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Abstract

Most work on the problem of synthesizing a systolic array from a system of recurrence

equations is restricted to systems of uniform recurrence equations. Recently, researchers have

begun to relax this restriction to include systems of affine recurrence equations. A system

of uniform recurrence equations typically can be embedded in spacetime so that the distance

between a variable and a dependent variable does not depend on the problem size. Systems

of affine recurrence equations that are not uniform do not enjoy this property. A method is

presented for converting a system of affine recurrence equations to an equivalent system of

recurrence equations that is uniform, except for points near the boundaries of its index sets.

Necessary and sufficient conditions are given for an affine system to be amenable to such a

conversion, along with an algorithm that checks for these conditions, and a procedure that

converts those affine systems which can be converted.

The characterization of convertible systems brings together classical ideas in algebraic geom-

etry, number theory, and matrix representations of groups. While the proof of this characteri-

zation is complex, the characterization itself is simple, suggesting that the mathematical ideas

are well chosen for this difficult problem in array design.

Keywords: affine recurrence equation, fundamental region, matrix representation of a group,
parallel computation, processor array, systolic array, uniform recurrence equation.
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1 Introduction

An important property of any VLSI system is physical regularity. Systolic arrays [19, 18] and
wavefront arrays [20] have an iterative form of physical regularity. Array architecture is suited to
VLSI technology; replicating a processing element reduces design cost, and neighbor communication
between processing elements reduces operation cost. Leiserson, Rose, and Saxe [23, 22] show how to
convert a finite network without zero-delay cycles to an equivalent network that functions systolically
(see also [34]). Melhem and Rheinboldt [24] give a mathematical model for the verification of systolic
networks.

A system of uniform recurrence equations, as defined by Karp, Miller, and Winograd [17, 16],
maps especially well onto a systolic/wavefront array. This is noted explicitly by Chen and Mead
[5], and Quinton [30], for example. Linearly mapping a system of recurrence equation’s index
sets into spacetime, has been pursued by Cappello and Steiglitz [3, 4]. Fortes et al. [14] survey
seventeen methodologies for the design of systolic arrays. Systematic translation from either a
program fragment or a system of uniform recurrence equations to systolic/wavefront arrays has
been studied by Moldovan [27] [26], Quinton [30], Winkler and Miranker [25], Delosme and Ipsen
[11], and Moldovan and Fortes [28]. Rao [32] introduces and analyzes a class of algorithms, called
regular iterative algorithms, which contains systolic algorithms.

Miranker and Winkler [25], among others, describe how to convert a system of recurrence equa-
tions that overwrites array variables to one that does not. Since this can always be done, one’s
attention typically is restricted to systems of recurrence equations where variable overwriting does
not occur. This restriction is made here.

A system of uniform recurrence equations typically can be mapped linearly into spacetime so that
interprocessor communication requires only a fixed amount of memory, and fixed-length intercon-
nections. There is no such linear mapping into spacetime for systems of affine recurrence equations
that are not uniform. Delosme and Ipsen [12] present the basic elements of a methodology for deter-
mining systolic array schedules for 2-dimensional systems of affine recurrence equations. Choffrut
and Culik [6] treat a related problem. They apply a geometric transformation to a systolic array,
such that an output can be fed back as an input via physically neighboring connections. They fold
the array, eliminating long wires for connections between elements (in a 2-dimensional array) that
are related by reflections and/or rotations. Reflections also have been used by Rajopadhye, Mui,
and Kiaei [31] to find piecewise linear schedules for systems of affine recurrence equations. Indeed,
it has been shown, for systems of uniform recurrence equations, that piecewise linear schedules are
optimal [9, 39]. These results build on the linear scheduling work of Shang and Fortes [33].

Our paper treats systems of affine recurrence equations of any finite dimension. We formulate a
‘generalized fold’, and consider the following question:

2



Which systems of affine recurrence equations can be converted, by a generalized fold, to
an equivalent system that is uniform, except for points near the ‘folds’?

These latter systems are called systems of quasi-uniform recurrence equations. Where linear embed-
dings fail, a generalized fold may succeed in enabling a VLSI array implementation.

By making use of algebraic geometry, number theory, and matrix representations of groups, we
provide:

• a characterization of those systems of affine recurrence equations that can be converted, by
a generalized fold, to an equivalent system of quasi-uniform recurrence equations (Theorem.
3.12 on page 25).

• an algorithm for deciding if a system of affine recurrence equations can be so converted (Al-
gorithm 3.1 on page 22);

• a procedure for converting a system of affine recurrence equations to an equivalent system of
quasi-uniform recurrence equations (Procedure 3.2 on page 28).

The balance of this paper is organized as follows. Definitions and examples are contained in § 2.
A sequence of theorems, presented in § 3, includes the bullet items mentioned above. To save space,
we have omitted some proofs, which appear in [35]. Conclusions are given in § 4.

2 Definitions

We present some basic definitions which are necessary for the paper to be self-contained. Some of
our definitions are technically different from those appearing in the literature. New definitions also
are presented.

2.0.1 Notation

In this paper a column vector sometines is written as (r1, r2, . . . , rn); a row vector is written as
[c1, c2, . . . , cn].
Rn refers to this vector space with the Euclidean metric (i.e., the Euclidean n-space is denoted by
Rn). The set of integer lattice points in Rn are denoted by Zn. A lattice in Zn is denoted by Ln

(e.g., the n-vectors with even entries).

Definition 2.1 Index set: A finite set S ⊆ Ln; p ∈ S is referred to as an [index] point .

Definition 2.2 System of recurrence equations (SRE): A set of equations of the form

ai(p) = αi(ak1(δ
1
k1i(p)), ak2(δ

2
k2i(p)), . . . , akr(i)(δ

r(i)
kr(i)i

(p)))
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∀p ∈ Ci, 1 ≤ i ≤ m, 1 ≤ kj ≤ m

where

1. ai is an array whose index set is Si ⊂ Ln
i , where Ln

i is a lattice.

2. Ci ⊂ Si, the domain of computation of ai, is the set of points for which ai is computed1.

3. αi is a function with an r(i)-ary domain.

4. δl
kli

is a function called a dependence map, which has domain Ci and range Ĉl
kli

. (The super-
script l is introduced because when an array is used as an argument more than once in the
same function, then its uses may have different dependences. For example, even if k1 = k2, we
can have δ1

k1i 6= δ2
k2i. The superscript is omitted when the context is clear.)

