- 
gramming simpler (hence more reliable) and faster. 

Creation/modification. Specialized tools are needed to create and mod- 
ify programs. Programming systems, such as Poker, that provide a complete 
set of tools are essential. 

Error detection. The systolic programming system should be designed 
to detect as many program errors as possible, as soon as they are committed. 

Testing. As systolic programs become more complex, the need for high- 
level testing and evaluation tools increases. A systolic programming environ- 
ment should provide specialized facilities for tracing and debugging systolic 
array programs. 

Reusability. Distinct systolic programs often have one or more compo- 
nents in common, such as their communication pattern. In order to increase 
programmer productivity, the programming language should provide for the 
reuse of common program components. 

Eficiency. In systolic systems, just as in conventional systems, there is 
usually a trade-off between speed and ease of use. High-level systolic lan- 
guages typically incur more overhead than low-level languages. It is however 
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generally accepted that the advantages of high-level languages justify their 
cost, except in extremely time-critical applications. 

3. SPACETIME REPRESENTATIONS 

Programming in SDEF is based on a spacetime representation of systolic 
computations [ 5,221. This section briefly introduces this idea. 

3. I. Spacetime Representation of Systolic Computations 

The following code fragment computes a matrix-vector product, y = Ax, 
for a 3 X 3 array A, and vectors y and x. 

for i = 1 to 3 do 
y[ i] = 0; 
forj = 1 to3do 

y[i] = y[i] + A[i,j]*x[j]; /* inner product step */ 
end 

end 

If we “unravel” the for loops we can represent the computation with respect 
to data usage. Such a diagram, for the above code, is given in Fig. 2. The 
figure depicts the data dependence of each inner product step (IPS). There is 
one IPS process for each entry in the A matrix. It is convenient to associate 
each process with its corresponding A element index, which we refer to as its 
process index. 

We can create another representation of matrix-vector product by using 
a spacetime diagram. Similar to Fig. 2, this diagram depicts the data depen- 
dence (between inner product processes) in space and time. A spacetime 

t 
Xs-- -423 0 

t 
X2-- A22 0 

t XI-- A21 0 
d 2 

t 
X3-c Aas 0 

t 
X2 A32 -0 

t 
Xl-- A31 0 

J 3 

FIG. 2. Data usage in matrix-vector product. 
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diagram of matrix-vector product is shown in Fig. 3. We refer to this as 
the initial design for matrix-vector product. In this design, there are three 
processors and three time cycles. The value for yi is computed in cycle i. The 
diagram indicates that the three processes associated with a y component are 
all performed during the same cycle. In fact, process( i, 1) must complete 
before process( i, 2) starts, which in turn must complete before process( i, 3) 
starts. In this design, which would never be used, the time/cycle thus de- 
pends on the size of the matrix. Processor P, starts with an initial value of 0 
for yi, then executes the IPS function (i.e., the inner product step) using the 
values for x1 and Ai, that it received. The result, the new value Of yi, is passed 
to P2. The final value Of yi is output by P3. 

The position of each node in spacetime (its process index) indicates where 
and when an IPS process takes place. The representation also shows what, 
where, and when data are needed. 

One design for a computation can be transformed into another by apply- 
ing a linear transformation to the indices of each process. The initial design 
for matrix-vector product, for example, can be transformed to the Kung and 
Leiserson [ 17 ] design by the linear transformation 

(-: :)(J=(E)* 
A spacetime representation of the Kung and Leiserson (KL) design is de- 
picted in Fig. 4. 

3.2. Spatial Projection 

If we project the process graph (embedded in spacetime) onto the spatial 
subspace (which in this case is a single axis), we obtain the spatial character- 

1 
1 2 3 -Time 

FIG. 3. Spacetime representation of matrix-vector product. 
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p5 2 

p4 1 

; 

s 0 

Pa -1 

PI -2 

I 0 1 2 3 4 5 6 7 3 -Time 

FIG. 4. Spacetime diagram of Kung and Leiserson design, extended to show all data move- 
ment. 

istics of the computation. The set of inner product processes, called the index 
set, in the IU design projects onto a set of five processors (i.e., five points in 
space). The number of nodes that map to a processor is the number of IPS 
computations that the processor must perform. The data dependences, 
shown as arcs, map to the physical array, indicating the direction that data 
must flow through the array. For example, the projection of the y data depen- 
dence indicates that y values must move upward. Additionally, each proces- 
sor must have access to the elements of the A array that it uses during its IPS 
computations. Processor P2 must have access to AZ, and As2. 

3.3. Temporal Projection 

By projecting the process graph onto the temporal axis, we obtain the cycle 
in which each process is executed. The first IPS process cycle (i.e., the node 
in the process graph with the smallest time index) occurs in processor Ps. 
The IPS function requires an x component, a y component, and an element 
of A. The x and y values must be passed to this center processor by its imme- 
diate neighbors. By extending the data arcs in spacetime, we create a schedule 
for data delivery from the peripheral processors. This is given in Fig. 4, which 
portrays what each processor must do at each cycle. As an example, the ac- 
tions prescribed for the first three cycles are given in Fig. 5. 

