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Abstract. We first relate the architecture of systolic arrays to the technological and economic design forces

acting on architects of special-purpose systems some 20 years ago. We then observe that those same design forces

now are bearing down on the architects of contemporary general-purpose processors, who consequently are

producing general-purpose processors whose architectural features are increasingly similar to those of systolic

arrays. We then describe some economic and technological forces that are changing the landscape of architectural

research. At base, they are the increasing complexity of technology and applications, the fragmenting of the

general-purpose processor market, and the judicious use hardware configurability. We describe a 2D architectural

taxonomy, identifying what, we believe, to be a Bsweet spot^ for architectural research.
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1. Introduction

This article is an outgrowth of a talk given at the 2006

ASAP conference titled BMulticore Processors as

Array Processors: Research Opportunities^ [5]. One

thesis of the talk was that special-purpose processor

(SPP) architectures must push the limits of technology

before general-purpose processor (GPP) architectures

do, and that we now are seeing GPPs embrace ar-

chitectural features that systolic arrays embraced

some 20 years ago. This article also develops this

thesis. First, we observe the design forces whose net

effect shaped systolic arrays. Then, we briefly provide

evidence that these design forces now are shaping

GPPs similarly. Finally, we consider some newer

design forces that are acting on both SPPs and GPPs,

and identify a sweet spot in a 2D taxonomy that ties

them together. These new forces are both technological

and economic. The technological force is reconfigur-

able hardware, as evidenced by FPGA systems. The

economic force is a refinement of the GPP market: The

GPP has given way to increasingly refined processors,

such as server processors, hand-held processors,

graphic processors, and sensors, to name a few.

Generally, the design space of processors is becoming

more complex. Increasing complexity leads to in-

creased specialization of labor that affects design

processes and development organizations.

2. 1986 VLSI Design Forces and Systolic Arrays

Nature, to be commanded, must be obeyed. (Sir
Francis Bacon)

The year 1986 in the title of this section reflects

the 20-year anniversary of the workshop on systolic

arrays, and is not intended as a birthday for systolic

arrays. The seminal paper on systolic arrays is by

C. Leiserson and H.T. Kung [16], and appeared in

1978. They developed this work into Section 3 of

chapter 8 of Mead and Conway_s book, Introduction
to VLSI Systems [21], whose copyright is 1980.

This section briefly enumerates the design forces

whose accumulated effect results in systolic arrays.

These design forces primarily are technological and



economic. Special-purpose architectures are justified

only when general-purpose processors (GPPs) cannot

deliver the desired performance. For sufficiently large

performance improvements, parallelism is required.

Perhaps the simplest form of parallelism is pipelining,

which is exploited to increase throughput. When

pipelining is insufficient, one turns to multiprocessor

parallelism, which, while increasing throughput, also

reduces latency. In sum, application performance
requirements that justify a special-purpose architec-

ture often require parallelism:

(1) Sufficiently high performance implies parallelism.
Parallelism, in its most general form, enables each

processor to communicate with all other process-

ors. This form is illustrated in Fig. 1a. However,

physical and technological constraints render this

clique-of-processors communication topology in-

feasible. Specifically, power and area are scarce

resources. Power scarcity affects resistive delays:

(2) Power scarcity implies that resistive delay must be
limited. This, in turn, has implications for how

many long interconnects an architecture can

accommodate:

(3) Limited resistive delay implies that long commu-
nication lines must be limited. Limiting long

communication lines does not imply eliminating
long communication lines, only that an architec-

ture can accommodate at most a small quantity of

long communication lines. In a 3D technology,

completely connecting n processors requires

interconnection lines that are W
ffiffiffi

n3
p
ð Þ. However,

VLSI technology, was essentially a 2D technol-

ogy: Completely connecting n processors

requires interconnection lines that are W
ffiffiffi

n3
pð Þ.

Moreover, the area of a chip dominates the

chip_s yield, and ultimately its fabrication cost.

Area thus was a scarce quantity.

(4) Area scarcity implies that the number of wire
crossings must be limited. Reducing area

spurred research into interconnection topologies

whose layouts were compact. Area considera-

tions make completely connected processor

architectures unscalable. However, a linear pipe-

line of processors satisfy all the performance

and technological design constraints that have

been enumerated thus far. These constraints are

compatible with a pipeline of heterogeneous
processors, as indicated in Fig. 1b. Special-

purpose applications tend to have smaller

markets than those for GPPs. Consequently,

the design budget of a special-purpose proces-

sor tends to be smaller than that for a GPP.

This economic aspect has consequences, which

are summarized in the following two design

forces.

(5) Smaller markets imply a scarcity of design dollars.
(6) Scarce design dollars implies component reuse.

a

b

c

d

e

f
Figure 1. a A completely connected heterogeneous multiprocessor (8 processors shown). b A heterogeneous processor pipeline (4 processors

shown). c A homogeneous processor pipeline (4 processors shown). d A hexagonal, homogeneous, hex-connected processor array (16 processors

shown). e A linear processor array with two processor types. f A rectangular, homogeneous, 2D mesh processor array (16 processors shown).
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A linear array of homogeneous processors reduces

the design cost to that of a single processor with

local interconnections. Figure 1c displays such an

array, which, for example, could be used to compute

a matrix–vector product [21]. The elegance of such a

solution is immediately evident. Moreover, the 2D

arrays combine pipeline parallelism and latency

reduction multiprocessors with no increase in design

complexity. Figure 1d displays such an array, which,

for example, could be used to compute a [banded]

matrix product [21]. Figure 1f displays a rectangular,

homogeneous, 2D mesh-connected processor array

which, for example, also can be used to compute

matrix product. These processor arrays are startling

in their elegance. Importantly, throughput can be

maintained even as the application problem size
increases simply by increasing the size of the array.

In general, systolic arrays do not need to have a

single, replicated processor type. To control system

design costs, it suffices to fix the number of
processor types, regardless of the size of the array.

