
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 7,20 1-23 1 (1989)

The SDEF Programming System

BRADLEY R. ENGSTROM AND PETER R. CAPPELLO*

Department of Computer Science, University of Calijomia, Santa Barbara, Cahfomia 93106

Received August 20, 1987

SDEF, a systolic array programming system, is presented. It is intended to provide
(1) systolic algorithm researchers/developers with an executable notation, and (2)
the software systems community with a target notation for the development of higher-
level systolic software tools. The design issues associated with such a programming
system are identified. A spacetime representation of systolic computations is de-
scribed briefly in order to motivate SDEF’s program notation. The programming
system treats a special class of systolic computations, called atomic systolic computa-
tions, any one of which can be specified as a set of properties: the computation’s (1)
index set (S), (2) domain dependencies (D), (3) spacetime embedding (E), and
nodal function (F) . These properties are defined and illustrated. SDEF’s user inter-
face is presented. It comprises an editor, a translator, a domain type database, and a
systolic array simulator used to test SDEF programs. The system currently runs on a
Sun 3/50 operating under Unix and Xwindows. Key design choices affecting this
implementation are described. SDEF is designed for portability. The problem of port-
ing it to a Transputer array is discussed. 0 1989 Academic press, Inc.

1. INTRODUCTION

1.1. Systolic Arrays

Systolic Arrays were first reported by Kung and Leiserson [171. As origi-
nally conceived, systolic arrays are special-purpose peripheral processor ar-
rays implemented with VLSI technology. Such arrays use only a small num-
ber of processor types and have regular, nearest-neighbor interconnection
patterns. These characteristics reduce the cost of both their design and their
operation. Kung and Leiserson point out [17 1,

The important feature common to all of our algorithms is that their data flows are very
simple and regular, and they are pipeline algorithms.

* This work was supported by the Office of Naval Research under Contracts NOOO14-84-K-
0664 and NOOOl4-85-K-0553.

201
0743-73 15189 $3.00
Copyright Q 1989 by Academic PITS% Inc.
AU rig& of reproduction in any form -&.

202 ENGSTROM AND CAPPELLO

1.2. Programmable Systolic Arrays
While research concerning special-purpose systolic arrays is still ongoing,

the view of systolic arrays has broadened to include arrays of general-purpose
processors. These arrays, which share the regular interconnection structure
of their special-purpose counterparts, are programmable. Examples of gen-
eral-purpose systolic arrays include the Transputer, ’ the Warp [21, and the
Matrix- 1 [121. General-purpose systolic arrays have spurred development
of systolic programming languages. Relative to algorithmic and hardware
development, work on tools for systolic software development is just begin-
ning. An explanation for this is given by Snyder [291.

Because systolic algorithms are commonly thought of as being directly implemented
as hardware arrays, writing systolic programs would appear to be an activity without
need for a programming environment. But the appearance is deceiving. There are
many times when one indeed does program systolic algorithms: when the systolic array
is programmable, during the design process (for simulation purposes) of hard-wired
array implementations, when a systolic algorithm is used on a general purpose parallel
computer, or when one is engaged in research on systolic algorithms.

Many efforts are being made to meet the need for systolic programming
environments. Occam is a concurrent programming language based on
Hoare’s model of communicating sequential processes. Occam produces
code for Transputer arrays, also developed by INMOS. A Transputer is a
general-purpose processor which may be connected to up to four other
Transputers using on-chip data links. At Carnegie-Mellon University, the
Warp project has developed a language, W2 [31, and its compiler and run-
time system in support of a high-speed programmable systolic array. W2 is
syntactically similar to Pascal but also provides interprocessor communica-
tion primitives based on message passing. Poker [281 uses several program
abstractions that unify parallel programming. The Poker environment has
been targeted to (1) the Chip [141, (2) hypercubes [301, and (3) systolic
arrays (Hearts [291). Hearts, a specialization of the Poker programming en-
vironment, integrates the process of specifying, compiling, loading, and trac-
ing systolic computations. Occam, W2, and Poker are significant achieve-
ments in systolic array programming. These systems are intended to facilitate
the production of executable software for hardware arrays: they must provide
a usable programming environment. Designers of such systems must attend
to such issues as the operating system and user interfaces, and the interpro-
cessor communication protocol.

1.3. The SDEF System
The SDEF system constitutes a programming environment for describing

systolic algorithms. It includes a notation for expressing systolic algorithms, a
translator for the notation, and a systolic array simulator with trace facilities.

’ Transputer and Occam are trademarks of INMOS, Ltd.

SDEF PROGRAMMING 203

The translator generates a C program that performs the computation spec-
ified by the SDEF description. After being compiled, this C program can be
run on the SDEF systolic array simulator. Figure 1 shows the overall struc-
ture of the SDEF environment.

An SDEF program specifies both the computation and the communica-
tion requirements of a systolic algorithm. The SDEF program also specifies
how the systolic algorithm is to be “embedded” in spacetime [5 1. This ap-
proach differs from that used by Occam, W2, and Hearts. These differences
are examined in Section 2. The goals of the SDEF system are to:

l Increase the productivity of systolic algorithm researchers. SDEF pro-
vides a notation for systolic computations that is precise and executable. Al-
gorithms can be communicated succinctly in a form that is suitable for inde-
pendent testing and use by others.

l Increase the productivity of systolic algorithm developers. Data com-
munication (1) between array processors, and (2) between peripheral pro-
cessors and the file system is described implicitly in an SDEF program. The
SDEF translator (and not the user) creates a C program wherein all data
communication is made explicit.

Reliability is enhanced because parts of SDEF programs are reusable,
and because SDEF provides extensive trace facilities for testing algorithm
descriptions.

SDEF Trandator I

C Program 9

FIG. 1. Overall structure of SDEF system.

204 ENGSTROM AND CAPPELLO

l Support work by others on very high level systolic languages. The
SDEF notation is not intended to be the ultimate systolic programming lan-
guage. Higher-level languages are contemplated. Indeed, some are under de-
velopment. Chen’s Crystal [71, a general framework for synthesizing parallel
systems, can be specialized to systolic processing [6]. Delosme and Ipsen
have started work on a system for producing optimal spacetime embedding
of affine recurrence equations [81. The mapping of a systolic computation
onto an undersized array has been addressed, for example, by Fortes and
Moldovan [11, 221 and Navarro et al. [25]. Much research into tools for
analyzing [4,2 1,26, 5,24,27, 7, 1] systolic algorithms, as well as synthesiz-
ing [2 1,5,6,27, 131 and optimizing [201 them, has been conducted. SDEF
does not subsume these tools. Where automated, such tools can be connected
to SDEF’s front-end: SDEF can be used to express the results of the analyses,
syntheses, and optimizations performed by other tools.

2. ISSUESINSYSTOLICCOMPUTATIONSPECIFICATION

2.1. Systolic Array Programming

Before discussing the general issues of systolic programming, we examine
the methods for programming systolic arrays provided by W2 and Hearts.
Since W2 is different from Hearts, and both are different from SDEF, they
provide a good basis for comparison.