3.4. Transforming Computations 
A systolic algorithm is realized by linearly embedding a cellular process 

graph in spacetime. Different linear maps result in systolic designs with 
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C@C Actiond 

0 4 read the value for 21 and p=res it to Pd. 

PI reads the value for y‘ and purees it to Pz. 1 I I 
Pr read the value for 21 and passes it to Pa. 

Ps reads the value for y1 and passes it to Pa. 

2 8 reads zz and paesea it to Pd. 

PJ reads yl from Pa, reads ZI from P, and executes an IPS. 

The new ye is passed to P,, and ZI in paseed to Pa. 

PI readr ya and paeeee it to Pa. 

FIG. 5. Processor actions during cycles 0, 1, and 2. 

different sets of processor arrays, communication patterns, and relative com- 
munication rates. This mathematical mechanism is an important part of the 
SDEF programming system. 

4. SPECIFYING A SYSTOLIC COMPUTATION USING SDEF 

SDEF programs are based primarily on the spacetime representation in- 
troduced in Section 3. In this section, we introduce the four properties used 
in SDEF to describe a systolic computation. 

4.1. The Properties of an Atomic Systolic Computation 
SDEF treats a subset of systolic computations. This subset is the one 

treated in the work of [ 16,2 1,23,24 1. The computational fragments infor- 
mally correspond to computing uniform recurrence equations inside the 
nested index loops of a high-level language (e.g., “For” loops in Pascal). 
We refer to such a systolic computation as an atomic systolic computation. 
Contemporary systolic algorithms are more complex than this [ 271, but they 
can be decomposed into atomic components. The task of a contemporary 
systolic algorithm designer includes bonding atomic computations into a 
compound systolic computation. In this paper, we consider only the individ- 
ual atomic* components of a systolic computation. In the Conclusion, we 
briefly discuss enriching SDEF with a composition feature, which can be 
used to “bond” atomic systolic computations into a compound systolic com- 
putation. 

SDEF is based on the fact that an atomic systolic computation is character- 
ized by four properties: its S, D, E, and F properties. 

’ Unless stated otherwise, we hereafter only refer to atomic systolic computations, and omit 
the qualification “atomic.” 
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@@ 
0 191 

FIG. 6. Index set S, . 

4.1.1. The S Property: Its Index Set 

The index set of a systolic computation is the set of index values over 
which the computation is defined. These index values define the set of nodes 
that make up a spacetime representation of a computation as depicted in 
Section 3. It can be thought of, informally, as the indices for one or more 
arrays, whose elements need to be computed. Two such sets are S1 : 1 < i G j 
< 5, and &: 1 < i, j < 5. Figure 6 depicts the index set S, . SDEF treats a 
specific kind of index set: the set of integers in convex polyhedra. Such a set 
consists of the integer solutions to the convex polyhedron’s corresponding 
linear system Ax < b. This view includes all index sets that we have seen in 
practice. 

4.1.2. The D Property: Its Domain Dependences 

Informally, each array element is computed in terms of other array ele- 
ments. For most systolic algorithms, the computed value of an array element, 
a(p), depends on array elements whose indices are fixed offsets from p. Such 
dependences are referred to in the literature as uniform data dependences 
[ 16, 26, 271. Following geometric terminology, they may be called transla- 
tion domain 3 dependences. SDEF works with this type of dependence. Two 
sets of domain dependences are given below. 

’ The term “domain” acknowledges that these data form the domain of the function to be 
computed. 
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x:(-1,0) a:(O,O) 

1 

x:(-1,0) 

Y:(w) 
71 

y:(-1,-l) a:(O,-1) 

DI D2 

FIG. 7. Two data dependence sets. Arcs are directed toward the source of a process’s data. 

Figure 7 depicts these two dependence sets. Figure 8 depicts dependence set 
D, applied to the index set S,. By convention, the data arcs are directed 
tow&the process that uses the data. This is the opposite direction of domain 
dependence vectors, which point to the source of the data, not to the desti- 
nation. 

41.3. The E Property: Its Spacetime Embedding 

A process graph can be scheduled on an array of processors in many ways. 
One topic of systolic array research is concerned with linear embeddings of 
these process graphs into spacetime. Different systolic arrays in the literature 
often are just linear transformations of one another in spacetime [ 2 1,4,26, 
5, 27, 241. A guide to the literature concerned with such manipulations 
is given by Fortes et al. [lo]. Two examples of spacetime embeddings are 
given below. 

E,:(-: :)(;)=(gc;), G: (b i)c:)= (iii;). 
Figure 4 depicts a linear transformation of Fig. 3. 

FIG. 8. Dependence set D, applied to index set S, . 
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4. I A. The F Property: Its Process Function 

In an atomic systolic computation, all processes compute the same func- 
tion. The function’s domain can contain the process index. Apart from the 
process index, the function’s domain equals its codomain. We give below 
two different functions that have the same number of inputs and outputs. 