Figure 1e displays such an array that has two

processor types, which, for example, could be used

to solve a triangular linear system [21].

We conclude this section with two notes. First,

systolic algorithms require not that their streams of

data proceed in lock-step, but only that the order of

the data within each stream must be maintained.

Thus, globally clocked systolic arrays can be relaxed

to wavefront arrays [17], their asynchronous analog.

Indeed, relaxing global clocks has at least two

intermediate forms which are duals: Islands of

synchrony in an ocean of asynchrony, or islands

of asynchrony in an ocean of synchrony. Hereafter,

we refer to the union of systolic arrays and

wavefront arrays as processor arrays. We refer to

an element in this architectural class as a processor
array (PA).

The second note concerns 3D PAs. First, attributes

that we believe are intrinsic to PAs are enumerated:

1. Each processor has a set of neighbors, such that:

1.1 The distance between neighbors is inde-

pendent of the number of processors in the

array.

1.2 Only neighbors communicate directly.

2. The number of processor types is independent of

the number of processor in the array.

3. They scale (i.e., it is sufficient to solve larger

problem instances by using larger arrays).

Claim: No 3D PA has attributes 1 and 3. The

argument for this claim is as follows. Let A be a 3D

PA. It is convenient (but not necessary) to visualize

A as an n� n� n mesh. Since A scales, we can

increase its extent in all three dimensions. The

number of processors is W n3ð Þ. Assuming a constant

fraction of the processors are used in a constant

fraction of the computational steps, power consump-

tion is W n3ð Þ. Let S be the smallest sphere enclosing

A. Attribute 1 implies that the volume of S is O n3ð Þ.
The surface area of S is O n2ð Þ. The amount of heat

dissipated per unit of surface area is W nð Þ. Thus, as n
increases, S_s surface temperature increases: Heat

dissipation does not scale.

Problem sizes however may not be bounded in size

(e.g., an n� n matrix). From the foregoing, we see

that our PAs can use the third physical dimension

only to an extent that is independent of the problem

size. Bounded use of the third dimension nonetheless

may suffice for bounded problems (e.g., achieving the

performance of a human eye or ear).

3. 2006 VLSI Design Forces

and General-purpose Processors

We now fast-forward to recent developments in GPPs.

For some time, GPPs have increased performance by

increasing clocking frequencies, which require in-

creasing instruction pipelining, a strategy made prob-

lematic by the need to support branch instructions.

The increasing power consumption to support these

increases in clocking frequencies increases heat

dissipation: The physical and economic limits of heat

dissipation limited this path to performance increase.

Power scarcity now also limits resistive delay, and

hence the number and extent of long wires. Architects

again have no choice but to embrace parallelism and

greater locality of communication.

We now present some high-performance processor

architectures, which, by example, indicate the extent

to which these design forces have shaped contem-

porary processor architectures.

3.1. Chip Multiprocessors

Continuing to increase clock speed would have

caused untenable increases in power consumption

Application-specific Processor Architecture: Then and Now



and heat dissipation. Intel and AMD thus abandoned

this strategy, adopting multicore architectures: Con-

tinue increasing transistors/chip, using the transistors

to fabricate multiple processor cores per chip. That is,

increase performance via parallelism rather than clock

speed. If successful, the performance per watt will be

much better than it would have been by sticking to the

old strategy. The Bif^ has to do with the question of

whether the software can make good use of the

multiple processors. We return to that issue later. For

now, suffice it to note that the multicore architecture is

starting to look like a processor array. Figure 2 in-

dicates the main architectural attributes of interest to us:

& Multiple processors.

& A crossbar switch between the processors and L2

caches.

The processors themselves may be increased in

number without becoming a hardware bottleneck

(software utilization, though, is another matter).

However, the geometric relationship between the

processor cores and the L2 cache via the crossbar

switch does not scale. This relationship essentially is

many-to-many, necessitating long wires, which in

turn pose power/latency challenges that, for suffi-

ciently many processors become problematic. One

suspects, therefore, that this is an architecture in

transition. Nonetheless, we already see significant

movement in the direction of a processor array.

3.2. Vector Intelligent RAM

This processor architecture is driven to low power

without loss of performance by specializing the

processor to the kinds of media processing that

hand-held devices are likely to require. We do

indeed have an array of processors. Again, we have

crossbars between the processor and DRAM, which,

for sufficiently large processor pipelines, will not

scale. One imagines that it will give way to a linear

(topologically) pipeline of processor-DRAM pairs,

which is more scalable (perhaps snaking around the

chip). Even so, bringing DRAM so near the pro-

cessors is a bold move in what may at least resemble

the future of high performance per power processor

architectures.

The Vector Intelligent RAM (VIRAM) architec-

ture exemplifies, with respect to the context of this

discussion, two points (Fig. 3):

1. There is no single GPP architecture anymore.

2. Communication locality is becoming a primary

design goal.

The first point—the GPP market is increasingly

fragmented or refined—will be taken up as a bona

fide economic design force in the next section.

The second point is that sufficiently high perfor-

mance requires memory and processing to be geomet-

rically interleaved. As performance per power

increases, the value of connecting an array of proces-

sors to a separate memory decreases. The degree to

which caches mitigate this also decreases as

performance per power increases. Truly integrating
memory and processor may be the most daunting
challenge of this technological era, since VLSI

technology traditionally segregates processor manu-

facturing processes from memory manufacturing

processes.

Figure 2. A typical crossbar in a chip multiprocessor architecture [18].
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3.3. The Cell Processor

We see from Fig. 4 that the cell processor is an array

of processing elements of two types: The PowerPC

Element (PPE) and the Synergistic Processor Element

(SPE). Both aspects, the replication of processing

elements and the bounded heterogeneity (only two

types of processors) reflects well the design forces

that acted to shape systolic arrays. Level 1 cache is

interleaved with processors. This too reflects the

desire for locality of communication, another force

that acted to shape systolic arrays. However, the

Element Interconnect Bus (EIB) would appear not to

scale to a very large numbers of processing elements.