5. Si = Ci

⋃
l,j

Ĉl
ij (i.e., Si is the set of all points where ai is either computed or used).

Array ai may be computed differently in different subsets of Ci (i.e., by more than one equation).
In this case, the number of such subsets, and associated equations, must be fixed. (In order to denote
such a subset, we refer to the recurrence equation by number.)

2.1 Example 1

The SRE2 below, due to Delosme and Ipsen [12], factors a symmetric Toeplitz matrix and its inverse
into LDLT :

1 ≤ i ≤ n, a1(i, 0) ≡ ti−1 (1)

2 ≤ i ≤ n, a2(i, 0) ≡ ti−1 (2)

1 ≤ j ≤ n− 1, a3(j) = a2(j + 1, j − 1)/a1(j, j − 1) (3)

j + 1 ≤ i ≤ n, a1(i, j) = a1(i− 1, j − 1)− a3(j)a2(i, j − 1) (4)

j + 2 ≤ i ≤ n, a2(i, j) = −a3(j)a1(i− 1, j − 1) + a2(i, j − 1) (5)

a2(1, 0) = 1 (6)

1 ≤ j ≤ n− 1,

1 ≤ i ≤ j + 1, a2(i, j) = −a3(j)a2(j + 2− i, j − 1) + a2(i, j − 1) (7)

The arrays in this example are a1, a2, a3. For this SRE, a1 has the following domain of compu-
tation: C1 = {(i, j)|1 ≤ j ≤ n− 1, j + 1 ≤ i ≤ n}.

1For p ∈ Si − Ci, ai(p) is an input.
2Systolic arrays have been investigated for factoring a symmetric Toeplitz matrix into LDLT , and solving the

Toeplitz system (see, e.g., [21, 10, 12]).
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Some of the dependence maps in this SRE are:

δ23(j) = (j + 1, j − 1) δ13(j) = (j, j − 1) δ11(i, j) = (i− 1, j − 1)

δ31(i, j) = (j) δ21(i, j) = (i, j − 1)

The range of δ21 is: Ĉ21 = {(i, j)|j + 1 ≤ i ≤ n, 0 ≤ j ≤ n− 2}.
The index set of the array a1 is: S1 = {(i, 0)|1 ≤ i ≤ n − 1}

⋃
C1, where the first part includes

the index points in which a1 is used and not computed (i.e., input), and the second part includes
the index points in which a1 is computed.
In Eq. (7) of the SRE,

δ1
22(i, j) = (j + 2− i, j − 1), δ2

22(i, j) = (i, j − 1) .

These are distinct dependence maps of array a2 on itself. Superscripts hence are used to distinguish
them. Array a2 also is computed in another equation.

Definition 2.3 Dependence graph: A finite directed graph G, related to an SRE, whose set of nodes
N = {ai(p)|ai is an array in the SRE, and p ∈ Si}, and whose set of arcs A = {(ai(p1), aj(p2))|p2 =
δl

ji(p1) for some l in the SRE }.

The dependence graph of the SRE in Ex. 1 is given for n = 3 in Fig. 1.
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Ĵ

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´́+

A
A
A
A
A
A
A
A
A
A
AAU

¡
¡

¡
¡

¡¡ª

PPPPPPPPPPPPPPPPPq

©©©©©©©©©©©©*

?

HHHHHHHHHHHHj

¡
¡

¡
¡

¡¡µ

?

6

©©©©©©©©©©©©¼ ?

@
@

@
@

@@I

?

PPPPPPPPPPPPPPPPPq

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢̧

?

PPPPPPPPPPPPPPPPPq

6

?

¡
¡

¡
¡

¡¡ª

A
A

A
A

A
A

A
A

A
A

AK

¡
¡

¡
¡

¡¡ª ?

@
@

@
@

@
@

@
@

@
@

@@I

³³³³³³³³³³³³³³³³³) ?

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQk

a3(1) a3(2)

a1(3, 2)
a2(1, 2) a2(2, 2) a2(3, 2)

a1(2, 1) a1(3, 1) a2(1, 1) a2(2, 1) a2(3, 1)

a1(1, 0) a1(2, 0) a2(1, 0) a2(2, 0) a2(3, 0)

Figure 1: Dependence graph for the system of recurrence equations in Ex. 1.
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Definition 2.4 Reduced dependence graph (RDG): A directed multigraph related to a system of
recurrence equations, with a node for each array ai which is computed in the SRE, and an arc
from ai to aj for each dependence map δl

ji in the SRE. Arcs may be labeled by the corresponding
dependence maps.

An RDG for the system of recurrence equations of Ex. 1 is depicted in Fig. 2.
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Figure 2: An RDG for the system of recurrence equations of Ex. 1.

Definition 2.5 Strongly connected system of recurrence equations: A system of recurrence equations
that has a strongly connected RDG3.

The RDG shown in Fig. 2 is strongly connected, and thus the SRE in Ex. 1 is strongly connected.
Any SRE can be decomposed into strongly connected SREs, where each strongly connected SRE
depends only on the output of previous strongly connected SREs. This is described in [12] and [1].
In this paper, it is assumed that such a decomposition has already been done: SREs are assumed
to be strongly connected. This assumption is removed at the end of this paper.

Definition 2.6 Direct dependence: aj(p1) is said to depend directly on ai(p2) if and only if p2 =
δl

ij(p1) for some l (i.e., ai(p2) is an argument of αj in the computation of aj(p1)).

Definition 2.7 Dependence: An element of array aj(p1) depends on an element of array ai(p2) if
and only if there exists a path in the dependence graph from the node corresponding to aj(p1) to
the node corresponding to ai(p2).

In Ex. 1, a1(3, 2) depends on a1(2, 0), but this is not a direct dependence. Array element a1(3, 2),
for example, depends directly on a2(3, 1).
In this paper, we concentrate on the two special kinds of dependence maps defined below.

3Several similar terms appear in the literature. A strongly connected component is defined in [17]. A π block, is

defined in [1] for a Fortran-like Do loop (where overwriting is allowed), where the nodes in the graph correspond to

statements. A ‘step’ (although more restrictive) is defined in [12]. A tightly connected component is defined in [32].
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Definition 2.8 Affine dependence: A dependence map of the form:

∀p ∈ Cj , δij(p) = Dijp + dij

where Dij ∈ Zn×n, and dij ∈ Zn.