F, (input: x, y, a; output: x’, y’, a’) 
integer x, y, a; 
{x’tx;u’ta;y’cy+uXx,) 

F*(input: x, y, a; output: x’, y’, a’) 
char x, a; boolean y; 
{x’tx;u’cu;y’+yand(u==x);} 

The property values described above can be combined in a variety of ways. 
Five distinct designs based on these property values are given below. 

1. Upper Triangular Matrix-Vector Product: U = ( S1 , Dr , E, , F, ) . 
2. By changing the index space, we obtain a design for Full Matrix- 

Vector Product: A4 = (S,, D1, E, , FI ) .4 
3. By changing the domain dependences, we obtain a design for Polyno- 

mial Product (convolution) : C = (S,, D2, E, , F1 ) . 
4. By changing the function computed at each vertex, we obtain a de- 

sign for String Pattern Matching: S = ( Sz, D2, El , F2). 
5. By changing the spacetime embedding, we obtain a design for String 

Pattern Matching that is completely pipelined, operating on a hexagonally 
connected array: P = ( S2 , D2, E2, F2). 

As the above examples illustrate, systolic computations that are different 
may nonetheless share some properties. A good systolic programming envi- 
ronment should facilitate the reuse of previously established property values 
in the specification of a new systolic computation. Although the S, D, E, and 
F properties are largely independent, we note some weak interdependences: 

l The dimensions of the index space, dependence vectors, and embed- 
ding matrix all must agree. 

l The number of domains must be equal to the number of arguments 
to the nodal function. 

Distinct properties values thus can be readily substituted, resulting in dis- 
tinct computations. The S, D, and E properties are mathematical objects. 

4 This bidirectional linear systolic array for computing matrix-vector product was first re- 
ported by Kung et al. [ 171. 
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Specifically, let C be an atomic systolic computation of dimension d and of 
function arity a. If C’s index space is the set of integers inside an m-sided 
convex polygon, then its index space is characterized by a matrix S 
E Z mx(d+‘), where Z denotes the integers. Each of its a domain dependences 
is a vector di E Z d. If the dimension of spacetime into which C is being 
embedded is I(1 is typically 2 or 3 ), then its spacetime embedding is a matrix 
EEZ’~~. 

4.2. Specifving the Systolic Array 

SDEF’s target array is assumed to be a rectangular grid of orthogonally 
connected processors. The array’s size is specified as an ordered pair of inte- 
gers (x, y), indicating that there are xy processors, forming an x X y array. 
SDEF assumes that only peripheral processors have an I/O capability. The 
I/O capability of these processors is expressed in terms of read and write 
capabilities for each boundary of the array: left, right, top, and bottom. The 
capabilities that can be specified are: no capability, read only, write only, or 
read and write. An example specification follows. It specifies a rectangular 
array that can be used to perform a Schreiber design of matrix product for a 
5 X 5 matrix. 

Size Top 

(975) read 

Bottom 

none 

Left 

read, write 

Right 

read, write 

Array specification is unrelated to the specification of S, D, E, and F prop- 
erties: If a computation is targeted to a physical array, then the computation’s 
spatial projection (set of processors) cannot exceed the size of the physi- 
cal array. 

4.3. Spec$ying the Systolic Computation 

4.3.1. Specifving an S property 

SDEF accommodates any index set that is the set of integers inside a con- 
vex polyhedron. Such a set can be described as the integer solutions of a 
linear system Ax G b. To specify such an index set, a user first specifies the 
dimension of the computation (i.e., the number of independent indices). 
After doing so, the user can specify the A matrix and b vector that define the 
boundaries of the convex polyhedron. In SDEF, these linear constraints are 
referred to as global constraints. In addition, a user specifies orthohedral 
bounds. Orthohedral bounds specify lower and upper limits for an index (i.e., 
an axis). Below we give the portion of the SDE file that specifies the index 
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set S,, mentioned earlier in this section. This index set is used in Upper 
Triangular Matrix-Vector Product (in this case a 5 X 5 matrix). 

Dimension: 2 

Orthohedral bounds: 
Lower Upper 

1 
1 ; j 

Global constraints: 
-1 i+j-=O 

Orthohedral bounds are a programmer convenience. Since they can always 
be expressed as linear inequalities, they can be expressed as global con- 
straints. To obtain the index set S,, used for Full Matrix-Vector Product, 
one need only remove the global constraint from the specification above. 

4.3.2. Specijjying a D property 

An arc in a systolic computation’s cellular process graph represents a do- 
main dependence. Each array variable, referred to as a domain, has an asso- 
ciated domain dependence. The programmer must specify each domain’s 
dependence. The dependence set D, used in Full Matrix-Vector Product is 
specified as 

Domains: 
name: X type: int dependence: i( - 1 )j( 0) 
name: Y type: int dependence: i( O)j( - 1) 
name: A type: int dependence: i( O)j( 0) 

The domain dependence set D2, used in Polynomial Product, is like that for 
D1 except that the entry for domain A is 

name: A type: int dependence: i( - 1 )j( - 1) 

4.3.3. Specifying an E Property 

A computation’s spacetime embedding is specified as a matrix. The em- 
bedding map El used in the Kung and Leiserson Matrix-Vector Product, for 
example, is specified as 

Embedding: 1 1 

-1 1 
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43.4. Specifving an F Property 

Function code is written in an SDEF-extended version of C. The idea of 
building on top of an existing compiler for a sequential machine has also 
been used in the Poker programming environment [ 30 1. The C compiler is 
responsible for producing code for the target nodes, and for using their re- 
sources (e.g., registers, memory, and buffers) efficiently. 