The cell processor, in sum, moves the state of the art

of processor architecture a great deal in the direction

of processor arrays, but not all the way.

3.4. Tera-ops Reliable, Intelligently adaptable
Processing System

The architects of Tera-ops reliable, intelligently adapt-

able processing system (TRIPS) (please see Fig. 5)

explicitly acknowledge that power now is budgeted. As

Figure 4. The floor plan of a cell processor [16].

Figure 3. The floor plan of VIRAM1 [12].

Application-specific Processor Architecture: Then and Now



a consequence, architects are hoping that more perfor-

mance increases can be achieved via software (e.g.,

compiler analysis, just-in-time compilation/ runtime,

and application programs), allowing certain simplifi-

cations of hardware requirements, and commensurate

power reductions. They also acknowledge that wire

delays now, and increasingly will, affect architecture.

Of course, they acknowledge that concurrency must be

exploited to improve performance per watt.

From the perspective of array processing, these

architectures embrace tiling, a processing element

array architecture: A processor comprises a set of

tiles. The number of tile types is fixed, but the

number of tiles is intended to scale. Figure 6

illustrates this architectural feature. This beautifully

reflects both the parallelism of systolic arrays and

component reuse. Also like systolic arrays, the same

advantages accrue: increased performance from

increased concurrency and increased designer pro-

ductivity from component reuse.

To improve concurrency with, it is hoped, minimal

application program modification, TRIPS uses an

Embedded Data Graph Execution (EDGE) architec-

ture. Under this scheme, at compile time, the

program graph is partitioned into blocks, each of

which exposes instruction-level parallelism (ILP)

that is exploited by TRIPS processors. This is

illustrated in Fig. 7. An important aspect of this

architecture is the reduced use of registers: They are

used at the boundary of blocks, but not within

blocks, saving energy and increasing performance.

This, in effect, used the 2D geometry of VLSI

technology to create what might be termed a 2D very

large instruction word (VLIW). Interestingly, this

concept also has been explored by Santos et al. [23].

One difference between their respective approaches

appears to be that, in TRIPS, each block asynchro-

nously signals its completion to a global controller;

in the 2D-VLIW, the block is scheduled (both

placement and dispatch) statically and synchronous-

ly. One of the most difficult issues facing hardware

designers concerns how much complexity can be

shifted to application programmers. The EDGE/2D-

VLIW architectures that exploit larger amounts of

ILP may be a vital contribution to this most serious

challenge. Also, since there are many blocks and

many processors, some coarse-grained concurrency,

in principle, also may be achieved.

The processors clearly are separated physically

from the L2 cache and the off-chip memory, which

limits scaling the number of processors per chip.

Although not shown, the SDRAM is distributed

among the TRIPS chips. So, there is an interleaving

of memory and processors, albeit across chips.

Figure 5. TRIPS chip block diagram [16].
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3.5. Reconfigurable Architecture Workstation

The reconfigurable architecture workstation (RAW)

architecture [1, 24, 25] explicitly treats the scalability

problems of traditional wide issue GPP architectures.

Figure 8 gives a schematic floor plan for such an

architecture; Fig. 9 gives a schematic floor plan for the

RAW architecture. The designers replace the crossbar

Figure 7. Block execution: Processor core tiles and interfaces: R tiles inject register values, E tiles execute block: load, compute, deliver

outputs to R-tiles/D-tiles, and branch to G tile [23].

Figure 6. TRIPS tile-level microarchitecture: Processor[s] as an array of tiles: D data cache, E execution tile, I instruction cache, G global

control, M memory (scratchpad or L2 cache), N network interface, R register bank [23].
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bypass network with a point-to-point, pipelined, 2D

mesh routing network. One important aspect, from the

perspective of this article, is their respect for the need to

localize communication. This is reflected in their

explicit distribution of the register file, instruction

cache, PC, and data cache. The resulting architecture is

no less than a frontal assault on the scalability problems

of the traditional architecture. Locality also is reflected

in the routing network, which is pipelined-data_s
destination per cycle is never too far from its source.

A path breaking aspect of this approach, among

many, is the replacement of hardwired connections

with a programmable network, pushing the optimiza-

tion of application communication from the hardware

to the compiler. By pipelining, they reduce the

maximum wire length and commensurately increase

clock speeds without the customary attendant

increases in power consumption. At the same time,

they allow the network, via software, to be specialized

according to the application. This significantly

increases the complexity of efficient compilation.

But, in principle, it reduces the design cost and the

operation cost (power and/or time) of multi-phased

applications. If this trade can indeed be made, it

surely is a good use of the technology (transistors are

cheap; people, power, and time are not).

The designers fully embrace the design forces that

shaped systolic arrays for essentially the same reasons.

Figure 8. Scaling a wide issue GPP to an unbuildable extreme (from [26]).

Figure 9. The distributed, scalable version of the GPP in Fig. 8 (from [26]).
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Maximizing communication locality reduces long

wires: Reducing the long wires yields the same

performance per watt advantage sought by systolic

array designers. Tiling reduces design costs: They

leverage the design cost of a single tile, which is

increasingly complex. The resulting architecture very

much resembles a 2D systolic array (which could be

emulated efficiently by the RAW).

The programmable routing network however, is an

attempt to be more general than any particular

systolic array. The idea is to make the RAW a

programmable universal systolic array. Insofar as the

routing network is a pipelined 2D mesh, this goal

seems to be achieved. Indeed, high throughput

stream processing is well suited to the RAW. Some

low latency applications also can be supported by

RAW. However, it is not clear that the most

demanding low latency applications (e.g., high per-

formance control) can be served by the pipelined 2D

mesh network.