In the remainder of this paper, we assume that Dij is nonsingular and integer, unless specified
otherwise.

Definition 2.9 Uniform dependence: An affine dependence of the form: δij(p) = p + dij (i.e.,
Dij = I).

In Eq. (7) of Ex. 1, the dependence map δ1
22 is affine, but not uniform, because it has the form:

δ1
22(i, j) =

[
−1 1
0 1

]
·
(

i

j

)
+

(
2
−1

)

In Eq. (4) of Ex. 1, the dependence map δ11 is uniform. The dependence map δ23 is not affine,
since the domain and range have different dimensions. In such cases, one can always add dimensions
to the array of lower dimension and insert a 0 in all missing dimensions. This procedure leads to
a dependence map with a singular linear part. However, there exists a procedure which ‘augments’
the dimension of the lower dimension arrays, such that all arrays have the same dimension, and the
linear parts are nonsingular. In this procedure, the lower dimension arrays are computed (or input)
on the boundary only, and then ‘propagated’ to the other dimensions. This procedure is presented
in [25], among others. After ‘augmenting’ the SRE in Ex. 1, we get the following SRE:

2.2 Example 1A

1 ≤ i ≤ n, a1(i, 0) ≡ ti−1 (1)

2 ≤ i ≤ n, a2(i, 0) ≡ ti−1 (2)

1 ≤ j ≤ n− 1, a3(j, j) = a2(j + 1, j − 1)/a1(j, j − 1) (3)

j + 1 ≤ i ≤ n, a3(i, j) = a3(i− 1, j) (4)

j + 1 ≤ i ≤ n, a1(i, j) = a1(i− 1, j − 1)− a3(i− 1, j)a2(i, j − 1) (5)

j + 2 ≤ i ≤ n, a2(i, j) = −a3(i− 1, j)a1(i− 1, j − 1) + a2(i, j − 1) (6)

a2(1, 0) = 1 (7)

1 ≤ j ≤ n− 1,

1 ≤ i ≤ j − 1, a3(i, j) = a3(i + 1, j) (8)

1 ≤ i ≤ j + 1, a2(i, j) = −a3(i + 1, j)a2(j + 2− i, j − 1) + a2(i, j − 1) (9)

Definition 2.10 A system of affine [uniform] recurrence equations (SARE [SURE]): A system of
recurrence equations, where the dependence maps are affine [uniform], and every array is computed
in one recurrence equation for its entire domain of computation.
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In Ex. 1 and 1A, the SRE is not affine because the array a2 is computed in two different equations
for two subsets of its domain of computation. We may split the SRE in Ex. 1A into three parts: 1)
Eqs. (1-6); 2) Eq. (8); and 3) Eq. (9). The result is three SREs. The first one is not affine (because
the array a3 has two equations); the second system of recurrence equations is uniform; the third is
affine.

Definition 2.11 Domain size parameters: Those parameters in the SRE which instantiate the do-
mains of computation. By changing these parameters, we change the size of domains of computation;
the recurrence equations change in no other way.

Domain size parameters can be the input’s size for example, as in Ex. 1 where the only parameter
is the size, n, of the matrix to be factored.

Definition 2.12 Cycle dependence map: A composition of dependence maps associated with the
arcs of a directed cycle in the RDG (not necessarily simple).

2.2.1 Notation

We denote by δi a cycle dependence map which starts at ai, and by δij a direct dependence map
of aj on ai. This notation is changed only after a conversion is done, when all the subscripts are
doubled (e.g., in Thm. 3.8).

In Ex. 1, the following dependence maps constitute a cycle dependence map: δ22, δ32, δ13, δ21.
This cycle dependence map might be denoted by δ2. Since there is more than one cycle which starts
at a2, we denote it by δ1

2, preventing confusion. (When it does not matter which cycle we refer to,
we omit the superscript).

Definition 2.13 n-dimensional system of recurrence equations: A system of affine recurrence equa-
tions, which satisfies the following properties:

1. Ci ⊂ Ln
i , where Ci is the domain of computation of the array ai and Ln

i is a lattice.

2. All its dependence maps have linear parts Dij ∈ Zn×n.

3. For every cycle dependence map δi, ∀k ∈ N, there exist domain size parameters such that the
domain of computation Ci contains H, a kn hypercube, and γi(H) > 1.

In Ex. 1A, the SRE defined in Eq. (8) and the SRE defined in Eq. (9) are 2-dimensional. This
is because the SRE is affine, the domains of computation are in L2

2 = L2
3 = Z2, and the linear parts

of the dependence maps are 2× 2 integer matrices. Finally, the domain size parameter n allows the
third requirement of 2-dimensionality to be satisfied.
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Definition 2.14 Computable system of recurrence equations: An SRE is computable if and only if
there are no cycles in its dependence graph (i.e., no variable depends on itself).

Definition 2.15 Partitioned Linear Transformation (PLT): Let V be an n-dimensional vector
space. Let P0, P1, . . . , Pm−1 be m convex polytopes4, which partition V . Let T = {T0, T1, . . . , Tm−1}
be a set of nonsingular n×n matrices. A Partitioned Linear Transformation T : V → V with respect
to {Pi} and T is such that T(x) = Ti(x) if and only if x ∈ Pi. The PLT may be referred to as an
m-fold PLT.

A 1-fold PLT is a linear transformation when P0 = V . A PLT can be restricted to any Q ⊂ V .
In what follows when no confusion can arise, we sometimes describe how Q is partitioned (by its
intersection with the Pi’s), and do not define the polytopes in V .

In Fig. 3 Q ⊂ Z2 ⊂ R2. Q is partitioned into Q0, Q1, Q2, Q3 by its intersection with four
polytopes. A PLT is applied to Q such that

T0 = I, T1 =

[
0 1
1 0

]
, T2 =

[
0 1
−1 0

]
, T3 =

[
−1 0
0 1

]
.

The resulting set is shown in Fig. 4. Since there are four subsets, this is a 4-fold PLT.
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Figure 3: The set Q and its partitioning before the PLT.

Definition 2.16 The union of the domains of computation is composed of two subsets, the uniform
subdomain, and the nonuniform subdomain. The uniform subdomain is the largest subset U ⊆

⋃
i

Ci

(where Ci is the domain of computation of the array ai), such that the SRE defined on this subset
is uniform. The nonuniform subdomain NU =

⋃
i

Ci − U .