During each “computation cycle,” the function code is invoked with its 
arguments. SDEF provides two extensions to C: ( 1) prime notation, and 
(2) compiler-generated declarations. Prime notation specifies the computed 
value of a domain. For example, the statement “Y’ = Y + X + 1;” means 
that the computed value of the domain Y is the argument value of Y plus the 
argument value of X plus 1. Since data locations for Y’ and Y are distinct, 
modification of one does not affect the other. The SDEF translator translates 
domain references to internal data locations. The information in these data 
locations is managed by code that is generated by the SDEF compiler. This 
code ensures that data are moved between data locations and processors in 
the manner implied by the spacetime embedding. Function code typically is 
only a small fraction of the program produced by the SDEF translator. 

For F, , mentioned earlier in this section, the user provides the following 
SDEF code. 

Fl(X, Y,A){Y’= Y+X*A;/*computeinnerproductstep*/} 

Variables Y’, Y, X, and A are not declared in the function code; the SDEF 
compiler inserts declarations for all domains. The type of each domain is 
specified when the domain is specified. In SDEF notation, a domain needs 
an explicit assignment statement only when it is modified by the function 
invocation. As another example, the user provides the following code for F2 
(the string pattern matching function). 

F2(X, Y, W){Y’= Y&&X= = W;} 

4.4. The SpeciJication Environment 

44.1. TheSDEFile 

Property specifications are partitioned into three files. The A property, the 
array’s physical characteristics, is specified in file A. The second file, the SDE 
file, contains the specification of a computation’s S, D, and E properties. 
It can be created using the SDE file editor. This editor performs error and 
consistency checking on the data entered. The third file, the F file, contains 
the extended C version of the function that executes on the array nodes. The 
function’s name is specified in the SDE file. 
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Another way to create A, SDE, and F files is for a higher-level translator 
to generate them. That is, these files are a data inter&e for higher-level trans- 
lators. Such a translator takes as input a higher-level specification (higher 
than that used by SDEF) of a computation, and produces one or more A, 
SDE, and F files. The SDEF translator is the back end of such a system. 

4.5. An Example Specification 
An SDEFprogrum for an atomic systolic computation is a specification of 

the computation’s S, D, E, and F property values, as well as a specification 
of a physical array. Figure 9 presents.the SDE, F, and A files for a Schreiber 
design 5 X 5 full matrix product. 

5. THE SDEF ENVIRONMENT 

The SDEF system facilitates creating and testing systolic algorithms. This 
section examines tools, other than the translator, used to create programs. 

Dimenrion: 3 

Orthohedral Bounds: 

lower upper 

1 6 i 

1 5 1 

1 6 k 

Donaine: 

name: A type: float dependence: i(-1) j( 0) k( 0) 

name: B type: float dependence: i( 0) j(-1) k( 0) 

name: C type: float dependence: i( 0) J( 0) kc-l) 

Function: name: IPB 

Embedding: 1 0 0 

111 

O-l 1 

F File 

IPB(A.B.C) (. C’ = C + A * B; 1 

A File 

SiZ.5 TOP Bottom Lefr Right 

(9.6) read none read, write read, write 

FIG. 9. The SDEF specification for Full Matrix Product. 
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These tools include support for user-defined domain types and input prepa- 
ration, and the SDEF simulator for testing programs. 

5.1. The SDEF Domain Type Database 

An important area in systolic array research is that of accessing external 
data. In W2, external data appear as elements of arrays in shared memory. 
In Hearts, data are kept in files composed of fixed-size records. By knowing 
the index of the data, one can access data with a simple file seek. 

SDEF supports user-defined data types and allows the user to determine 
the format of data in files. The SDEF system includes a domain type data- 
base, and tools for adding to, deleting from, and modifying the domain type 
database. 

For every domain type that can be used in the SDEF system, the domain 
type database contains ( 1) a header file that defines the type for use in C 
programs, and (2) a set of I/O routines for that type. C’s predefined types 
do not need a header file, and they have default I/O routines. The user how- 
ever is free to create new I / 0 routines for C’s predefined types. 

The type of each domain is specified in the SDE file. The SDEF translator 
includes the header file for each user-defined domain type in the C program 
it produces (producing an error diagnostic, if an undefined domain type is 
referenced). The translator also ensures that the correct I/O routine is in- 
voked whenever a domain is read or written. This applies only to external 
reads and writes; domains are communicated between processors as binary 
images. 