3.6. Merrimac

The Merrimac [9] architecture uses two 2 x 4 cluster
arrays, separated by a microcontroller. Clearly, this

is a kind of tiling: Component reuse reduces design

cost and simplifies testing. Each cluster comprises

four floating-point multiply-and-add units, 768

64-bit words of local registers, and 8 K words of

stream register file: This exemplifies their perceived

goal of increasing locality to increase performance.

Streaming itself is the primary vehicle in systolic

architectures for achieving locality and increasing

parallelism without increasing memory bandwidth.

The streaming aspect of the Merrimac is done for the

same reason with the same results.

The Clos network [7] aka a fat-tree [19] is a

deviation from systolic architectures, but one that

makes the Merrimac multiprocessor architecture

more general purpose (Fig. 10). The Clos network

has a shorter bisection width (diameter) than a torus.

Clearly, some interconnect lengths grow as the

number of processors grows. But, it is a slow-

growing function that has some hope of accommo-

dating rather large numbers of processors before a

performance wall is hit. Again, limited resistive

delay implies that long communication lines must

be limited, not eliminated. A Clos network is a

judicious use of long wires. It enables Merrimac to

host computations that have low-latency require-

ments, making it an ambitiously general-purpose

high-performance processor architecture.

Figure 10. Floorplan of a Merrimac stream processor chip (from [9]).
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4. Where are Architectures Headed?

In fairness to the architects of GPPs, their seemingly

belated embrace of some fundamental technological

design forces has to do with the set of applications

they support. They needed to be concerned with

supporting essentially any application; systolic

arrays are designed to support highly regular algo-

rithms, such as dense or banded matrix algorithms.

The problem faced by GPP architects seemingly is to

make processor array architectures efficient for

general applications, which fundamentally is an

algorithmic and programming challenge.

The existing design forces, both technologic and

economic will continue into the future. A trend that

already has started will likely increase in the future:

the fragmentation of the processor market. For

example, we used to have a GPP market. It

increasingly is giving way to a market for desktop

architectures, server architectures, hand-held archi-

tectures, graphics architecture, etc. Perhaps scientific

architectures most resemble what once were GPP

architectures. This fragmentation may have resulted

from the size of the GPP market growing to the point

that subdivisions were economically feasible. Since

each niche architecture performs its niche of appli-

cations better than a GPP architecture, its operational

cost advantages were justified even in the face of the

smaller pot of design dollars destined for that

architectural niche. These niches are subclasses of

the GPP architectural class: Each architectural

subclass benefits from the design dollars put into

the general class, adding some design cost to create

their architectural subclass, but sharing some design

cost with all subclasses. Nonetheless, the smaller pot

of design dollars for each niche puts it in a position

that is reminiscent of application-specific architec-

tures: smaller markets means fewer design dollars (to

design their architectural subclass). In short, the

implications of scarce design dollars is the same:

increased impetus to reuse components. To these

forces we add two more.

4.1. Field-programmable Gate Array

One technologic force is field-programmable gate

arrays (FPGAs), which have advanced rapidly for

some time. One can imagine two design points: (1)

custom hardware that performs one application

optimally and (2) general-purpose hardware whose

software performs many applications (sub-optimally).

The spectrum connecting these two extremes estab-

lishes the degree to which the hardware is program-

mable, which is fixed at the time the hardware is

designed. FPGAs add another dimension: The degree

to which the hardware can be reconfigured in the

field. In this 2D reconfigurability–programmability
design space:

(7) The degree of programmability increasingly can
be field-configurable. For example, an FPGA

can implement an ISA which can expand or

contract in the field, depending on which

instructions an application actually needs. There

may be a field-programmable architectural

tradeoff, for example, between the number of

ALUs and the size of their instruction set.

Similarly, the FPGA can implement a routing

network that not only can change in the field, but

whose degree of programmability can change in

the field. Again, some applications need a wider

set of communication topologies than others.

Economizing hardware where one can allows us

to expand hardware where the application can

most benefit from expansion (e.g., decreasing

the amount of hardware devoted to routing so

that we can increase the number of processor

pipelines in a non-recursive signal processing

application where increasing throughput is more

important than reducing latency). Co-location

of diverse high-performance applications implies

the need for reconfigurable hardware, so that

each application can make good (albeit not fully

optimal) use of the hardware substrate. The

fraction of hand-held appliance hardware that is

reconfigurable, for example, may increase. Sen-

sors, on the other hand, have such tight power

constraints, that we would not expect any fraction

of their hardware to be reconfigurable for the

foreseeable future.

4.2. Increasing Complexity and Adaptability

Focus now on the reconfigurability spectrum, which

connects the two extremes of purely custom hard-

ware with purely FPGA (of course, any FPGA is

programmable to a limited extent). The space in

between these extremes is populated by hybrid

architectures: custom hardware dimpled with FPGA

cores and FPGAs dimpled with ASIC cores. This

Cappello



spectrum, which itself is changing rapidly due to

rapid advance in FPGA technology, is emblematic of

a new design force: Both applications and technol-

ogy are increasing in complexity.

(8) Increasing complexity implies increasing special-
ization of labor. The rate of increase in com-

plexity also appears to be increasing. In such

turbulent times, the importance of adaptability
increases. People, organizations, architectures,

and designs all benefit from adaptability. This

feature-adaptability, we predict, will be a primary
force determining the success of people, organ-

izations, architectures, and design processes.

(9) Increasing rate of complexity increases implies
increasing value of adaptable designs and design
processes.

4.3. An Architectural Sweet Spot

Based on the foregoing observations, we predict an

architectural sweet spot: an architectural region that

will receive an increasing amount of attention.

Figure 11 gives a 2D taxonomy of processor

architectures. The abscissa is the architecture_s
degree of field reconfigurability. At one extreme,

we have an architecture that has no field reconfigur-

ability. The other extreme is an architecture built

entirely from an FPGA. The ordinate in this

taxonomy is the architecture application specificity.