2.1.1. w2

The language W2 was developed to program the Warp processor array.
The user views the Warp system as a linear array of identical processors
which can communicate with their left and right neighbors. Communication
is based on message passing. The receive primitive has four parameters: (1)
the direction from which the data are to be read; (2) the name of the channel;
(3) the variable to which the data are to be assigned; and (4) the name of an
external variable from which to obtain the data, if the receive is performed
by a peripheral processor. Communication is explicit: It is the programmer’s
responsibility to ensure that data flow correctly, and that sends match re-
ceives. Explicit communication is widely used in parallel programming sys-
tems. A well-known example is the send and receive primitives of Hoare’s
CSP language.

2.1.2. Hearts

Hearts is a derivative of the Poker programming environment. Hearts pro-
vides an integrated set of tools to create, run, trace, and debug systolic pro-
grams. The Hearts environment provides graphical metaphors to simplify
programming. Creating a Hearts program is a five-step process:

SDEF PROGRAMMING 205

1. Create the communication structure. The programmer requests a
one- or two-dimensional array of processors. Then, using the mouse and
keyboard, the programmer “draws” the communication links between pro-
cessors, thus specifying the communication graph of the systolic array. Since
the interconnection structure for systolic arrays is usually regular, commands
are available for specifying an iterative structure.

2. Write the nodalfunctions. Using a text editor, the programmer writes
the sequential code that will run on each processor. The language used incor-
porates primitives to read and write data to a port (a named communication
path). There may be more than one nodal function.

3. Assign processes to processors. After writing one or more nodal func-
tions each processor is assigned the function it is to execute. Any actual pa-
rameters to the nodal function are entered at this time.

4. Assign port names to communication links. Communication links
between processors are defined in the first step. In order to refer to them in
the nodal code, each link is given a name, known as the port name.

5. Assign stream names. Input and output at the periphery of the array
require data to be read or written to files. A stream name associates file names
with input and output ports. It also specifies the index of data within the file
that is to be associated with each port. Record boundaries can be located
because data item sizes must be fixed.

Both W2 and Hearts use explicit commands to pass messages. In Hearts,
a graphical tool is used to specify the communication structure and size of
the array. Since the Warp has a fixed architecture, this kind of tool is not
needed in the Warp environment. Hearts obtains external data from the un-
derlying Unix file system; W2 uses a shared memory paradigm to access data
on the host computer.

The differences in these two systems stem from differences in their goals.
The W2 project is working to create a very high speed parallel processing
engine. The intent of the Hearts project is to provide a programming envi-
ronment that facilitates the creation of systolic programs.

2.2. Higher-Level Notation

Hearts and W2 are examples of message-based programming: sends and
receives are used to pass messages. It is the programmer’s responsibility to
coordinate processes so that sends and receives match. This method is simple
to understand, in principle, because the program mirrors the underlying op-
erational mechanisms. It also tends to result in efficient code. Message-based
programming however can be error prone, especially when the communica-
tion pattern is complex. Systolic algorithms and applications are becoming

206 ENGSTROM AND CAPPELLO

increasingly complex. A higher-level notation for programming systolic ar-
rays is needed to help programmers cope with this increased complexity.

2.3. Systolic Programming Issues

Many of the issues in systolic programming have analogs in sequential
programming. The complexity of parallel programming increases the impor-
tance of some of these issues, such as program reusability. This section,
though not exhaustive, examines some of the important issues in the design
of a systolic programming environment:

l Interface Issues

Operating system. The systolic programming system should provide the
array programmer with a natural interface to the operating system ofthe host
computer.

External I/O. Usually in a systolic array, only the peripheral processors
access the host or external I/O devices. This complicates the programmed
communication of data and program to, and from, the systolic array. The
programming system must enable the user to handle gracefully this con-
straint on external communication. The environment should help the user
to ensure that data are ordered and formatted correctly.

l Program Issues

The reason for creating a programming environment is to make pro-
gramming simpler (hence more reliable) and faster.

Creation/modification. Specialized tools are needed to create and mod-
ify programs. Programming systems, such as Poker, that provide a complete
set of tools are essential.

Error detection. The systolic programming system should be designed
to detect as many program errors as possible, as soon as they are committed.

Testing. As systolic programs become more complex, the need for high-
level testing and evaluation tools increases. A systolic programming environ-
ment should provide specialized facilities for tracing and debugging systolic
array programs.

Reusability. Distinct systolic programs often have one or more compo-
nents in common, such as their communication pattern. In order to increase
programmer productivity, the programming language should provide for the
reuse of common program components.

Eficiency. In systolic systems, just as in conventional systems, there is
usually a trade-off between speed and ease of use. High-level systolic lan-
guages typically incur more overhead than low-level languages. It is however

SDEF PROGRAMMING 207

generally accepted that the advantages of high-level languages justify their
cost, except in extremely time-critical applications.

3. SPACETIME REPRESENTATIONS

Programming in SDEF is based on a spacetime representation of systolic
computations [5,221. This section briefly introduces this idea.

3. I. Spacetime Representation of Systolic Computations

The following code fragment computes a matrix-vector product, y = Ax,
for a 3 X 3 array A, and vectors y and x.

for i = 1 to 3 do
y[i] = 0;
forj = 1 to3do

y[i] = y[i] + A[i,j]*x[j]; /* inner product step */
end

end

If we “unravel” the for loops we can represent the computation with respect
to data usage. Such a diagram, for the above code, is given in Fig. 2. The
figure depicts the data dependence of each inner product step (IPS). There is
one IPS process for each entry in the A matrix. It is convenient to associate
each process with its corresponding A element index, which we refer to as its
process index.

We can create another representation of matrix-vector product by using
a spacetime diagram. Similar to Fig. 2, this diagram depicts the data depen-
dence (between inner product processes) in space and time. A spacetime

t
Xs-- -423 0

t
X2-- A22 0

t XI-- A21 0
d 2

t
X3-c Aas 0

t
X2 A32 -0

t
Xl-- A31 0

J 3

FIG. 2. Data usage in matrix-vector product.

208 ENGSTROM AND CAPPELLO

diagram of matrix-vector product is shown in Fig. 3. We refer to this as
the initial design for matrix-vector product. In this design, there are three
processors and three time cycles. The value for yi is computed in cycle i. The
diagram indicates that the three processes associated with a y component are
all performed during the same cycle. In fact, process(i, 1) must complete
before process(i, 2) starts, which in turn must complete before process(i, 3)
starts. In this design, which would never be used, the time/cycle thus de-
pends on the size of the matrix. Processor P, starts with an initial value of 0
for yi, then executes the IPS function (i.e., the inner product step) using the
values for x1 and Ai, that it received. The result, the new value Of yi, is passed
to P2. The final value Of yi is output by P3.

The position of each node in spacetime (its process index) indicates where
and when an IPS process takes place. The representation also shows what,
where, and when data are needed.

One design for a computation can be transformed into another by apply-
ing a linear transformation to the indices of each process. The initial design
for matrix-vector product, for example, can be transformed to the Kung and
Leiserson [17] design by the linear transformation

(-: :)(J=(E)*
A spacetime representation of the Kung and Leiserson (KL) design is de-
picted in Fig. 4.