User-supplied I/O drivers have several advantages. The user decides how 
the input (and output) is to be formatted. Integers, for example, can be stored 
in files in decimal, hexadecimal, octal, or even binary images. Sometimes a 
processor reads data from a device where the format is predetermined. In 
this case, user-supplied read routines allow acceptance of arbitrary formats. 
The read and write routines for a type do not need to use the same format. 

5.2. Preparing Input Data 

In any systolic computation, the data for each domain are processed in a 
particular order. External data thus must be read in a particular order. Since 
SDEF allows arbitrary formatting of input data, it is not possible to “seek” a 
particular domain item. It therefore is the user’s responsibility to provide 
data, as required by the user’s SDEF program. The SDEF system however 
aids the programmer by providing domain order templates for each domain. 
Such templates convey the order ofdomain items by specifying the processor 
and cycle in which they are read. These files are computed by the translator, 
on the basis of the programmer’s specification of the index space and the 
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spacetime embedding. The domain order files can be used to ensure that 
either data in files are formatted correctly or data from a device are generated 
in the proper order. 

5.3. The SDEF Systolic Array Simulator 

SDEF’s output is targeted for an orthogonally connected array. The SDEF 
simulator provides a means of tracing and testing SDEF programs. It displays 
a window for each processor in the processor array described by the A file. 
The window shows the values of domains, and the communication activity 
for the processor. An example of trace windows during execution is shown 
in Fig. 10. Each window shows communication activity for the simulated 
processor. For example, a highlighted RO on the side of a window means that 
data for domain 0 are being read from a neighbor processor. The position of 
the RO shows the direction from which data are being read. If the data are 
being read from the edge of the array the name of the data file is shown as in 
the top left window in Fig. 10. The menu provides the ability to stop or start 
one or all of the processors. To affect the action of a single processor, the user 
first selects the processor by moving the mouse cursor over the processor’s 
window, and then presses the appropriate mouse button. All simulation con- 
trol functions are initiated with the mouse. 

main <2:0> IF=7 B: 
co 

aain <1:0> 

B: E’3 c 101 

main c2:2> 

Boo 

:r_lr 

co 

FIG. IO. SDEF trace windows during execution. 
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5.4. Running an SDEF Program 

Creating and running an SDEF program involves five steps: 

1. Create the SDE, F, and A files. These are the inputs to the SDEF 
translator. The SDE file is created using a specialized SDE editor; the F and 
A files are created using a text editor. 

2. Add new domain types to the database. If any domains in the SDE 
file have domain types that are not already in the database, then add these 
domain types to the database. This includes writing a C header file that de- 
fines the type, and writing I/O routines to read and write the objects of this 
type. An example header file and its read/write code are shown in Fig. 11. 

3. Run the SDEF translator. The SDEF translator produces ( 1) a C file 
for the SDEF program, (2) a boot file that contains processor schedules 
which are loaded at run-time, and (3) domain order files which convey the 
place and cycle that input data are to be read. The C program is compiled 
and linked with run-time support routines automatically, producing a pro- 
gram that executes on the SDEF simulator. 

4. Create the input data files. Using the domain order files created by 
the translator, the user creates files containing the actual data. The format of 
the data is determined by the I/O routines for the data type in the domain 
type database. The order of stream data types is determined by order of use 
during computation. Statics and initial register values are booted at run-time. 
Their order is determined by the shape of the processor array, as given in the 
A file. 

5. Test the program using the SDEF simulator. Running the program 
on the simulator allows the user to monitor the program interactively. The 
SDEF simulator automatically boots internal tables and control files. 

6. AN~MPLEMENTATIONOFTHE SDEF SYSTEM 

6.1. The Translator 

The SDEF translator takes the A, SDE, and F files as input and produces 
a C program to be run on the processors of the systolic array. 

The translator creates sequential code and control data, which, when exe- 
cuted, reproduce the communication and computation structures described 
by the SDEF program. In this section, we discuss some ofthe details of gener- 
ating such a program. 
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/*header for data type coord */ 

typedef struct coord-.trc< int a, b; ) coord; 

Data Type Read/Write Code 

#include <etdio.h> 

#include <dt.coord.h> 

/t read-coord: Thie function defines the input data format for objects of type 

coord. */ 

read-coord(fptr,dataptr) 

PILE *fptr; 

coord *dataptr; 

c return(fscaaf(fptr.“%d Xd”,&dataptr->a,Ldataptr->b)--2); 1 

/* write-coord: 

* This function defines the output format for object9 of type coord. */ 

write-coord(fptr,dataptr) 

FILE *fptr; 

coord *dataptr; 

i fprintf(fptr,“a-%d b=&l\n”,dataptr->a,dataptr->b); return(l); 1 

/* open-coord: Thin routine opens a file for the data type coord. */ 

FIU * open~coord(fname,mode) 

char *fname,*mode; 

c return(fopen(fnune,mode)) ; ) 

/* close-coord: This routine closee a file of the data type coord. */ 

close-coord(fptr) 

FILE *fptr; 

< return(fclose(fptr)); 1 

FIG. 11. Sample code for a user-defined domain data type. 