At one extreme are architectures that are designed

for a specific application. The other extreme repre-

sents general-purpose architectures. As indicated in

Fig. 11, the taxonomy can be divided into quad-

rants. Application-specific integrated circuits

(ASIC) belong in the lower left quadrant, since

they are custom, non-configurable circuits. GPPs

belong in the upper left: They are custom, non-

configurable circuits that attempt, as far as possible,

to be able to handle the maximum set of applica-

tions. A Custom Computing Machine (CCM) is

very reconfigurable, hence its position in the right

part of the taxonomy. If the CCM is reconfigured

only at design time, to some particular custom

computing machine, it might be best placed in the

lower right quadrant. However, if the CCM can

reconfigure operationally (at operation time), it, in

effect, is a GPP, belonging in the upper right

quadrant. The lower right quadrant often contains

specific applications that are being prototyped

before proceeding to ASIC design. A reconfigurable

FIR filter Btissue^ [6] also would belong in this

quadrant.

We predict that attention given to architectures

in the center of this 2D taxonomy will increase.

We may conceptually define the center with four

constraints: two lower bounds, which are primarily

economic, and two upper bounds, which are

primarily performance-oriented:

1. The specificity lower bound: If architectures are

getting increasingly complex, their design is

likely to get increasingly expensive. The more

specific an architecture is the fewer applications it

can serve, the fewer dollars can be devoted to its

design. We thus expect that most architectures

will target a set of applications that make their

design economically viable.

2. The specificity upper bound: Demands for per-

formance and the size of special markets, such as

routers, have fragmented the GPP market. It is

increasingly likely that no single GPP architecture

ASIC
PROTOTYPE

ASIC

GPP CCM

STATIC DYNAMIC

SPECIFIC

GENERAL

ARCHITECTURAL

SPECIFICITY

RECONFIGURABLE

Figure 11. A 2D architectural taxonomy and its sweet spot.

Application-specific Processor Architecture: Then and Now



will have sufficient performance to be used in any

particular market fragment (e.g., the processor

used in a router will be different from a processor

used in a desktop computer). There essentially

will be no GPP that is commercially viable. Truly

GPPs will be actively researched and developed

only in academic settings, if there.

3. The reconfigurability lower bound: We are not

equating a circuit_s complexity with its number of

transistors. Rather, complexity concerns how

difficult the architecture is to describe (i.e., its

Kolmogorov complexity [27]). If one can de-

scribe the architecture by a small iterative or

recursive program, it is not complex. In this

descriptive sense, memory chips are not complex.

(And indeed, we may expect that memory chips

will continue to be ASICs.) For the applications

of the future whose descriptive complexity is

increasing, the cost of purely custom circuitry

will be prohibitive.

4. The reconfigurability upper bound: We believe

that most applications will have performance per

watt requirements that preclude reliance on a

purely FPGA architectural substrate.

The sweet region then is one that embraces

architectures that are partially reconfigurable and

partially custom, that serve a set of applications that

is large enough to financially justify careful design,

and which perform well for their applications,

precluding application universality.

Several examples may serve to flesh out this

taxonomy. The Cell processor, TRIPS, and the

Merrimac processor all can be used as a general-

purpose multiprocessor platform. Their main aspect

is their multiprocessor architecture. Indeed, none

advertise reconfigurability. So, it seems appropriate

to place them in the upper left quadrant. The RAW_s
network programmability is not currently billed as

field-configurable. Each tile however has a small

amount of reconfigurable circuitry. It therefore can

be placed to the right of the previously mentioned

architectures.

To use the Tensilica Xtensa processor [26], one

defines an application-specific processor, and the

Tensilica Xtensa is configured appropriately, includ-

ing software support. Since the Xtensa has asic

cores, the resulting processor is efficient. Its partial
reconfigurability reduces design time. However,

once configured, Xtensa-based processors are not

advertised to dynamically reconfigure (i.e., reconfig-

ure during operation, for example, during the

operation of a cell phone). It can be placed in the

lower right quadrant.

LISATek [8] similarly allows one to quickly

design an efficient application-specific architecture

with associated software. It too is not advertised to

operationally reconfigure. Within this taxonomy, it

can be placed in the same neighborhood as the

Xtensa processor.

MathStar_s Field-Programmable Object Array

(FPOA) is similar to an FPGA. However, the objects,

which are 16 bit configurable machines, such as an

Arithmetic Logic Units (ALU), Multiply-Accumulators

(MAC), or Register Files (RF), are connected by a

high-speed interconnect mesh. Its placement is

similar to LISATek. Objects however have the

ability to change communication patterns on a per-

clock basis. That is, beyond design configurability,

MathStar_s FPOAs can reconfigure operationally. If

we augmented the taxonomy with a third dimension

representing reconfiguration time, the FPOA would be

positioned differently from the LISATek in that

dimension.

Finally, we refine the taxonomy with a third

dimension concerned with the latency of the com-

munication network that connects processing ele-

ments. This refined taxonomy is presented in Fig. 12.

This essentially is a way of classifying applications,

based on the performance requirement to produce a

solution quickly (low latency network) versus high

throughput. The former might arise, for example, in

a high-performance recursive control application

(e.g., robotic control of a fast-moving vehicle). The

latter might arise, for example, in a router or a video

server. (In a router or video server, not only is

throughput more important that low latency, there is

only a small requirement for persistent storage.

Under these circumstances, off-chip memory appears

to be an obstacle to locality that is tempting to

directly address, as was done in the VIRAM.) High

throughput applications often exhibit data parallel-

ism; low latency applications may exhibit thread

parallelism.

This brings us to an intriguing question: What part

of the architectural sweet spot should be reconfig-

urable and what part should be custom circuitry? The

space of architectures under consideration can be

viewed as those comprising as set of partially re-

configurable processors connected by a partially

Cappello



reconfigurable communication network. While this

sweet spot is an architecturally rich design space, we

quickly identify two simple, extreme categories of

interest:

& An ASIC network connecting FPGA core processors.