3.2. Spatial Projection

If we project the process graph (embedded in spacetime) onto the spatial
subspace (which in this case is a single axis), we obtain the spatial character-

1
1 2 3 -Time

FIG. 3. Spacetime representation of matrix-vector product.

SDEF PROGRAMMING 209

p5 2

p4 1

;

s 0

Pa -1

PI -2

I 0 1 2 3 4 5 6 7 3 -Time

FIG. 4. Spacetime diagram of Kung and Leiserson design, extended to show all data move-
ment.

istics of the computation. The set of inner product processes, called the index
set, in the IU design projects onto a set of five processors (i.e., five points in
space). The number of nodes that map to a processor is the number of IPS
computations that the processor must perform. The data dependences,
shown as arcs, map to the physical array, indicating the direction that data
must flow through the array. For example, the projection of the y data depen-
dence indicates that y values must move upward. Additionally, each proces-
sor must have access to the elements of the A array that it uses during its IPS
computations. Processor P2 must have access to AZ, and As2.

3.3. Temporal Projection

By projecting the process graph onto the temporal axis, we obtain the cycle
in which each process is executed. The first IPS process cycle (i.e., the node
in the process graph with the smallest time index) occurs in processor Ps.
The IPS function requires an x component, a y component, and an element
of A. The x and y values must be passed to this center processor by its imme-
diate neighbors. By extending the data arcs in spacetime, we create a schedule
for data delivery from the peripheral processors. This is given in Fig. 4, which
portrays what each processor must do at each cycle. As an example, the ac-
tions prescribed for the first three cycles are given in Fig. 5.

3.4. Transforming Computations
A systolic algorithm is realized by linearly embedding a cellular process

graph in spacetime. Different linear maps result in systolic designs with

210 ENGSTROM AND CAPPELLO

C@C Actiond

0 4 read the value for 21 and p=res it to Pd.

PI reads the value for y‘ and purees it to Pz. 1 I I
Pr read the value for 21 and passes it to Pa.

Ps reads the value for y1 and passes it to Pa.

2 8 reads zz and paesea it to Pd.

PJ reads yl from Pa, reads ZI from P, and executes an IPS.

The new ye is passed to P,, and ZI in paseed to Pa.

PI readr ya and paeeee it to Pa.

FIG. 5. Processor actions during cycles 0, 1, and 2.

different sets of processor arrays, communication patterns, and relative com-
munication rates. This mathematical mechanism is an important part of the
SDEF programming system.

4. SPECIFYING A SYSTOLIC COMPUTATION USING SDEF

SDEF programs are based primarily on the spacetime representation in-
troduced in Section 3. In this section, we introduce the four properties used
in SDEF to describe a systolic computation.

4.1. The Properties of an Atomic Systolic Computation
SDEF treats a subset of systolic computations. This subset is the one

treated in the work of [16,2 1,23,24 1. The computational fragments infor-
mally correspond to computing uniform recurrence equations inside the
nested index loops of a high-level language (e.g., “For” loops in Pascal).
We refer to such a systolic computation as an atomic systolic computation.
Contemporary systolic algorithms are more complex than this [271, but they
can be decomposed into atomic components. The task of a contemporary
systolic algorithm designer includes bonding atomic computations into a
compound systolic computation. In this paper, we consider only the individ-
ual atomic* components of a systolic computation. In the Conclusion, we
briefly discuss enriching SDEF with a composition feature, which can be
used to “bond” atomic systolic computations into a compound systolic com-
putation.

SDEF is based on the fact that an atomic systolic computation is character-
ized by four properties: its S, D, E, and F properties.

’ Unless stated otherwise, we hereafter only refer to atomic systolic computations, and omit
the qualification “atomic.”

SDEF PROGRAMMING 211

@@
0 191

FIG. 6. Index set S, .

4.1.1. The S Property: Its Index Set

The index set of a systolic computation is the set of index values over
which the computation is defined. These index values define the set of nodes
that make up a spacetime representation of a computation as depicted in
Section 3. It can be thought of, informally, as the indices for one or more
arrays, whose elements need to be computed. Two such sets are S1 : 1 < i G j
< 5, and &: 1 < i, j < 5. Figure 6 depicts the index set S, . SDEF treats a
specific kind of index set: the set of integers in convex polyhedra. Such a set
consists of the integer solutions to the convex polyhedron’s corresponding
linear system Ax < b. This view includes all index sets that we have seen in
practice.

4.1.2. The D Property: Its Domain Dependences

Informally, each array element is computed in terms of other array ele-
ments. For most systolic algorithms, the computed value of an array element,
a(p), depends on array elements whose indices are fixed offsets from p. Such
dependences are referred to in the literature as uniform data dependences
[16, 26, 271. Following geometric terminology, they may be called transla-
tion domain 3 dependences. SDEF works with this type of dependence. Two
sets of domain dependences are given below.

’ The term “domain” acknowledges that these data form the domain of the function to be
computed.

212 ENGSTROM AND CAPPELLO

x:(-1,0) a:(O,O)

1

x:(-1,0)

Y:(w)
71

y:(-1,-l) a:(O,-1)

DI D2

FIG. 7. Two data dependence sets. Arcs are directed toward the source of a process’s data.

Figure 7 depicts these two dependence sets. Figure 8 depicts dependence set
D, applied to the index set S,. By convention, the data arcs are directed
tow&the process that uses the data. This is the opposite direction of domain
dependence vectors, which point to the source of the data, not to the desti-
nation.

41.3. The E Property: Its Spacetime Embedding

A process graph can be scheduled on an array of processors in many ways.
One topic of systolic array research is concerned with linear embeddings of
these process graphs into spacetime. Different systolic arrays in the literature
often are just linear transformations of one another in spacetime [2 1,4,26,
5, 27, 241. A guide to the literature concerned with such manipulations
is given by Fortes et al. [lo]. Two examples of spacetime embeddings are
given below.

E,:(-: :)(;)=(gc;), G: (b i)c:)= (iii;).
Figure 4 depicts a linear transformation of Fig. 3.

FIG. 8. Dependence set D, applied to index set S, .

SDEF PROGRAMMING 213

4. I A. The F Property: Its Process Function

In an atomic systolic computation, all processes compute the same func-
tion. The function’s domain can contain the process index. Apart from the
process index, the function’s domain equals its codomain. We give below
two different functions that have the same number of inputs and outputs.

F, (input: x, y, a; output: x’, y’, a’)
integer x, y, a;
{x’tx;u’ta;y’cy+uXx,)

F*(input: x, y, a; output: x’, y’, a’)
char x, a; boolean y;
{x’tx;u’cu;y’+yand(u==x);}

The property values described above can be combined in a variety of ways.
Five distinct designs based on these property values are given below.