6.1.1. Communication Types 

The domain dependences together with the spacetime embedding deter- 
mine the pattern of communication for a computation. The index set deter- 
mines the size and shape of the process graph. Figure 12 depicts a process 
communication graph embedded in spacetime (whose spatial projection is 
a linear array of five processors). On the basis of the spacetime orientation 
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Space 

FIG. 12. A process graph embedded in spacetime whose spatial projection is a linear array of 
five processors. 

of its propagation, we classify four types of communication in spacetime. 
Information can propagate in: ( 1) time, but not space (memory); (2) space, 
but not time (broadcasting); ( 3) both space and time; (4) neither space nor 
time (information that is used at one point in spacetime). Type (2) is consid- 
ered to be incompatible with the paradigm of systolic computation. The 
three types of information propagation that are compatible with systolic 
computation are illustrated by the three domains (C, R, and S) shown in 
Fig. 12. 

We first discuss type ( 3 ) communication. This type of communication is 
called stream communication. In the example depicted by Fig. 12, values for 
the S domain propagate between processors from bottom to top, over time. 
In this example, I/O is confined to the processors on the ends of the array. 
All external input values for the S domain thus must be read by processor 
PI . External outputs likewise are written by Ps . Note that P3 is the first pro- 
cessor to perform a computation. Assuming that the nodal function needs 
all three domains, this processor must wait for an initial S value to be passed 
from P, . After a computation completes, results for domain S also need to 
be passed to Ps to be written externally. 

Type ( 1) communication, exemplified by domain R, is realized with a 
register. Registers are used to realize domain dependences that have no spa- 
tial dependence, only a temporal one. The translator detects this type of com- 
munication, generating the code to save and restore register values between 
invocations of the nodal function. 

Type (4) communication is called static “communication.” Domain A is 
of this type. In static communication, information propagates in neither 
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space nor time. Such a piece of information can be viewed as a constant 
embedded in spacetime. 

6.1.2. Processor Schedules 

A processor’s activity is partitioned into computation cycles. The process 
executed by a processor may change from one computation cycle to the next. 
The SDEF translator generates code which ensures that data arrive at the 
right place at the right time. To do this, the translator computes a schedule 
for each processor. This schedule specifies what the processor is to do during 
each computation cycle. For example, consider domain S in Fig. 12. It is used 
first by P3. Processor P3 however does not have access to disk. Processors P, 
and P2 thus must have, as part of their schedules, instructions to propagate 
the first S value to P3. 

The physical array may be larger than the spatial projection of the compu- 
tation (i.e., its set of processors). In this case, the translator generates code 
for processors outside the computation’s spatial projection, if they are used 
to propagate data from the boundary of the array to processors that partici- 
pate in the computation. No code is generated for processors that have nei- 
ther communication nor computation tasks. 

At present, the translator requires that the size of the physical array be at 
least as large as the spatial projection of the embedded computation. That is, 
the translator does not automatically solve the “partitioning” problem for 
the user. Several systematic mapping techniques that solve this problem are 
under consideration for inclusion into the SDEF system. In the meantime, 
extant research (see, e.g., [ 22, 23, 251) can be incorporated as a front-end 
to SDEF. 

In addition to data propagation, a schedule includes information about 
whether the data come from a neighbor or from an external source. It also 
indicates when a function invocation is to occur using the data obtained by 
the processor. When a function invocation occurs, the code generated by the 
translator ensures that the nodal function is passed the correct domain values 
for all types of domains: stream, register, and static. After the nodal function 
is invoked, the modified domains are propagated in spacetime as required 
by the user-specified spacetime embedding (E) . 

6.1.3. Translation Data Dependences 

The SDEF translator processes dependence vectors that are not simply 
single steps in time and space. A dependence can, for instance, specify that a 
domain value be communicated from a point 2 units away in space, and 3 
units away in time. SDEF assumes an architecture in which each processor 
can send messages only to its nearest neighbors. A dependence that requires 
a movement of 2 spatial units over a period of 3 time units is converted to a 
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sequence of physically realizable communications called simple moves. A 
simple move is one in which data move 0 or I unit in space in exactly 1 unit 
of time. Figure 13 depicts a spacetime embedding of a process graph, and 
the resulting embedding after the embedded domain dependences have been 
realized as simple moves. Each domain is propagated via a sequence of t 
stages, where t is the time component of its embedded domain dependence 
vector. In order to realize an embedded domain dependence as a sequence 
of simple moves, it is necessary and sufficient that C 5;’ Si 4 t, where the 
domain dependence, after embedding in a d-dimensional spacetime, is of 
the form (t s1 s2. . . sdel ) r, and where Si is a spatial component; t its time 
component. 