& An FPGA network connecting ASIC core processors.

The Xilinx Virtex-II Pro X [28] might be

considered an early entry in the latter category,

sporting up to two PowerPC processor cores. Even

these two extreme categories, which simplify the

question of where to put the reconfigurability, in fact

oversimplify important architectural opportunities

and issues. For example, in the custom network of

reconfigurable processor cores, what aspects should

be reconfigurable? When should it be reconfigured?

We could reconfigure the instruction set [architec-

ture] between hyperblocks. However, the time to

reconfigure may be too great to justify the time

reduction that the customized instruction set [archi-

tecture] achieves on the hyperblock: This amount of

reconfiguration may be too much or too frequent.

How frequently/extensively can it profitably be

reconfigured? Indeed, there is a tradeoff between

frequency and extensiveness of reconfigurability:

The more extensive the reconfiguration, the less

frequent it must be to achieve a net time reduction.

The tipping point, based on FPGA technology is

improving with time: More extensive/frequent recon-

figurations are possible with each new generation of

FPGAs. One approach is to reconfigure only be-

tween applications. Another, is to have a two-level

block scheme: An application is decomposed into a

directed graph (digraph) of hyperblocks, each of

which is executed as in an EDGE architecture.

However, this digraph could be partitioned into

subgraphs. Reconfiguration occurs between sub-

graphs, but not within a subgraph. The size of a

subgraph would be a compiler parameter, which can

be reduced as the time for an FPGA to reconfigure

decreases.

The principal constraint, for time-sharing, is to

avoid time-slicing applications on the same proces-

sor cores, if doing so requires reconfiguration. One

could partition the cores among a set of concurrently

running applications.

Similar considerations apply to when and how to

[re]configure/[re]program a configurable/program-

mable communication network.

4.4. Specialization of Labor

We now return to the specialization of labor that

results from increasing complexity of applications

and technology. We need application domain

experts, programming language designers, compiler

writers, computer architects, computer engineers,

FPGA experts, and VLSI circuit specialists. Using

traditional terms, we need applications experts,

computer scientists, computer architects/engineers,

and electrical/materials engineers. It is increasingly

difficult for any one person to be expert in the

relevant disciplines, starting from application do-
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COMMUNICATION
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DP

ASIC
PROTOTYPE

ASIC

GPP CCM
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SPECIFICITY

SPECIFIC

GENERAL

RECONFIGURABLE

Figure 12. A 3D architectural taxonomy and its sweet spot, where the third dimension represents the latency of the communication network.
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main and going all the way to materials. While

individuals with interdisciplinary knowledge are

desirable, interdisciplinary collaboration is essential.

Figure 13 vertically depicts levels of representa-

tion (e.g., from programming language to VLSI

circuits), activities (e.g., from application program-

ming to implementing an FPGA in VLSI circuit

technology), and actors (e.g., application experts to

materials engineers). Let us briefly consider these

representations, actions, and actors.

Programming language One reason that GPP

multicore architectures did not emerge sooner is

because the Bproblem^ of parallel programming had

not been Bsolved.^ It is a complex, time-consuming,

error-prone business, to be avoided, if at all

possible. Parallel programming now is central to

the success of this new hardware era. Hardware

manufacturers thus are gravely concerned. Since

parallel programming remains an unsolved problem,

the research into, and development of, effective,

efficient parallel programming languages, tools, and

systems is most urgent. There however is contro-

versy about how programming languages and

systems should change to facilitate the development

of software for multiprocessor chips. The language

should be high level, requiring the application

programmer to say only what needs to be done,

letting the compiler, as far as possible, decide how to

do it. But, the language and computational model

must not hide from the application programmer those

Bhow^ aspects that impact performance and which

require application knowledge to exploit. Certain

opportunities for concurrency are best identified at

the application level. It may well be that parallel

programming languages and systems will differenti-

ate between broad application domains (i.e., compu-

tational models), such as between a single problem

instance model and a stream processing model (e.g.,

signal processing). We are reminded of program-

ming languages that are specific to Bsystolic

computations^ [10, 11].

The design of high-level general-purpose program-

ming languages typically requires computer science

expertise; domain-specific languages, of course, also

require domain-specific expertise.

Like hardware, the high 800 cost of software

development implies the desirability of reuse, which,

in turn, implies the identification and abstraction of a

computation_s independent components.

Computational Model What should the computa-

tional model expose to the application programmer?

What Bhow^ details should it require of the applica-

tion programmer? Different applications seem to

yield different answers. Should the computational

model be a sequential machine, where the compiler

is entirely responsible for mapping the actual

computation onto a multiprocessor? Most people

dismiss this approach, arguing that the compiler

cannot do a sufficiently good job.

A parallel random access machine (PRAM) is an

abstract machine for designing the algorithms appli-

cable to parallel computers. It is a multiple instruction

General Purpose
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Domain Specific
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Computational Model

Compute
Substrate

Communicate
Substrate

Configurable
Hardware

Static
Hardware

Fabrication Technology
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CS, DE

CS, CE

CE, EE

EE

EE, ME

Circuit layout

Processor architecting

CompilingCS

CS, DE

Application programDE

CE, EE Processor layout

FPGA/Circuit design

Language design
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Compute model design

Figure 13. Specialization of labor. Disciplines appear on the left. CE Computer engineer, CS computer science, DE domain expert, EE

electrical engineer, ME materials engineer. Processes appear in the center. The right-hand part of the figure depicts different layers in the

design process.
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multiple data machine model that hides synchroniza-

tion and communication issues from the application

programmer, letting the programmer instead focus on

maximizing concurrency. Should a PRAM be the

application programmer_s computational model? By

hiding issues of synchronization and communication,

it increases application programmer productivity and

cleanly separates application code from synchroniza-

tion and communication code. For this model to be

successful, we need a compiler and multiprocessor

architecture that together efficiently execute the

application. The principle obstacle to this approach

has been an efficient multiprocessor architecture. The

PRAM (even the exclusive read, exclusive write

variety) is difficult to simulate without a large loss

of algorithmic efficiency between the PRAM model

and the actual computation time. However, Balkan,

Qu, and Vishkin [2] give strong evidence that

connecting processors and first-level caches with a

mesh-of-trees network can result in acceptable

performance. It seems reasonable to believe that a

PRAM computational model will yield good applica-

tion programmer productivity with acceptable per-

formance for applications that require low-latency.