4By convex polytope we mean the intersection of a finite number of open or closed half spaces.
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Figure 4: The set that results from applying the PLT to Q.

We define the set of points which are ‘closest’ to a set Q ⊂ Ln. Since this set technically is not Q’s
boundary, it is referred to as a border of Q.

Definition 2.17 Given a set Q ⊂ Ln, denote d(x,Q) = min
x′∈Ln−Q

‖x′ − x‖.
The set {x′ ∈ Ln −Q | d(x,Q) = ‖x− x′‖, x ∈ Q} is called the border of Q.
d(x,Q) is called the distance from a point x ∈ Q to the border of Q.

Definition 2.18 A system of quasi-uniform recurrence equations (SQURE): An SRE that satisfies

1. The SRE defined on the uniform subdomain is n-dimensional, for some n;

2. ∃b ∈ R so that for every value of the domain size parameters, if x is in the nonuniform
subdomain, then max

i
d(x,Ci) < b.

An SQURE is said to have quasi-uniform dependences.

In Ex. 1A, Eqs. (1-6) are not an SARE, as has been noted before. These equations however are
quasi-uniform because the nonuniform subdomain is the set {(j, j)|1 ≤ j ≤ n − 1}, and for every
point (j, j) in this set, there is a point outside the whole set which has a distance of 1 from it (e.g.,
the point (j, j + 1) ). The domains of computation of this part of Ex. 1A are shown in Fig. 5.

Definition 2.19 A system of affine recurrence equations is PLT convertible when it can be converted
to an equivalent SQURE (by equivalent we mean that the I/O relationship is the same) by 1) applying
an m-fold PLT to the arrays’ index sets, and 2) renaming each array such that ai defined on the
index points which are in the polytope Pj of the PLT, is called aij , 0 ≤ j < m. Moreover, m does
not depend on the domain size parameters.
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Figure 5: Uniform and nonuniform subdomains of the SRE in Ex. 1A Eqs. (1-6).

In Ex. 1A, the system of affine recurrence equations in Eq. (9) is PLT convertible as is shown
below. The index set of the array a2 is:

S2 = {(i, j)|0 ≤ j ≤ n− 1, 1 ≤ i ≤ j + 2} − {(n− 1, n + 1)}

The index set of the array a3 is:

S3 = {(i, j)|1 ≤ j ≤ n− 1, 2 ≤ i ≤ j + 2}

These index sets are shown in Fig. 6. The PLT is as follows. The polytopes are:

P0 = {(i, j)|2i ≥ j} P1 = {(i, j)|2i < j}

The index sets of the arrays are partitioned such that:

Q0 = P0

⋂
(S3

⋃
S2) Q1 = P1

⋂
(S3

⋃
S2)

These subsets are shown in Fig. 6. The subset Q0 remains in place (i.e., T0 = I), while the subset
Q1 is multiplied by

T1 =

[
−1 1
0 1

]
.
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12



Equation (8) also is affected, but since array a3 is propagated only (i.e., it does not change its value
while propagating), we rewrite it such that it is not propagated back and forth after the conversion.
This rewriting is done by repeating the augmentation process after the conversion. In Eqs. (1-7)
array a2 is renamed a20. The system of recurrence equations after the PLT is as follows (details of
this conversion are given in §§ 3.8):

2.3 Example 1B

1 ≤ i ≤ n, a1(i, 0) ≡ ti−1 (1)

2 ≤ i ≤ n, a2(i, 0) ≡ ti−1 (2)

1 ≤ j ≤ n− 1, a3(j, j) = a20(j + 1, j − 1)/a1(j, j − 1) (3)

j + 1 ≤ i ≤ n, a3(i, j) = a3(i− 1, j) (4)

j + 1 ≤ i ≤ n, a1(i, j) = a1(i− 1, j − 1)− a3(i− 1, j)a20(i, j − 1) (5)

j + 2 ≤ i ≤ n, a20(i, j) = −a3(i− 1, j)a1(i− 1, j − 1) + a20(i, j − 1) (6)

a20(1, 0) = 1 (7)

1 ≤ j ≤ n− 1,

dj/2e ≤ i ≤ j − 1, a3(i, j) = a3(i + 1, j) (8)

dj/2e ≤ i ≤ min(dj/2e+ 2, j + 1), a20(i, j) = −a3(i + 1, j)a20(j + 2− i, j − 1) + a20(i, j − 1) (9a)

dj/2e+ 3 ≤ i ≤ j + 1, a20(i, j) = −a3(i + 1, j)a21(i− 3, j − 1) + a20(i, j − 1) (9b)

dj/2e+ 1 ≤ i ≤ j − 1, a21(i, j) = −a3(i + 1, j)a20(i + 2, j − 1) + a21(i− 1, j − 1) (9c)

3 ≤ j odd ≤ n− 1,

i = (j + 1)/2, a21(i, j) = −a3(i + 1, j)a20(i + 2, j − 1) + a20(i− 1, j − 1) (9d)

The SRE 9a - 9d presented in Ex. 1B is quasi-uniform, because Eqs. (9a),(9d) compute values for
the arrays a20 and a21 in points which have a distance less than 3 from a point outside the domains
of computation. We thus get that the three SREs in Ex. 1B: Eqs. (1-6), (7-8), and (9a-9d) are
SQUREs5. The uniform and nonuniform subdomains of the SRE in Eqs. (9a-9d) are shown in
Fig. 7, for n = 12.

Definition 2.20 A system of affine recurrence equations is convertible if it can be transformed,
by affine transformations on the index sets of the arrays, into an SARE that is PLT convertible
(different transformations may be applied to different index sets).

An example of a convertible SRE is given below.
5After the PLT, the index sets of each array can be translated. This changes only the translation part of the

dependence maps. This translation can be made to minimize the distances between points that depend directly on

one another (e.g., in Ex. 1B we can translate the index space of the array a21 by (2, 0), getting shorter distances).
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2.4 Example 2

1 ≤ i ≤ m, −n ≤ j ≤ n, −n ≤ k ≤ n

a1(i, j, k) = a1(i− 1, j − 1, k − 1) + a2(i− 1, j + k − 2, k − 1) + a2(i− 1, j − k, j) (1)

1 ≤ i ≤ m, −n ≤ k ≤ n, k − n ≤ j ≤ k + n

a2(i, j, k) = a1(i− 1, j − k,−k) + a2(i− 1, j, k) (2)

The system of affine recurrence equations in Ex. 2 is not PLT convertible6, but if we apply a
linear transformation

M =




1 0 0
0 1 −1
0 0 1




on the index set of array a2, the following changes take place:

1. The domain of computation C2 is multiplied by M and becomes identical to C1.

2. δ21(p) ← Mδ21(p) (There are two of these).