1. Upper Triangular Matrix-Vector Product: U = (S1 , Dr , E, , F,) .
2. By changing the index space, we obtain a design for Full Matrix-

Vector Product: A4 = (S,, D1, E, , FI) .4
3. By changing the domain dependences, we obtain a design for Polyno-

mial Product (convolution) : C = (S,, D2, E, , F1) .
4. By changing the function computed at each vertex, we obtain a de-

sign for String Pattern Matching: S = (Sz, D2, El , F2).
5. By changing the spacetime embedding, we obtain a design for String

Pattern Matching that is completely pipelined, operating on a hexagonally
connected array: P = (S2 , D2, E2, F2).

As the above examples illustrate, systolic computations that are different
may nonetheless share some properties. A good systolic programming envi-
ronment should facilitate the reuse of previously established property values
in the specification of a new systolic computation. Although the S, D, E, and
F properties are largely independent, we note some weak interdependences:

l The dimensions of the index space, dependence vectors, and embed-
ding matrix all must agree.

l The number of domains must be equal to the number of arguments
to the nodal function.

Distinct properties values thus can be readily substituted, resulting in dis-
tinct computations. The S, D, and E properties are mathematical objects.

4 This bidirectional linear systolic array for computing matrix-vector product was first re-
ported by Kung et al. [171.

214 ENGSTROM AND CAPPELLO

Specifically, let C be an atomic systolic computation of dimension d and of
function arity a. If C’s index space is the set of integers inside an m-sided
convex polygon, then its index space is characterized by a matrix S
E Z mx(d+‘), where Z denotes the integers. Each of its a domain dependences
is a vector di E Z d. If the dimension of spacetime into which C is being
embedded is I(1 is typically 2 or 3), then its spacetime embedding is a matrix
EEZ’~~.

4.2. Specifving the Systolic Array

SDEF’s target array is assumed to be a rectangular grid of orthogonally
connected processors. The array’s size is specified as an ordered pair of inte-
gers (x, y), indicating that there are xy processors, forming an x X y array.
SDEF assumes that only peripheral processors have an I/O capability. The
I/O capability of these processors is expressed in terms of read and write
capabilities for each boundary of the array: left, right, top, and bottom. The
capabilities that can be specified are: no capability, read only, write only, or
read and write. An example specification follows. It specifies a rectangular
array that can be used to perform a Schreiber design of matrix product for a
5 X 5 matrix.

Size Top

(975) read

Bottom

none

Left

read, write

Right

read, write

Array specification is unrelated to the specification of S, D, E, and F prop-
erties: If a computation is targeted to a physical array, then the computation’s
spatial projection (set of processors) cannot exceed the size of the physi-
cal array.

4.3. Spec$ying the Systolic Computation

4.3.1. Specifving an S property

SDEF accommodates any index set that is the set of integers inside a con-
vex polyhedron. Such a set can be described as the integer solutions of a
linear system Ax G b. To specify such an index set, a user first specifies the
dimension of the computation (i.e., the number of independent indices).
After doing so, the user can specify the A matrix and b vector that define the
boundaries of the convex polyhedron. In SDEF, these linear constraints are
referred to as global constraints. In addition, a user specifies orthohedral
bounds. Orthohedral bounds specify lower and upper limits for an index (i.e.,
an axis). Below we give the portion of the SDE file that specifies the index

SDEF PROGRAMMING 215

set S,, mentioned earlier in this section. This index set is used in Upper
Triangular Matrix-Vector Product (in this case a 5 X 5 matrix).

Dimension: 2

Orthohedral bounds:
Lower Upper

1
1 ; j

Global constraints:
-1 i+j-=O

Orthohedral bounds are a programmer convenience. Since they can always
be expressed as linear inequalities, they can be expressed as global con-
straints. To obtain the index set S,, used for Full Matrix-Vector Product,
one need only remove the global constraint from the specification above.

4.3.2. Specijjying a D property

An arc in a systolic computation’s cellular process graph represents a do-
main dependence. Each array variable, referred to as a domain, has an asso-
ciated domain dependence. The programmer must specify each domain’s
dependence. The dependence set D, used in Full Matrix-Vector Product is
specified as

Domains:
name: X type: int dependence: i(- 1)j(0)
name: Y type: int dependence: i(O)j(- 1)
name: A type: int dependence: i(O)j(0)

The domain dependence set D2, used in Polynomial Product, is like that for
D1 except that the entry for domain A is

name: A type: int dependence: i(- 1)j(- 1)

4.3.3. Specifying an E Property

A computation’s spacetime embedding is specified as a matrix. The em-
bedding map El used in the Kung and Leiserson Matrix-Vector Product, for
example, is specified as

Embedding: 1 1

-1 1

216 ENGSTROM AND CAPPELLO

43.4. Specifving an F Property

Function code is written in an SDEF-extended version of C. The idea of
building on top of an existing compiler for a sequential machine has also
been used in the Poker programming environment [30 1. The C compiler is
responsible for producing code for the target nodes, and for using their re-
sources (e.g., registers, memory, and buffers) efficiently.

During each “computation cycle,” the function code is invoked with its
arguments. SDEF provides two extensions to C: (1) prime notation, and
(2) compiler-generated declarations. Prime notation specifies the computed
value of a domain. For example, the statement “Y’ = Y + X + 1;” means
that the computed value of the domain Y is the argument value of Y plus the
argument value of X plus 1. Since data locations for Y’ and Y are distinct,
modification of one does not affect the other. The SDEF translator translates
domain references to internal data locations. The information in these data
locations is managed by code that is generated by the SDEF compiler. This
code ensures that data are moved between data locations and processors in
the manner implied by the spacetime embedding. Function code typically is
only a small fraction of the program produced by the SDEF translator.

For F, , mentioned earlier in this section, the user provides the following
SDEF code.

Fl(X, Y,A){Y’= Y+X*A;/*computeinnerproductstep*/}

Variables Y’, Y, X, and A are not declared in the function code; the SDEF
compiler inserts declarations for all domains. The type of each domain is
specified when the domain is specified. In SDEF notation, a domain needs
an explicit assignment statement only when it is modified by the function
invocation. As another example, the user provides the following code for F2
(the string pattern matching function).

F2(X, Y, W){Y’= Y&&X= = W;}

4.4. The SpeciJication Environment

44.1. TheSDEFile

Property specifications are partitioned into three files. The A property, the
array’s physical characteristics, is specified in file A. The second file, the SDE
file, contains the specification of a computation’s S, D, and E properties.
It can be created using the SDE file editor. This editor performs error and
consistency checking on the data entered. The third file, the F file, contains
the extended C version of the function that executes on the array nodes. The
function’s name is specified in the SDE file.

SDEF PROGRAMMING 217

Another way to create A, SDE, and F files is for a higher-level translator
to generate them. That is, these files are a data inter&e for higher-level trans-
lators. Such a translator takes as input a higher-level specification (higher
than that used by SDEF) of a computation, and produces one or more A,
SDE, and F files. The SDEF translator is the back end of such a system.

4.5. An Example Specification
An SDEFprogrum for an atomic systolic computation is a specification of

the computation’s S, D, E, and F property values, as well as a specification
of a physical array. Figure 9 presents.the SDE, F, and A files for a Schreiber
design 5 X 5 full matrix product.

5. THE SDEF ENVIRONMENT

The SDEF system facilitates creating and testing systolic algorithms. This
section examines tools, other than the translator, used to create programs.