Examples may include complex, real-time robotic

control, some large scientific computations, such as

the N-body problem, and exact solution to NP-

complete problems.

Some applications require high-throughput, but do

not require low-latency (e.g., [multiple independent]

stream processing). Examples include non-recursive

digital signal processing (e.g., audio and video

streams), routing, and perhaps database transaction

processing, and specific web service processing. In

such applications, the computational model may be a

directed acyclic graph (DAG) of processes. An

important goal in such a model is to efficiently

schedule the processes onto a set of processors. This

may be done with or without help from the

application programmer. If an aspect of the applica-

tion is both NP-hard to optimize and central to the

computation_s efficient execution, it may be appro-

priate to expose it to the application programmer. In

very high throughput applications, the topology of

the DAG is important to optimize, for example, to

minimize the longest edge in a planar embedding. In

such circumstances, exposing the DAG to the

application programmer allows him to creatively

bring application knowledge to bear on the central

optimization problem. It may be that a library of

topological classes (e.g., 3D meshes, butterfly net-

work [4], banyan networks, fat-trees, cube-connected

cycles, shuffle-exchange networks [14], mesh-

of-trees) could be developed, whose planar embed-

dings have been optimized by experts [3, 18]. But,

the application programmer may be in the best

position to identify the most appropriate topology

class in the library of topological classes: This is an

example, where we may want the computational

model to expose process topology to the application

programmer.

The compiler, using the computational model,

maps the application program to the compute and

communicate substrates. Compiler construction is

typically the province of computer scientists. But,

clearly there is the potential for synergy between the

compiler writers and the computer architects.

Should the computational model be, in any way,

reconfigurable. That is, should it expose any aspect

of a reconfigurable compute substrate or communi-

cate substrate to the application programmer?

Compute substrate This is garnering a lot of

attention, due to the paradigm shift from increasing

clock speeds to increasing concurrency. The EDGE

(2D VLIW) architecture will continue to be explored

and refined.

The interesting new aspect is hardware reconfigur-

ability: What is the optimal amount? What aspect[s]

of the compute[communicate] substrate should be

reconfigurable? What is the best way to expose the

reconfigurable aspects of the compute[communicate]

substrate to the compiler? Should hardware reconfig-

urability occur only between applications or also

within an application? If the former, the compiler

may explore a discrete space of compute[communi-

cate] substrates, selecting what it determines is likely

to be the best combination of compute and commu-

nicate substrates. If hardware reconfigurability

occurs within an application, the compiler may need

to identify program phases such that the time delay

of hardware reconfigurability can be amortized over

a sufficiently long program phase to be Bprofitable.^
In this case, application program annotations may

help the compiler estimate the length of a program

phase (e.g., the likely length of an FFT) whose length

is data-dependent.

Communicate substrate The desire for increasing

on-chip communication concurrency and bandwidth

Application-specific Processor Architecture: Then and Now



has led to network-on-chip architectures [22], whose

modular architectures promise scalable performance

increases. All the questions concerning the compute

substrate have analogs for the communicate substrate.

Regarding reconfigurability, one imagines that there

is a discrete set of compute substrates and a discrete

set of communicate substrates. Substrate design

desiderata: The compute and communicate substrates

are independent: Every point in the product space of

substrates is a valid computer architecture.

Reconfigurable hardware We expect to see un-

abated progress in this area. Some specific areas of

rapid progress include: FPGA architecture, FPGA

application development environments, the speed

with which reconfiguration occurs (which affects

how and when it is used), and the ASIC cores that

populate it. Indeed, FPGAs may become a primary

market for ASICs, and affect the richness of FPGA

application development environments.

As the complexity of fabrication technology

increases, the expertise needed to fully exploit it

increases. FPGA designers will have that expertise.

Their job is to pass advances in fabrication to

computer architects in the form of better FPGAs.

This is the multidisciplinary area of computer

engineers and electrical engineers.

We have asked above if it would be advisable to

expose some degree of hardware reconfigurability to

the compiler. A way to do this would be to design

compiler reconfiguration interfaces (CRI) for the

compute and communicate substrates, exposing a

carefully designed part of the FPGA development

interface to the compiler, whose target then is not

entirely static. Advances in compiler technology for

reconfiguring hardware then can be delivered to

applications by simply recompiling the application.

Of course, compiler reconfiguration interface design
is key, a ripe area of interdisciplinary research

involving compilers, computer architecture, and

FPGA design.

We similarly could design a computational model

reconfiguration interface, exposing a carefully

designed part of the compute and communicate sub-

strate reconfiguration interfaces to the application

programmer. Application Program Reconfiguration

Interfaces (APRI) is a ripe area of interdisciplinary

research involving programming languages, compu-

tational models, and computer architecture.

Static hardware In the heterogeneous space of

partially reconfigurable, partially static circuits, there

is the question as to what part should be static. In some

cases, it will be all or part of compute substrates, in

others it will be all or part of communicate substrates.

As the demand for a circuit increases the feasibility of a

custom design increases. As tools for the development

of custom circuits increase designer productivity, the

feasibility of custom circuits increase. As the cost of

silicon (and the need for silicon reuse) decreases, the

feasibility of custom circuits increase. While these are

somewhat simplistic characterizations, we can be

assured that the dance between reconfigurable hard-

ware and custom circuitry will go on.

The design of hardware design tools, while multi-

disciplinary, will always include electrical engineers,

whose understanding of the fabrication technology

will always be key.