3. δ22(p) ← Mδ22(M−1p)

4. δ12(p) ← δ12(M−1p)

and we get the following SARE:

2.5 Example 2A

1 ≤ i ≤ m, −n ≤ j ≤ n, −n ≤ k ≤ n

a1(i, j, k) = a1(i− 1, j − 1, k − 1) + a2(i− 1, j − 1, k − 1) + a2(i− 1,−k, j) (1)

a2(i, j, k) = a1(i− 1, j,−k) + a2(i− 1, j, k) (2)

This system of affine recurrence equations is PLT convertible. A PLT can be constructed by
splitting the index sets into the subsets shown in Fig. 8. The first axis is deleted for simplicity.
The linear transformations for these subsets are:

T0 =




1 0 0
0 1 0
0 0 1


 T1 =




1 0 0
0 0 1
0 1 0


 T2 =




1 0 0
0 0 1
0 −1 0


 T3 =




1 0 0
0 −1 0
0 0 1




T4 =




1 0 0
0 −1 0
0 0 −1


 T5 =




1 0 0
0 0 −1
0 −1 0


 T6 =




1 0 0
0 0 −1
0 1 0


 T7 =




1 0 0
0 1 0
0 0 −1




6For a sketch of a proof, see [35, App. B].
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Figure 8: A PLT for Ex. 2.

The set resulting from the PLT is shown on the right in Fig. 8. The system of recurrence equations,
after the PLT, has sixteen arrays a1i, a2i for, 0 ≤ i ≤ 7, and has quasi-uniform dependences. The
SRE in Ex. 2 thus is convertible.

3 Properties of Systems of Affine Recurrence Equations

Properties of systems of affine recurrence equations are investigated in this section. Again, all SREs
are assumed to be strongly connected. An SARE can be converted to an equivalent SQURE, by 1)
linearly transforming the domains of computation of the arrays, and 2) applying an m-fold PLT.
Necessary and sufficient conditions are proven for m to be fixed with respect to the domain size
parameters. Such convertibility is important because an SQURE typically can be realized with a
VLSI systolic array, that has fixed wire lengths and memory sizes for each processing element (with
the possible exception of some boundary elements). If a system of affine recurrence equations is
not convertible, then any PLT embedding will require communication in spacetime over a distance
that depends on the problem size: as the problem size grows, either processing element memory
size and/or interconnection length also must grow. In this section, we concentrate on n-dimensional
SAREs, as defined in the previous section. Our goals are: 1) to find necessary and sufficient condi-
tions for an SARE to be convertible, 2) to find an algorithm which checks for these conditions, 3)
to find a procedure for the construction of the conversion whenever it is possible.
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3.1 Necessary conditions for convertibility

We first prove a necessary condition for an SARE to be PLT convertible. As mentioned earlier, all
matrices are assumed to have integer entries, unless specified otherwise.

If K and k are to be integers, then the Lemma is still true, but k = bc ·Kc.

Theorem 3.1 Let SARE A be n-dimensional. If A is m-fold PLT convertible, then for every cycle
dependence map δi (not necessarily simple) the linear part Di satisfies DLi

i = I, for some Li ≤ m.

As will be seen from Thm. 3.4, since D is integer, there is another upper bound on L, if DL = I.
L therefore is bounded by the minimum of these two upper bounds.

Also, if L = lcm(Li), then ∀i,DL
i = I. As an example, consider Ex. 2A in § 2. The SARE

in that example is PLT convertible. For every one of its cycle dependence maps, the linear part
satisfies D4 = I.

The property of n-dimensionality in the above theorem is crucial. In case this property is missing,
the above theorem is not true (see an example in [35]).

Definition 3.1 Semicycle dependence map: A composition of dependence maps that corresponds
to a semicycle7 in the RDG, such that if an arc is traversed opposite to its sense in the semicycle,
then the inverse of the corresponding dependence map is used.

The following theorem specifies a necessary condition for an n-dimensional SARE to be convert-
ible. By ‘cycle’ we mean any cycle in the graph, not necessarily a simple cycle. An RDG has an
infinite number of such cycles (again, we assume that it is strongly connected).

Theorem 3.2 If an n-dimensional SARE is convertible, then the linear parts of all the cycle de-
pendence maps are roots of I.

Since there are an infinite number of distinct cycles in an RDG, the above criterion does not form
the basis of an algorithm for checking convertibility. Later, we present theorems that do provide
such a basis.

Let A be a (strongly connected) SARE. Affine transformations can be applied to the index sets
of A’s arrays such that the resulting RDG has a spanning tree whose arcs have uniform dependence
maps associated with them. Such a transformation has been suggested by Delosme and Ipsen [12].
We now describe a similar procedure, based on their ideas. Choose a spanning tree of the RDG.
Start from the root of the tree, and proceed down level by level, applying the affine transformation
δ−1

ij on the index set of the array ai (i.e., p → D−1
ij p − D−1

ij dij), where aj is its parent8. All the

7In a digraph, a semicycle is a cycle in the underlying graph (i.e., a ‘cycle’ in the digraph where the arcs may be

traversed independent of their sense)[15].
8The transformation δ−1

ij is used instead of D−1
ij , ensuring that integer lattice points map to integer lattice points.
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appropriate dependence maps are updated after each transformation. This procedure is called a tree
conversion. The tree is not unique.