61.4. Processor Data 

As depicted in Fig. 12, values for the S domain must be read from external 
storage. Data for stream domains are read at run-time from edge processors. 
Data values for register and static domains are stored internally by each vir- 
tual processor. There are many ways that SDEF could have been designed 
to provide these values. This is especially problematical since, as in this ex- 
ample, all processors may not have external read/write capability. The trans- 
lator could have been designed to embed initial values for these domains in 
the generated code. In this case, the user would have had to retranslate the 
program to change the data. It also would have meant, given that SDEF 
generates a single program which runs on all processors, that all processors 
contain all initialization data, even though any single processor uses only a 

+Time 

FIG. 13. An embedding of dependences and its realization using simple moves. 
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fraction of these data. This approach thus entails an excessive amount of 
local memory and communication. To avoid these problems, SDEF pro- 
grams have an array initialization phase (i.e., boot phase) where tables, regis- 
ter values, and static values are loaded from external storage. Each processor 
therefore needs to store only its own register and static data. During array 
initialization, initial values are read, and passed to the appropriate processor. 
Users thus can modify a computation’s constants without retranslating. We 
believe that this design decision is compatible with our goal of increasing 
programmer productivity. 

6.2. Virtual Hardware 
6.2.1. Architecture and Capabilities 

The SDEF simulator provides diagnostic and control facilities. It simulates 
an array of processing elements which are not too architecturally powerful. 
Simulating processing elements that are extremely powerful would make the 
SDEF translator’s job too easy, and is unrealistic; most real systolic process- 
ing elements (e.g., the Transputer) have simple, but focused, communica- 
tion capabilities. The simulated systolic array is a grid of MIMD processors, 
each with up to four bidirectional communication channels. Some edge pro- 
cessors are able to read and write externally (i.e., to data files). Figure 14 
depicts some typical configurations that fit this model. 

The A file provides the translator with information regarding the size of 
the target processor array. Consider a systolic computation that maps to a 4 
X 4 physical array. If the size field of the A file specifies a 5 X 4 physical 
array, then the translator creates schedules for the extra processors, so that 
they propagate data to, and from, the processors that are actually involved 
in the computation (since it is assumed that only edge processors have access 
to external data). The A file also enables the translator to handle correctly 
situations where, for instance, the left side of the array can read data but 

ctDcK+o Linear Array 

Proceaaor Grid 

FIG. 14. Two typical processor and l/O device configurations. The circles in the figure repre- 
sent I/O devices; squares represent processors. 
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cannot write data. Similarly, the translator detects the case in which a space- 
time embedding of a computation is incompatible with the I/O capabilities 
of the physical array. 

Communication between processors is synchronous, one word per cycle, 
based on a message-passing protocol: if processor A sends a word to processor 
B, then A blocks until B receives the word; if B attempts to receive the word 
before A sends it, then B blocks until the word is sent. These processing ele- 
ment capabilities may seem too restrictive in light of current hardware proj- 
ects (e.g., the iWarp) that provide more powerful capabilities. Making our 
processing elements simple, however, eases the task of porting the SDEF 
system to real hardware, as it becomes available. 

62.2. UNIX Implementation 

The SDEF systolic array simulator uses UNIX processes to simulate pro- 
cessors. The C program produced by the SDEF translator is compiled and 
linked to a run-time library to produce an executable image. Although the 
same executable image is used for every UNIX process (virtual processor), 
each processor uses different data, and more importantly, different sched- 
ules. The use of UNIX process facilities means that all of the UNIX process 
control features, such as suspending and resuming processes, are available 
for use with the systolic array simulator. All simulator processes are part of 
a process group and thus can be manipulated as a whole. There is also a 
master process which handles input from the user and can start and stop 
virtual processors on command. The disadvantage of using UNIX processes 
is that there are a limited number of them. In the current implementation, 
the process limit is over 50. Since systolic algorithms scale, testing can be 
done on a small array. This UNIX limitation thus has not been too restric- 
tive. Interprocess communication is done using UNIX sockets. External data 
are read and written using UNIX files. Each simulator process has a window 
associated with it that displays internal data, and communication activity. 
Due to limited screen space, the largest array that currently can be displayed 
is a 6 X 6 grid. The use of display windows is optional; the simulator can be 
used without them. 

6.3. Portability 

Consider what is necessary to retarget the SDEF translator, and to port the 
run-time system, to an INMOS Transputer system. A Transputer system 
consists of a host computer connection to an array of processors. Each pro- 
cessor has four I/O channels that can be used to link them. The INMOS 
system provides a Transputer C compiler, and a library of routines used for 
I/O and inter-Transputer communication. The SDEF translator would run 
on the host computer, and does not need to be modified; all system-depen- 
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dent features are encapsulated in SDEF library routines. The code generated 
by the translator references routines in this interface library. 

To port SDEF to a Transputer environment, the SDEF run-time system 
needs to be modified in two places. First, the UNIX calls that spawn pro- 
cesses and establish connections between them are replaced by calls to the 
Transputer library routines providing these services. Second, the send and 
receive calls between processors are changed from UNIX socket calls to 
Transputer library calls. Figure 15 depicts the paths for creating programs 
for the SDEF simulator, and for a Transputer array. 

The SDEF system reduces the translator’s dependence on particular hard- 
ware capabilities by ( 1) using C as the target language for the translator, and 
(2) encapsulating hardware-specific code. These measures enhance SDEF’s 
portability. Although the translator is relatively hardware independent, the 
run-time system needs to be tailored to each implementation; the run-time 
system displays trace information and maintains the view of the array as an 
orthogonally connected mesh. 