Dimenrion: 3

Orthohedral Bounds:

lower upper

1 6 i

1 5 1

1 6 k

Donaine:

name: A type: float dependence: i(-1) j(0) k(0)

name: B type: float dependence: i(0) j(-1) k(0)

name: C type: float dependence: i(0) J(0) kc-l)

Function: name: IPB

Embedding: 1 0 0

111

O-l 1

F File

IPB(A.B.C) (. C’ = C + A * B; 1

A File

SiZ.5 TOP Bottom Lefr Right

(9.6) read none read, write read, write

FIG. 9. The SDEF specification for Full Matrix Product.

218 ENGSTROM AND CAPPELLO

These tools include support for user-defined domain types and input prepa-
ration, and the SDEF simulator for testing programs.

5.1. The SDEF Domain Type Database

An important area in systolic array research is that of accessing external
data. In W2, external data appear as elements of arrays in shared memory.
In Hearts, data are kept in files composed of fixed-size records. By knowing
the index of the data, one can access data with a simple file seek.

SDEF supports user-defined data types and allows the user to determine
the format of data in files. The SDEF system includes a domain type data-
base, and tools for adding to, deleting from, and modifying the domain type
database.

For every domain type that can be used in the SDEF system, the domain
type database contains (1) a header file that defines the type for use in C
programs, and (2) a set of I/O routines for that type. C’s predefined types
do not need a header file, and they have default I/O routines. The user how-
ever is free to create new I / 0 routines for C’s predefined types.

The type of each domain is specified in the SDE file. The SDEF translator
includes the header file for each user-defined domain type in the C program
it produces (producing an error diagnostic, if an undefined domain type is
referenced). The translator also ensures that the correct I/O routine is in-
voked whenever a domain is read or written. This applies only to external
reads and writes; domains are communicated between processors as binary
images.

User-supplied I/O drivers have several advantages. The user decides how
the input (and output) is to be formatted. Integers, for example, can be stored
in files in decimal, hexadecimal, octal, or even binary images. Sometimes a
processor reads data from a device where the format is predetermined. In
this case, user-supplied read routines allow acceptance of arbitrary formats.
The read and write routines for a type do not need to use the same format.

5.2. Preparing Input Data

In any systolic computation, the data for each domain are processed in a
particular order. External data thus must be read in a particular order. Since
SDEF allows arbitrary formatting of input data, it is not possible to “seek” a
particular domain item. It therefore is the user’s responsibility to provide
data, as required by the user’s SDEF program. The SDEF system however
aids the programmer by providing domain order templates for each domain.
Such templates convey the order ofdomain items by specifying the processor
and cycle in which they are read. These files are computed by the translator,
on the basis of the programmer’s specification of the index space and the

SDEF PROGRAMMING 219

spacetime embedding. The domain order files can be used to ensure that
either data in files are formatted correctly or data from a device are generated
in the proper order.

5.3. The SDEF Systolic Array Simulator

SDEF’s output is targeted for an orthogonally connected array. The SDEF
simulator provides a means of tracing and testing SDEF programs. It displays
a window for each processor in the processor array described by the A file.
The window shows the values of domains, and the communication activity
for the processor. An example of trace windows during execution is shown
in Fig. 10. Each window shows communication activity for the simulated
processor. For example, a highlighted RO on the side of a window means that
data for domain 0 are being read from a neighbor processor. The position of
the RO shows the direction from which data are being read. If the data are
being read from the edge of the array the name of the data file is shown as in
the top left window in Fig. 10. The menu provides the ability to stop or start
one or all of the processors. To affect the action of a single processor, the user
first selects the processor by moving the mouse cursor over the processor’s
window, and then presses the appropriate mouse button. All simulation con-
trol functions are initiated with the mouse.

main <2:0> IF=7 B:
co

aain <1:0>

B: E’3 c 101

main c2:2>

Boo

:r_lr

co

FIG. IO. SDEF trace windows during execution.

220 ENGSTROM AND CAPPELLO

5.4. Running an SDEF Program

Creating and running an SDEF program involves five steps:

1. Create the SDE, F, and A files. These are the inputs to the SDEF
translator. The SDE file is created using a specialized SDE editor; the F and
A files are created using a text editor.

2. Add new domain types to the database. If any domains in the SDE
file have domain types that are not already in the database, then add these
domain types to the database. This includes writing a C header file that de-
fines the type, and writing I/O routines to read and write the objects of this
type. An example header file and its read/write code are shown in Fig. 11.

3. Run the SDEF translator. The SDEF translator produces (1) a C file
for the SDEF program, (2) a boot file that contains processor schedules
which are loaded at run-time, and (3) domain order files which convey the
place and cycle that input data are to be read. The C program is compiled
and linked with run-time support routines automatically, producing a pro-
gram that executes on the SDEF simulator.

4. Create the input data files. Using the domain order files created by
the translator, the user creates files containing the actual data. The format of
the data is determined by the I/O routines for the data type in the domain
type database. The order of stream data types is determined by order of use
during computation. Statics and initial register values are booted at run-time.
Their order is determined by the shape of the processor array, as given in the
A file.

5. Test the program using the SDEF simulator. Running the program
on the simulator allows the user to monitor the program interactively. The
SDEF simulator automatically boots internal tables and control files.

6. AN~MPLEMENTATIONOFTHE SDEF SYSTEM

6.1. The Translator

The SDEF translator takes the A, SDE, and F files as input and produces
a C program to be run on the processors of the systolic array.

The translator creates sequential code and control data, which, when exe-
cuted, reproduce the communication and computation structures described
by the SDEF program. In this section, we discuss some ofthe details of gener-
ating such a program.

SDEF PROGRAMMING 221

/*header for data type coord */

typedef struct coord-.trc< int a, b;) coord;

Data Type Read/Write Code

#include <etdio.h>

#include <dt.coord.h>

/t read-coord: Thie function defines the input data format for objects of type

coord. */

read-coord(fptr,dataptr)

PILE *fptr;

coord *dataptr;

c return(fscaaf(fptr.“%d Xd”,&dataptr->a,Ldataptr->b)--2); 1

/* write-coord:

* This function defines the output format for object9 of type coord. */

write-coord(fptr,dataptr)

FILE *fptr;

coord *dataptr;

i fprintf(fptr,“a-%d b=&l\n”,dataptr->a,dataptr->b); return(l); 1

/* open-coord: Thin routine opens a file for the data type coord. */

FIU * open~coord(fname,mode)

char *fname,*mode;

c return(fopen(fnune,mode)) ;)

/* close-coord: This routine closee a file of the data type coord. */

close-coord(fptr)

FILE *fptr;

< return(fclose(fptr)); 1

FIG. 11. Sample code for a user-defined domain data type.