Such a tree conversion is shown in Fig. 9. The linear parts of the dependence maps are shown
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Figure 9: The RDG before (on the left) and after (on the right) the tree conversion.

near each arc. The array a1 was chosen to be the root, and then the index set of the array a2 is
mapped by δ−1

21 . By doing so, the dependence map δ21 becomes uniform: its linear part becomes I as
shown in the figure. The updating that should be done after this transformation is: δ22 → δ−1

21 δ22δ21,
δ42 → δ42δ21, δ52 → δ52δ21, δ62 → δ62δ21. The index set of a2 also is updated. The next step is to
change δ31 into a uniform dependence map. This is done by mapping the index set of a3 by δ−1

31 .
The same process is applied; this continues until the whole tree has uniform dependences associated
with its arcs. The result also is shown in Fig. 9. The new linear parts which do not correspond to
tree arcs are:

D′
22 = D−1

21 D22D21 D′
54 = D−1

21 D−1
52 D54D42D21

D′
65 = D−1

21 D−1
62 D65D52D21 D′

36 = D−1
31 D36D62D21 D′

17 = D17D73D31

The translation parts are updated accordingly. The general affect of transforming index sets is as
follows. Let there be a dependence map from aj to ai, namely δij(p) = Dijp + dij . If the index
set of ai is transformed by p → Bp + b, and the index set of aj is transformed by p → Ap + a,
then the dependence map becomes: δ′ij(p) = B(DijA

−1(p − a) + dij) + b. The new linear part
thus is BDijA

−1. In a tree conversion, an array’s index set is transformed by the inverse of the
composition of the dependence maps of the arcs in the path from the root of the tree to the node
in the RDG. Suppose we have an arc from aj to ai labeled D, and the path from the root to aj on
the tree consists of the linear parts A1, A2, . . . , Ak, (A1 emanates from the root), and those for ai

are B1, B2, . . . , Bl. Then the index set of aj is transformed by the linear part (Ak · · ·A2 ·A1)−1; the
index set of ai is transformed by the linear part (Bl · · ·B2 · B1)−1, and the linear part D becomes
B−1

1 ·B−1
2 · · ·B−1

l ·D ·Ak · · ·A2 ·A1.
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We define the following sets for the next theorem:

A : The distinct linear parts of all cycle dependence maps in the RDG.

B : The distinct linear parts of all cycle dependence maps starting in ai.

C : The distinct linear parts of all cycle dependence maps starting in ai after the tree conversion T .

D : The distinct linear parts of all cycle dependence maps in the RDG after the tree conversion T .

E : All distinct compositions of linear parts of dependence maps after the tree conversion T .

F : The distinct linear parts of all semicycle dependence maps in the RDG.

G : The distinct linear parts of all semicycle dependence maps starting in ai.

H : The distinct linear parts of all semicycle dependence maps starting in ai after the tree conversion
T .

J : The distinct linear parts of all semicycle dependence maps in the RDG after the tree conversion
T .

Theorem 3.3 If an n-dimensional SARE is convertible, then its sets A,B, . . . , J have only matrices
which are roots of I.

This theorem gives nine equivalent necessary conditions for convertibility. The most important
one of these is the one which states that all compositions of the dependence maps of the RDG after
any tree conversion are roots of I. This is because 1) the set of such compositions is enumerable,
and 2) as will be seen later, the number of such compositions is finite.

3.2 Deciding a necessary condition for convertibility

Polynomials in the following discussion are assumed to have only rational coefficients. For any
primitive r root of 1 (i.e., this number is not a k root of 1 for any k < r), its degree is φ(r)
where degree means the minimum degree of a polynomial (called minimal polynomial) which has
this number as a root, and φ(r) (the Euler function) is the number of relatively prime numbers to r

which are less than or equal to it [2, 29]. Also, the minimum polynomial is the cyclotomic polynomial
Φr(x) where

Φr(x) =
∏

gcd(k, r) = 1
1 ≤ k ≤ r

(x− ξk), where ξ = e
2πj

r
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Thus if r1 6= r2 and both Φr1(x) and Φr2(x) divide P (x) then P (x) has all the roots of both
cyclotomic polynomials. But the roots of these cyclotomic polynomials are distinct. (Because if for
example ξk

1 = ξl
2, then l

r2
= k

r1
. Since both are reduced ratios r1 = r2, which is a contradiction.)

The degree of P (x) thus is at least φ(r1)+φ(r2). This also is true for any finite number of cyclotomic
polynomials which divide P (x). We thus have the following lemma.

Lemma 3.4.1 Given k distinct numbers r1, r2, . . . , rk ∈ N, and a polynomial P (x), if the cyclotomic

polynomials Φri
(x) 1 ≤ i ≤ k divide P (x), then the degree of P (x) is at least

k∑

i=1

φ(ri).

The following theorem characterizes the numbers L such that an integral matrix D raised to the
power L is I.

Theorem 3.4 If D ∈ Zn×n and D is a primitive9 L root of I, then L = lcm(rj) where
∑

φ(rj) ≤ n.
Moreover, L ≤ f(n), where f : N → N .

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of D. Each eigenvalue is a root of 1. Let r1, r2, . . . , rk

be the distinct values for which λj is a primitive ri root of 1. From this it follows that L =
lcm(r1, r2, . . . , rk). All eigenvalues are roots of the characteristic polynomial, and thus Φri(x) for all
1 ≤ i ≤ k divide the characteristic polynomial; the cyclotomic polynomial divides any polynomial

which has a common root [2, § 4], [29, Thm. 2 pp. 63]. Thus, according to Lemma 3.4.1,
k∑

i=1

φ(ri) ≤ n

(i.e., the sum of all the degrees of the cyclotomic polynomials for all ri is less than or equal to the
dimension n).

There is a monotonically increasing lower bound on φ. Therefore, given n, there is an upper
bound on the numbers ri such that φ(ri) ≤ n, and thus there is an upper bound on the value of
lcm(ri).

For example, if we have a matrix D ∈ Z2×2 and it is a primitive L root of I, then L = lcm(rj)
where

∑
φ(rj) ≤ 2. Then rj ≤ 6, because if r > 6 then φ(r) > 2. The possible ri lists are:

(1, 1), (1, 2), (2, 2), (3), (4), (6), and the least common multiples give the values that L can take:
1, 2, 3, 4, 6.

The following two theorems are needed in what follows. The proof of the first can be found in
[8], and the second in [29, pp. 52].

Theorem 3.5 [Burnside]. Let G be a subgroup of GL(n,C) of exponent10 r. Then G is finite.

9D is not a K root of I for any K < L.
10G is of exponent r if xr = 1 for all x ∈ G.
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Theorem 3.6 Let G be a finite group of integral n × n matrices. Let t1 = n, t2, t3, . . . , tr be the
distinct values assumed by the traces of the elements of G. Then the order of G divides (n− t2)(n−
t3) · · · (n− tr).

From Thm. 3.6, it follows that |G| must divide (2n)!; each ti is the sum of n roots of unity. Conse-
quently, |ti| ≤ n.