7. CONCLUSIONS 

The SDEF programming system increases the productivity of systolic algo- 
rithm researchers. Having a mathematical basis, SDEF provides a notation 
for specifying atomic systolic computations that is succinct, precise, and exe- 

SDEF Translator 

I-. Object Code -1 

* ‘OdE, 
FIG. 15. One path is for the SDEF simulator; the other, for a Transputer system. 
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cutable. The comvnunication requirements are specified in terms of the 
algorithm’s index space (S), domain dependences (D), and spacetime em- 
bedding (E). Systolic algorithms that appear to be quite different (e.g., one 
operating on a linear array of processors, and another operating on a hexago- 
nally connected array) often differ only in their spacetime embedding (see, 
e.g., Cappello and Steiglitz [ 51). By simply modifying the E property, re- 
searchers thus can reuse much of a previously tested algorithm. Reuse ap- 
plies, as well, to the S, D, and F properties. This notation allows researchers 
to share their work for independent testing and to dissect and reuse parts of 
others’ work. 

The SDEF programming system increases the productivity of systolic algo- 
rithm developers. There are several reasons for this. In a programming lan- 
guage such as Occam or W2, communication constructs are mixed with the 
program’s computation constructs. In SDEF, the communication aspect of 
the array programming is done with a high-level declarative language (the 
S, D, and E properties). The communication is implied by the spacetime 
embedding, relieving the programmer of the task of issuing explicit send and 
receive commands within each processor’s program. This is perhaps the 
most significant conceptual difference between SDEF, and W2, Occam, or 
Hearts. As shown in Section 3, for example, one can change the communica- 
tion pattern, even the processor topology, by simply changing the embedding 
matrix. Compare this succinctness to systems in which communication is 
intermixed with the processor code. In such systems, changing the communi- 
cation pattern can cause changes in either the direction of data flow or the 
arrival order of data items. Such changes may require modification of the 
nodal code in one or more places, with each change introducing an opportu- 
nity for error. The reliability of an SDEF program’s communication is en- 
hanced both by its declarative expression as high-level properties and by the 
user’s ability to reuse previously tested property values. Indeed, the clean 
separation of communication programming from node computation pro- 
gramming enhances the reliability of both. 

Like W2 and Hearts, SDEF provides a set of specialized tools for creating 
and modifying systolic array programs. The SDEF translator provides high- 
level error detection. For example, it detects spacetime embeddings that can- 
not be executed due to I/O or size restrictions on the physical array. Users 
also are provided with a domain type database that is extensible. The transla- 
tor helps users to create domain input files that are consistent with the speci- 
fied index space and spacetime embedding. 

The SDEF systolic array simulator is built on top of UNIX’s process fea- 
tures, which are available to the user through the simulator. The simulator 
allows users to trace their systolic programs quickly and easily, inspecting 
their program’s actual communication and computation characteristics. 
Each simulated processor can be started or stopped as desired, allowing ob- 
servation of each I/O action and domain value. We may investigate using a 
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light-weight process system for our next-generation simulator because such 
systems may provide more speed and control. 

As with sequential languages there is a trade-off between ease of use (i.e., 
human productivity) and run-time efficiency. An SDEF program incurs 
more overhead than a carefully hand coded one. But SDEF provides a nota- 
tion that is hardware independent and compact, yet executable. Moreover, 
the SDEF notation can support work by others on very high level systolic 
programming systems. The S, D, E, and F properties constitute an interface, 
not only between a human user and the SDEF translator, but also between 
a higher-level system and the SDEF translator. There may be considerable 
advantage in doing so. For example, the SDEF translator creates the code 
to support external I/O from a declarative specification of the S, D, and E 
properties. A higher-level language thus need only provide these properties, 
avoiding much detailed and complicated I/O scheduling. In this way, SDEF 
facilitates further software tool development for systolic array programming. 
One such tool might be a spacetime embedding optimizer, such as has been 
investigated by Li and Wah [ 201. 

Future work is contemplated in two areas. First, the SDEF programming 
system is designed for portability. All hardware-dependent code is encapsu- 
lated into a small call library. The system is especially portable to a Trans- 
puter environment. Indeed, one reason that arrays in SDEF are orthogonally 
connected is to keep them compatible with the Transputer. The SDEF trans- 
lator generates C code, and there is a C compiler for the Transputer. The 
SDEF translator, consequently, does not need to be modified to port the 
SDEF run-time system to a Transputer array. 

Second, the programming system can be generalized with respect to the 
class of systolic computations that it treats. SDEF properties are to an atomic 
systolic computation as atomic systolic computations are to a compound 
systolic computation. They are valuable ways to package its reusable parts. 
Incorporating a composition capability thus is a natural enhancement to 
SDEF. Such a capability would permit atomic systolic computations to be 
bonded together and reshaped with spacetime embeddings that are appropri- 
ate to the context of a complex computation. 
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