6.1.1. Communication Types

The domain dependences together with the spacetime embedding deter-
mine the pattern of communication for a computation. The index set deter-
mines the size and shape of the process graph. Figure 12 depicts a process
communication graph embedded in spacetime (whose spatial projection is
a linear array of five processors). On the basis of the spacetime orientation

222 ENGSTROM AND CAPPELLO

Space

FIG. 12. A process graph embedded in spacetime whose spatial projection is a linear array of
five processors.

of its propagation, we classify four types of communication in spacetime.
Information can propagate in: (1) time, but not space (memory); (2) space,
but not time (broadcasting); (3) both space and time; (4) neither space nor
time (information that is used at one point in spacetime). Type (2) is consid-
ered to be incompatible with the paradigm of systolic computation. The
three types of information propagation that are compatible with systolic
computation are illustrated by the three domains (C, R, and S) shown in
Fig. 12.

We first discuss type (3) communication. This type of communication is
called stream communication. In the example depicted by Fig. 12, values for
the S domain propagate between processors from bottom to top, over time.
In this example, I/O is confined to the processors on the ends of the array.
All external input values for the S domain thus must be read by processor
PI . External outputs likewise are written by Ps . Note that P3 is the first pro-
cessor to perform a computation. Assuming that the nodal function needs
all three domains, this processor must wait for an initial S value to be passed
from P, . After a computation completes, results for domain S also need to
be passed to Ps to be written externally.

Type (1) communication, exemplified by domain R, is realized with a
register. Registers are used to realize domain dependences that have no spa-
tial dependence, only a temporal one. The translator detects this type of com-
munication, generating the code to save and restore register values between
invocations of the nodal function.

Type (4) communication is called static “communication.” Domain A is
of this type. In static communication, information propagates in neither

SDEF PROGRAMMING 223

space nor time. Such a piece of information can be viewed as a constant
embedded in spacetime.

6.1.2. Processor Schedules

A processor’s activity is partitioned into computation cycles. The process
executed by a processor may change from one computation cycle to the next.
The SDEF translator generates code which ensures that data arrive at the
right place at the right time. To do this, the translator computes a schedule
for each processor. This schedule specifies what the processor is to do during
each computation cycle. For example, consider domain S in Fig. 12. It is used
first by P3. Processor P3 however does not have access to disk. Processors P,
and P2 thus must have, as part of their schedules, instructions to propagate
the first S value to P3.

The physical array may be larger than the spatial projection of the compu-
tation (i.e., its set of processors). In this case, the translator generates code
for processors outside the computation’s spatial projection, if they are used
to propagate data from the boundary of the array to processors that partici-
pate in the computation. No code is generated for processors that have nei-
ther communication nor computation tasks.

At present, the translator requires that the size of the physical array be at
least as large as the spatial projection of the embedded computation. That is,
the translator does not automatically solve the “partitioning” problem for
the user. Several systematic mapping techniques that solve this problem are
under consideration for inclusion into the SDEF system. In the meantime,
extant research (see, e.g., [22, 23, 251) can be incorporated as a front-end
to SDEF.

In addition to data propagation, a schedule includes information about
whether the data come from a neighbor or from an external source. It also
indicates when a function invocation is to occur using the data obtained by
the processor. When a function invocation occurs, the code generated by the
translator ensures that the nodal function is passed the correct domain values
for all types of domains: stream, register, and static. After the nodal function
is invoked, the modified domains are propagated in spacetime as required
by the user-specified spacetime embedding (E) .

6.1.3. Translation Data Dependences

The SDEF translator processes dependence vectors that are not simply
single steps in time and space. A dependence can, for instance, specify that a
domain value be communicated from a point 2 units away in space, and 3
units away in time. SDEF assumes an architecture in which each processor
can send messages only to its nearest neighbors. A dependence that requires
a movement of 2 spatial units over a period of 3 time units is converted to a

224 ENGSTROM AND CAPPELLO

sequence of physically realizable communications called simple moves. A
simple move is one in which data move 0 or I unit in space in exactly 1 unit
of time. Figure 13 depicts a spacetime embedding of a process graph, and
the resulting embedding after the embedded domain dependences have been
realized as simple moves. Each domain is propagated via a sequence of t
stages, where t is the time component of its embedded domain dependence
vector. In order to realize an embedded domain dependence as a sequence
of simple moves, it is necessary and sufficient that C 5;’ Si 4 t, where the
domain dependence, after embedding in a d-dimensional spacetime, is of
the form (t s1 s2. . . sdel) r, and where Si is a spatial component; t its time
component.

61.4. Processor Data

As depicted in Fig. 12, values for the S domain must be read from external
storage. Data for stream domains are read at run-time from edge processors.
Data values for register and static domains are stored internally by each vir-
tual processor. There are many ways that SDEF could have been designed
to provide these values. This is especially problematical since, as in this ex-
ample, all processors may not have external read/write capability. The trans-
lator could have been designed to embed initial values for these domains in
the generated code. In this case, the user would have had to retranslate the
program to change the data. It also would have meant, given that SDEF
generates a single program which runs on all processors, that all processors
contain all initialization data, even though any single processor uses only a

+Time

FIG. 13. An embedding of dependences and its realization using simple moves.

SDEF PROGRAMMING 225

fraction of these data. This approach thus entails an excessive amount of
local memory and communication. To avoid these problems, SDEF pro-
grams have an array initialization phase (i.e., boot phase) where tables, regis-
ter values, and static values are loaded from external storage. Each processor
therefore needs to store only its own register and static data. During array
initialization, initial values are read, and passed to the appropriate processor.
Users thus can modify a computation’s constants without retranslating. We
believe that this design decision is compatible with our goal of increasing
programmer productivity.

6.2. Virtual Hardware
6.2.1. Architecture and Capabilities

The SDEF simulator provides diagnostic and control facilities. It simulates
an array of processing elements which are not too architecturally powerful.
Simulating processing elements that are extremely powerful would make the
SDEF translator’s job too easy, and is unrealistic; most real systolic process-
ing elements (e.g., the Transputer) have simple, but focused, communica-
tion capabilities. The simulated systolic array is a grid of MIMD processors,
each with up to four bidirectional communication channels. Some edge pro-
cessors are able to read and write externally (i.e., to data files). Figure 14
depicts some typical configurations that fit this model.

The A file provides the translator with information regarding the size of
the target processor array. Consider a systolic computation that maps to a 4
X 4 physical array. If the size field of the A file specifies a 5 X 4 physical
array, then the translator creates schedules for the extra processors, so that
they propagate data to, and from, the processors that are actually involved
in the computation (since it is assumed that only edge processors have access
to external data). The A file also enables the translator to handle correctly
situations where, for instance, the left side of the array can read data but

ctDcK+o Linear Array

Proceaaor Grid

FIG. 14. Two typical processor and l/O device configurations. The circles in the figure repre-
sent I/O devices; squares represent processors.

226 ENGSTROM AND CAPPELLO

cannot write data. Similarly, the translator detects the case in which a space-
time embedding of a computation is incompatible with the I/O capabilities
of the physical array.

Communication between processors is synchronous, one word per cycle,
based on a message-passing protocol: if processor A sends a word to processor
B, then A blocks until B receives the word; if B attempts to receive the word
before A sends it, then B blocks until the word is sent. These processing ele-
ment capabilities may seem too restrictive in light of current hardware proj-
ects (e.g., the iWarp) that provide more powerful capabilities. Making our
processing elements simple, however, eases the task of porting the SDEF
system to real hardware, as it becomes available.