Theorem 3.7 If D1, D2, . . . , Dk ∈ Zn×n, and all finite compositions of these matrices are roots of
I, then there are a finite number of distinct matrices generated by these compositions. Moreover,
this number is bounded by h(n), where h: N → N .

Proof. The group generated by the Di, denoted < D1, D2, . . . , Dk >, is a subgroup of GL(n,C )
(the general linear group of nonsingular matrices over the complex field)11.

From Thm. 3.4, DL
i = I, for some constant L (take L = f(n)! in Thm. 3.4, for example). The

above mentioned subgroup therefore has a finite exponent. From Burnside’s theorem (Thm. 3.5), it
follows that this subgroup is finite.

Since < D1, D2, . . . , Dk > is finite and its members are integral n×n matrices, based on Thm. 3.6,
its order divides (2n)! as mentioned earlier, and therefore is bounded by a function of n.

For example, for 2× 2 matrices, the number of matrices in the group must divide (2 · 2)! = 24.
As mentioned previously, for computable SARE’s, one of the eigenvalues of the linear part of

every cycle dependence map must be 1. In those cases, the traces ti of n-dimensional integral
matrices which generate a finite group satisfy ti ≥ −(n− 2) and thus the order of the group divides
(2n− 2)! (In case k of the eigenvalues are known to be 1, the order of the group divides (2n− 2k)!).
For the 2× 2 case, the group has 1 or 2 matrices, the eigenvalues are either 1, 1 or 1,−1.

Consider the SARE after a tree conversion has taken place. The dependence maps resulting from
a tree conversion have linear parts which generate a group that is similar to the group of linear parts
of cycle dependence maps before tree conversion. The order of this group is thus 1 or 2, and the same
eigenvalue pairs 1, 1 or 1,−1 are still the only possibilities for the linear parts of the dependence
maps. From this, and previous theorems, we get the following corollary, which has been derived
differently in [12].

Corollary 3.7.1 Let A be a computable, convertible 2-dimensional SARE after tree conversion.
Dependence maps that do not have I as their linear part all have the same linear part D. D’s
eigenvalues are 1 and -1.

The number of cycle or semicycle dependence maps in the (strongly-connected) RDG is infinite.
The number of compositions of dependence maps in the RDG after a tree conversion is infinite. But,

11Here composition is matrix product.
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from Thm. 3.7, we see that the number of distinct linear parts is finite. It moreover is bounded by
a function of n (where n is the dimension).

The algorithm below is derived from the foregoing. It determines, for a given n-dimensional
SARE, whether or not the necessary conditions exist for it to be convertible. If they do not exist,
then the algorithm returns false.

3.3 Algorithm 3.1

begin

extract the RDG from the system of recurrence equations;
perform a tree conversion on the SARE;
N ← {D|δ(x) = Dx + d is a dependence map };
generate the group G =< N >, such that after each generated member D ∈ G do

{
if (D’s characteristic polynomial is not in the set of the

possible characteristic polynomials for the known dimension)
then return(false) /* the SARE is not convertible12*/

if (the current size |G| > h(n) )
then return(false); /*h(n) being the known bound for the dimension of the SARE */

}
return (true); /* necessary conditions are met */

end

This algorithm terminates because there is a bound on the number of matrices in the group (for
a known dimension), as proved in Thm. 3.7. There also are only a constant number of possible char-
acteristic polynomials for a known dimension, since the eigenvalues are L roots of 1, and according
to Thm. 3.4, L is bounded. Another way to check for convertibility is to see if each matrix is a root
of I, stopping if not. This is more difficult to do, but leads to the same result, if a matrix is not a
root of I, then the number of matrices in the list grows until the group bound is exceeded, at which
time the algorithm halts.

12This part of the algorithm is not needed. Its inclusion increases the algorithm’s worst case complexity, but may

improve its average case complexity (though this is not yet known).
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3.4 Sufficient conditions for convertibility

Let SARE S have k dependence maps whose linear parts D1, D2, . . . , Dk are roots of I. Moreover,
compositions of these linear parts are roots of I. According to Thm. 3.7 these matrices generate a
finite group. The procedure below constructs a specific PLT for S13. It is used later in Thm. 3.8 to
establish the sufficient condition for convertibility.

3.5 Procedure 3.1: Construct a PLT for an SARE.

1. Let G = {Di}|G|−1
i=0 be the group generated by the Di, where D0 = I.

2. Construct14 a point p ∈ Rn such that DT p 6= p, ∀D ∈ G− I.

3. Construct matrix A0, whose rowi = pT (Di − I), ∀Di ∈ G− I.

4. ∀ Di ∈ G, form the matrix Ai = A0 ·D−1
i .

5. For 0 ≤ i < |G|, define Fi = {x|Aix ≤ 0}.

6. Construct14 a point q ∈ F i
0
15 such that for 0 ≤ i < |G|; 1 ≤ j < |G|, [Ai]j · q 6= 0.

7. Construct the linear constraints for Pi from those of Fi as follows. If [Ai]j · q < 0 then use
[Ai]j · x ≤ 0; else use [Ai]j · x < 0. These polytopes are the Pi.

8. Corresponding to part Pi, is the linear transformation Ti = D−1
i .

All index points are mapped to P0 by the PLT constructed above. Moreover, since Di is integer and
is a root of I, D−1

i is integer. Thus, all index points are mapped to integer points.

Lemma 3.8.1 Let S be an n-dimensional SARE after a tree conversion, such that all the linear
parts of its dependence maps, and all compositions of them, are roots of I. Let the partitioning of
Rn constructed by Proc. 3.1 be P = {P1, P2, . . . , P|G|}. If the index sets of S’s arrays are partitioned
according to P , then, for any domain of computation Ci, any polytope Pr ∈ P , and any k ∈ N, there
exist domain size parameters such that Pr

⋂
Ci contains a kn hypercube.

Lemma 3.8.2 Let H1 ⊂ V be a Kn hypercube, where V is an n-dimensional vector space. If a
nonsingular linear transformation T is applied to V , then H1 is transformed into a parallelopiped
which contains a kn hypercube H2, where k = c ·K and c is a constant (depending only on T and
n).

13A detailed proof that this procedure defines a partitioning of Rn appears in [36].
14One procedure for such a construction can be found in [37].
15F i

0 is the interior of F0.
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The following theorem gives a sufficient condition for an SARE after a tree conversion to be PLT
convertible. It uses the PLT construction defined by Proc. 3.1.