Fabrication technology Work in electrical/material

engineering continues apace. Apart from the

Bdisruptive^ technologies, such as quantum dots,

nanotubes, and RNA-substrates, advances in silicon-

based circuit substrates continues to impress. Indeed,

embedding lasers in silicon may produce wonderful

new toys that change the rules for communicating

within and between chips. There is every reason to

believe that the next 20 years in electrical/material

engineering will greatly surpass the advances of the

last 20 years.

The multi-layer design process, depicted in Fig. 13

is intended to emphasize the specialization of labor

that results from the increasing complexities

throughout the entire process of specifying a com-

putation to executing that computation in hardware.

Each layer acts as an articulation point for the layer

above and the layer below. For example, the

compute and communicate substrates act as an artic-

ulation point between compilers, on the one hand,

and FPGAs and custom circuits on the other.

Changes in an FPGA layer can be hidden from the

compiler by the substrates, or it can be exposed to

the compiler by the substrates. In general, each layer

can control the propagation of changes to neighbor-

ing layers. This control enables layers to advance

concurrently without being chaotic. This control

pattern might be referred to as an iterated adaptor
pattern; it allows controlled adaptation in rapidly

changing multi-layer environments.
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The expertise dependencies are not a one way

street. For example, circuit design involves placement

and routing tools and [programming] languages. The

underlying design problems translate into large-scale

computationally complex problems that are the

province of computer science and/or operations

research. Beware the person who derides electrical

engineers, computer scientists, or any other discipline.

We all need each other. The winning culture is

inclusive, not tribal.

5. Conclusion

Special-purpose processors must push the limits of

technology to achieve the performance that justifies

their cost. Systolic arrays embrace VLSI circuit

technology to achieve high performance via paral-

lelism, honoring the scarcity of power and resistive

delay by using a communication topology with no

long inter-processor wires. The communication

topologies require chip area that is linear in the

number of processors. They also embrace the design

economics of special-purpose processors by reusing

a processor design in an array of (generally)

homogeneous processors.

These same design forces increasingly are re-

flected in today_s GPP architectures. Power scarcity

has pushed GPPs to multi-core architectures, where

a processor design is reused in ever larger arrays
of cores.

Increasing processor complexity increases proces-

sor design cost, while fragmenting the GPP market

reduces the available design dollars. These forces

imply the need to reuse designs. Multi-core arrays

thus comprise a fixed number of core types (e.g., the

Cell processor_s SPE and PPE), independent of the

number of cores in the array. Tile architectures,

introduced in RAW and adopted in TRIPS, fully

embrace these design forces.

Regarding the need to limit resistive delays and

localize communication, we expect that buses, which

still are used today in multi-core architectures (even

the Cell), will give way to a communication network

that permits higher communication concurrency but

which scales, such as is used in the RAW architec-

ture. We expect to see networks use of at least a 2D
torus topology, since its worst case latency is half
that of a simple 2D mesh but still admits a linear area

embedding in the plane. We expect similar commu-

nication topology enhancements in the execution tile

arrays of EDGE (2D VLIW) architectures, reducing

hyperblock completion times. In the RAW architec-

ture, first-level cache is interleaved with the proces-

sors, enabling compilers to increase communication

locality. EDGE architectures use a 2D geometry for

the execution tiles, but a 1D geometry for the

registers and data caches. If the execution tile

array is increased significantly, issues of locality

may require a 2D geometry for register and cache

tiles. Doing so presents compiler challenges/

opportunities.

There is no question that the highest performance

special-purpose processors will continue to aggres-

sively exploit the underlying technology with custom

circuits. We expect this to bear fruit for regular

computation on streams, as has always been the

principle province of systolic arrays. However, to the

extent that applications get less regular and market

demand is smaller (than, say, for graphics process-

ing), purely custom circuits are prohibitively costly.

We see a sweet spot in the middle of the 2D tax-

onomy of Fig. 11. This sweet spot is for chips that

are less costly than purely custom circuits but which

perform better than those designed on an entirely

reconfigurable substrate. They are more generally

applicable than a single-purpose chip but perform

better than a GPP. This area, we believe, is likely to

see a lot of research and development.

Increasing complexity, in both applications and

technology, requires increased specialization of

labor. This appears to result in a multi-layered

design process involving expertise of many varieties.

The layering allows progress in each area to proceed

concurrently (e.g., in compiler technology and FPGA

technology). The layering also allows activities in

one layer to adapt to advances in other layers in a

controlled manner. Thus, the entire vertical process

can advance quickly without becoming chaotic (from

unwanted inter-layer interaction).

Hardware reconfigurability will be increasingly

exploited. The RAW architecture_s programmable

network presages an important area of research into

programmable communication substrates. For now,

this programmability is exposed only to the compil-

er. We see such programmability being exposed, in

some form, at the application level, especially to deal

with issues that are most tractable at that level. We

also see the compute substrate evolving from a static

Application-specific Processor Architecture: Then and Now



architecture to a reconfigurable architecture that is

exposed to the compiler, with attendant challenges

and opportunities for efficient, effective compilation.

Extending a reconfigurable architecture, in some

form, to the application program_s computational

model presents exciting opportunities. We expect

hardware reconfigurability to yield increasingly

intense interdisciplinary research in programming

languages, computational models, algorithms, com-

pilers, computer architecture, and FPGA design.

Advances in materials may be more dramatic in

the next 20 years than they were in the last 20 years.

They will continually change the Bfundamental^ rules

of our game. Since, indeed, every layer in the design

process is likely to advance significantly in the next

20 years, their combined affect may be much more

dramatic in the next 20 years.

Finally, although increased complexity requires

increased specialization of labor, the winning culture

shuns tribalism and abhors every notion of sacred. It

is marked by open-mindedness, rationality, and in-

clusiveness. Our disciplines and organizations must

have boundaries. But, boundaries are a playground

for our creative spirits.
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