62.2. UNIX Implementation

The SDEF systolic array simulator uses UNIX processes to simulate pro-
cessors. The C program produced by the SDEF translator is compiled and
linked to a run-time library to produce an executable image. Although the
same executable image is used for every UNIX process (virtual processor),
each processor uses different data, and more importantly, different sched-
ules. The use of UNIX process facilities means that all of the UNIX process
control features, such as suspending and resuming processes, are available
for use with the systolic array simulator. All simulator processes are part of
a process group and thus can be manipulated as a whole. There is also a
master process which handles input from the user and can start and stop
virtual processors on command. The disadvantage of using UNIX processes
is that there are a limited number of them. In the current implementation,
the process limit is over 50. Since systolic algorithms scale, testing can be
done on a small array. This UNIX limitation thus has not been too restric-
tive. Interprocess communication is done using UNIX sockets. External data
are read and written using UNIX files. Each simulator process has a window
associated with it that displays internal data, and communication activity.
Due to limited screen space, the largest array that currently can be displayed
is a 6 X 6 grid. The use of display windows is optional; the simulator can be
used without them.

6.3. Portability

Consider what is necessary to retarget the SDEF translator, and to port the
run-time system, to an INMOS Transputer system. A Transputer system
consists of a host computer connection to an array of processors. Each pro-
cessor has four I/O channels that can be used to link them. The INMOS
system provides a Transputer C compiler, and a library of routines used for
I/O and inter-Transputer communication. The SDEF translator would run
on the host computer, and does not need to be modified; all system-depen-

SDEF PROGRAMMING 221

dent features are encapsulated in SDEF library routines. The code generated
by the translator references routines in this interface library.

To port SDEF to a Transputer environment, the SDEF run-time system
needs to be modified in two places. First, the UNIX calls that spawn pro-
cesses and establish connections between them are replaced by calls to the
Transputer library routines providing these services. Second, the send and
receive calls between processors are changed from UNIX socket calls to
Transputer library calls. Figure 15 depicts the paths for creating programs
for the SDEF simulator, and for a Transputer array.

The SDEF system reduces the translator’s dependence on particular hard-
ware capabilities by (1) using C as the target language for the translator, and
(2) encapsulating hardware-specific code. These measures enhance SDEF’s
portability. Although the translator is relatively hardware independent, the
run-time system needs to be tailored to each implementation; the run-time
system displays trace information and maintains the view of the array as an
orthogonally connected mesh.

7. CONCLUSIONS

The SDEF programming system increases the productivity of systolic algo-
rithm researchers. Having a mathematical basis, SDEF provides a notation
for specifying atomic systolic computations that is succinct, precise, and exe-

SDEF Translator

I-. Object Code -1

* ‘OdE,
FIG. 15. One path is for the SDEF simulator; the other, for a Transputer system.

228 ENGSTROM AND CAPPELLO

cutable. The comvnunication requirements are specified in terms of the
algorithm’s index space (S), domain dependences (D), and spacetime em-
bedding (E). Systolic algorithms that appear to be quite different (e.g., one
operating on a linear array of processors, and another operating on a hexago-
nally connected array) often differ only in their spacetime embedding (see,
e.g., Cappello and Steiglitz [51). By simply modifying the E property, re-
searchers thus can reuse much of a previously tested algorithm. Reuse ap-
plies, as well, to the S, D, and F properties. This notation allows researchers
to share their work for independent testing and to dissect and reuse parts of
others’ work.

The SDEF programming system increases the productivity of systolic algo-
rithm developers. There are several reasons for this. In a programming lan-
guage such as Occam or W2, communication constructs are mixed with the
program’s computation constructs. In SDEF, the communication aspect of
the array programming is done with a high-level declarative language (the
S, D, and E properties). The communication is implied by the spacetime
embedding, relieving the programmer of the task of issuing explicit send and
receive commands within each processor’s program. This is perhaps the
most significant conceptual difference between SDEF, and W2, Occam, or
Hearts. As shown in Section 3, for example, one can change the communica-
tion pattern, even the processor topology, by simply changing the embedding
matrix. Compare this succinctness to systems in which communication is
intermixed with the processor code. In such systems, changing the communi-
cation pattern can cause changes in either the direction of data flow or the
arrival order of data items. Such changes may require modification of the
nodal code in one or more places, with each change introducing an opportu-
nity for error. The reliability of an SDEF program’s communication is en-
hanced both by its declarative expression as high-level properties and by the
user’s ability to reuse previously tested property values. Indeed, the clean
separation of communication programming from node computation pro-
gramming enhances the reliability of both.

Like W2 and Hearts, SDEF provides a set of specialized tools for creating
and modifying systolic array programs. The SDEF translator provides high-
level error detection. For example, it detects spacetime embeddings that can-
not be executed due to I/O or size restrictions on the physical array. Users
also are provided with a domain type database that is extensible. The transla-
tor helps users to create domain input files that are consistent with the speci-
fied index space and spacetime embedding.

The SDEF systolic array simulator is built on top of UNIX’s process fea-
tures, which are available to the user through the simulator. The simulator
allows users to trace their systolic programs quickly and easily, inspecting
their program’s actual communication and computation characteristics.
Each simulated processor can be started or stopped as desired, allowing ob-
servation of each I/O action and domain value. We may investigate using a

SDEF PROGRAMMING 229

light-weight process system for our next-generation simulator because such
systems may provide more speed and control.

As with sequential languages there is a trade-off between ease of use (i.e.,
human productivity) and run-time efficiency. An SDEF program incurs
more overhead than a carefully hand coded one. But SDEF provides a nota-
tion that is hardware independent and compact, yet executable. Moreover,
the SDEF notation can support work by others on very high level systolic
programming systems. The S, D, E, and F properties constitute an interface,
not only between a human user and the SDEF translator, but also between
a higher-level system and the SDEF translator. There may be considerable
advantage in doing so. For example, the SDEF translator creates the code
to support external I/O from a declarative specification of the S, D, and E
properties. A higher-level language thus need only provide these properties,
avoiding much detailed and complicated I/O scheduling. In this way, SDEF
facilitates further software tool development for systolic array programming.
One such tool might be a spacetime embedding optimizer, such as has been
investigated by Li and Wah [201.

Future work is contemplated in two areas. First, the SDEF programming
system is designed for portability. All hardware-dependent code is encapsu-
lated into a small call library. The system is especially portable to a Trans-
puter environment. Indeed, one reason that arrays in SDEF are orthogonally
connected is to keep them compatible with the Transputer. The SDEF trans-
lator generates C code, and there is a C compiler for the Transputer. The
SDEF translator, consequently, does not need to be modified to port the
SDEF run-time system to a Transputer array.

Second, the programming system can be generalized with respect to the
class of systolic computations that it treats. SDEF properties are to an atomic
systolic computation as atomic systolic computations are to a compound
systolic computation. They are valuable ways to package its reusable parts.
Incorporating a composition capability thus is a natural enhancement to
SDEF. Such a capability would permit atomic systolic computations to be
bonded together and reshaped with spacetime embeddings that are appropri-
ate to the context of a complex computation.

REFERENCES

1. Allen, K. R., and Pargas, R. P. On compiling loop algorithms onto systolic arrays. TR No.
85- 1 1 - 18, Department of Computer Science, Clemson University, 1985.

2. Annaratone, M., Arnould, E., Cohen, R., Gross, T., Kung, H-T, Lam, M., Mensilcioglu,
O., Sarocky, K., Senko, J., and Webb, J. Architecture of Warp. Proc. COMPCON, Spring
1987.

3. Bruegge, B., Chang, C., Cohen, R., Gross, T., Lam, M., Lieu, P., Noaman, A., and Yam,
D. Programming Warp. Proc. COMPCON, Spring 1987.

230 ENGSTROM AND CAPPELLO

4. Cappello, P. R. VLSI architectures for digital signal processing. Ph.D. dissertation,
Princeton University, Princeton, NJ, Oct. 1982.

5. Cappello, P. R., and Steiglitz, K. Unifying VLSI array design with linear transformations of
space-time. In F. P. Preparata, (Ed.). Advances in Computing Research, VLSI Theory, Vol.
2. JAI Press, Greenwich, CT, 1984, pp. 23-65.

6. Chen, M. C. Synthesizing systolic designs. Proc. Second International Symposium on VLSI
Technology, Systems, anddpplications, Taipai, May 1985, pp. 209-2 15.

7. Chen, M. C. A design methodology for synthesizing parallel algorithms and architectures.
J. Parallel Distrib. Comput. 3 (Dec. 1986)) 46 l-49 1.

8. Delosme, J. M,, and Ipsen, I. C. F. Systolic array synthesis: Computability and time cones.
Yale/DCS/RR-474, May 1986.

9. Fisher, A. L., Kung, H-T, Monier, L. M., and Dohi, Y. The architecture of a programmable
systolic chip. J. VLSI Comput. Systems I,2 (1984), 153-169.

10. Fortes, J. A. B., Fu, K. S., and Wah, B. W. Systematic approaches to the design ofalgorith-
mically specified systolic arrays. Proc. International Conference on Acoustics, Speech, and
SignaZ Processing, Tampa, FL, 1985, pp. 300-303.

11. Fortes, J. A. B., and Moldovan, D. I. Parallelism detection and algorithm transformation
techniques useful for VLSI architecture design. J. Parallel Distrib. Comput. (May 1985).

12. Foulser, D. E., and Schreibcr, R. The Saxpy Matrix- 1: A general-purpose systolic computer.
IEEE Comput. 20,7 (June 1987), 35-43.

13. Huang, C. H., and Lengauer, C. An incremental mechanical development of systolic solu-
tions to the algebraic path problem. TR-86-28, Department of Computer Science, Univer-
sity of Texas, Austin, Dec. 1986.

14. Kapauan, A., Wang, K. Y., Gannon, D., Cuny, J., and Snyder, L. The Pringle: An experi-
mental system for parallel algorithm and software testing. Proc. International Conference
on Parallel Processing, 1984.

15. Karp, R. M., Miller, R. E., and Winograd, S. Properties of a model for parallel computa-
tions: Determinance, termination, queueing. SIAM J. Appl. Math. 14 (1966) , 1390- 14 11.

16. Karp, R. M., Miller, R. E., and Winograd, S. The organization ofcomputations for uniform
recurrence equations. J. Assoc. Comput. Much. 14 (1967), 563-590.

17. Kung, H.-T., and Leiserson, C. E. Algorithms for VLSI processor arrays. In Introduction to
VLSI Systems. Addison-Wesley, Menlo Park, CA, 1980.

18. Kung, S-Y. On supercomputing with systolic/wavefront array processors. Proc. IEEE
(1984).

19. Kung, S-Y, Arun, K. S., Gal-Ezer, R. J., and Rao, D. V. B. Wavefront array processor:
Language, architecture and applications. IEEE Trans. Comput. C-31, 11 (May 1973).

20. Li, G. J., and Wah, B. W. The design of optimal systolic algorithms. IEEE Trans. Comput.
C-34,1 (1985), 66-77.

2 1. Moldovan, D. I. On the analysis and synthesis of VLSI algorithms. IEEE Trans. Comput.
C-31 (Nov. 1982), 1121-I 126.

22. Moldovan, D. I. ADVIS: A software package for the design of systolic arrays. IEEE Trans.
Cornput.-Aided Design CAD-6, 1 (Jan. 1987), 33-40.

23. Moldovan, D. I. On the design of algorithms for VLSI systolic arrays. Proc. IEEE 71, 1
(Jan. 1983), 113-120.

24. Moldovan, D. I., and Fortes, J. A. B. Partitioning and mapping algorithms into fixed systolic
arrays. IEEE Trans. Comput. C-35 (1986)) 1 - 12.

25. Navarro, J. J., Llaberia, J. M., and Valero, M. Partitioning: An essential step in mapping
algorithms into systolic array processors. IEEE Comput. 20,7 (June 1987), 77-89.

SDEF PROGRAMMING 231

26. Quinton, P. Automatic synthesis of systolic arrays from uniform recurrent equations. Proc.
I1 th Annual Symposium on Computer Architecture, 1984, pp. 208-2 14.

27. Rao, S. K. Regular iterative algorithms and their implementation on processor arrays. Ph.D.
Dissertation, Stanford University, Stanford, CA, Oct. 1985.

28. Snyder, L. Parallel programming and the Poker programming environment. Computer 17,
7 (July 1984), 27-36.

29. Snyder, L. A dialect ofthe Poker programming environment specialized for systolic compu-
tation. Proc. International Workship on Systolic Arrays, University of Oxford, July 1986.

30. Snyder, L., and Socha, D. Poker on the Cosmic Cube: The first retargetable parallel pro-
gramming language and environment. Proc. International Conference on Parallel Process-
ing, St. Charles, IL, Aug. 1986, pp. 628-635.

BRADLEY R. ENGSTROM received the B.S. degree in computer science from the Univer-
sity of California, Santa Barbara, in 1986, and the M.S. degree in electrical and computer engi-
neering from the University of California, Santa Barbara, in 1987. The SDEF systolic program-
ming system constitutes Mr. Engstrom’s Master’s thesis. He currently is employed by Advanced
Computer Communications in Santa Barbara, California and is a member of the Association
for Computing Machinery.

PETER R. CAPPELLO received the Ph.D. degree in electrical engineering and computer
science from Princeton University, in 1982. He is an associate professor of computer science at
the University of California, Santa Barbara. Professor Cappello is an associate editor of the IEEE
Transactions on Acoustics, Speech, and Signal Processing and an editor of the Journal on VLSI
Signal Processing. He co-edited VLSI Signal Processing and currently is investigating algo-
rithms, architectures, and software for systolic arrays. Professor Cappello is a member of the
ACM Special Interest Group on Automata and Computability, the IEEE Computer Society,
the IEEE Acoustics, Speech, and Signal Processing Society, and the ASSP Society’s technical
committee on VLSI, of which he served as founding chairperson.