Theorem 3.8 If an n-dimensional SARE after a tree conversion is such that all the linear parts of
its dependence maps, and all their compositions, are roots of I, then it is PLT convertible.

Proof. Since all linear parts and all their compositions are roots of I, according to Thm. 3.7, they
generate a finite group G. We prove that the PLT defined by Proc. 3.1 leads to an SQURE. From
the definition of SQURE it suffices to prove the following properties:

1. ∃b ∈ R, such that ∀aij all points in {x ∈ Cij
16 — max

rs
d(x,Crs) > b}17 have the same

dependence maps (from aij to some array), all of which are uniform.

2. For every cycle dependence map δij , and ∀ k ∈ N, there exist domain size parameters, such
that array aij ’s domain of computation Cij contains H, a kn hypercube, and γij(H) > 1.

To prevent confusion we denote the linear parts of a dependence map before the PLT by D′. The
matrices constituting the group G are denoted by D. That is, for any D′

i (the linear part of some
cycle dependence map before the PLT), or any D′

ij (the linear part of a direct dependence map from
aj to ai), there exists a corresponding matrix Dk in G.

First, we prove property 1. Let P = {P0, P1, . . . , P|G|−1} be the partition constructed by
Proc. 3.1. All points are mapped to P0 by this PLT. An array aik (i.e., that portion of ai

whose domain of computation is in Pk before the PLT is applied), has a domain of computation
Cik = D−1

k (Ci

⋂
Pk). For every point x ∈ Cik

⋂
P i

0 (P i
0 is the interior of P0), we claim that aik(x)

depends on alj(D−1
j (D′

liDkx+ dli)), for all l such that ai depends on al in the original SARE. This
follows for two reasons. First, array element aik(x) originally was array element ai(Dkx), where
Dkx ∈ Pk, and according to the original SARE, ai(p) depends on al(D′

lip + dli), for all l such that
ai depends on al in the original SARE. Second, if the point D′

li · p + dli ∈ Pj before the PLT is
applied, then applying the PLT transforms it to D−1

j (D′
li · p + dli).

If x ∈ P i
0 (i.e., x is in the interior of P0), as is the case here, then ∀i Dix ∈ Pi (for detailed proof,

see [37]). Consider the case when points D′
liDkx, D′

liDkx + dli ∈ Pj . Then Dj = D′
liDk because

if Dj 6= D′
liDk = Dr then D′

liDkx ∈ Pr 6= Pj . By substitution, ∀x ∈ Cik

⋂
P i

0, aik(x) depends on

alj(x + D−1
j dli) (i.e., it is a uniform dependence map).

Let σmin = min
D∈G

{σD}, where σD is the minimum singular value of D. Consider the case when the

distance from x to the boundary of P0 is greater than max
l
‖dli‖/σmin, where dli are the translation

16The second index results from applying the PLT which partitions each domain of computation. Cij denotes the

domain of computation which results from applying the PLT to Ci ∩ Pj . Other associated terms also take on this

additional index.
17The distance from x to a point outside the domain of computation.

24



parts of all dependence maps of the arrays ai on any other array al. If y = D′
liDkx ∈ Pj , then the

distance from y to the boundary of Pj is greater than max
l
‖dli‖. Therefore, y + dli ∈ Pj . Property

1 is satisfied when the distance from x to the boundary of P0 is greater than max
l
‖dli‖/σmin.

Let t be a point closest to x on the boundary of P0 (i.e., ‖x − t‖ is the distance from x to the
boundary of P0). Let z be the lattice point closest to t but not in P0 and let f be the lattice
point outside P0 (and thus outside Cik because Cik ⊂ P0) closest to x (see Fig. 10). Surely
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Figure 10: Distances from the boundary and border of a set.

‖x−z‖ ≤ ‖x−t‖+‖t−z‖. But ‖t−z‖ ≤ √
n, thus ‖x−z‖ ≤ ‖x−t‖+√n. However ‖x−z‖ ≥ ‖x−f‖,

thus ‖x − f‖ ≤ ‖x − t‖ +
√

n. Therefore choosing b =
√

n + max
l
‖dli‖/σmin satisfies property 1

(because b < max
rs

d(x,Crs) ≤ ‖x− f‖, and the distance from x to the boundary of P0 is ‖x− t‖).
Now, we prove property 2. According to property 1, all cycle dependence maps in Cij (except

for points ‘near’ the border) are uniform. Therefore δij applies only a translation. It thus suffices to
prove that ∀ k ∈ N, there exist domain size parameters such that Cij contains h, a kn hypercube.
By Lemma 3.8.1, ∀ k1 ∈ N, there exist domain size parameters such that (Ci

⋂
Pj) contains h1, a

kn
1 hypercube. After applying the PLT, h1 is transformed by a linear transformation to a convex

polyhedron H ⊂ Cij . According to Lemma 3.8.2, ∀ k2 ∈ N, there exist domain size parameters such
that H contains h2, a kn

2 hypercube. Property 2 thus is satisfied.

3.6 Characterizing convertibility

We now are ready to state our main result.
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Theorem 3.9 An n-dimensional SARE is convertible if and only if after a tree conversion, the
linear parts of the dependence maps generate a finite group.

Proof. As proved in Thm. 3.3, the linear parts of the dependence maps and all their compositions
are roots of I. Using Burnside’s theorem (Thm. 3.5), the ‘only if’ part follows.

We now prove the ‘if’ part. If after a tree conversion the linear parts of the SARE’s dependence
maps generate a finite group, then every matrix in the group is a root of I. By Thm. 3.8, after the tree
conversion, the SARE is PLT convertible. Since the tree conversion applies affine transformations
to the index sets of the arrays, the original SARE is convertible.

This condition is decided by Alg. 3.1 (see page 22): it returns true if and only if the SARE is
convertible.
From the above theorem, we have the following corollary:

Corollary 3.9.1 The following statements are equivalent:

1. The SARE is convertible.

2. The linear parts of all cycle dependence maps in the RDG are roots of I.

3. The linear parts of all cycle dependence maps starting in ai are roots of I.

4. The linear parts of all semicycle dependence maps in the RDG are roots of I.

5. The linear parts of all semicycle dependence maps starting in ai are roots of I.

6. After a tree conversion, the linear parts of the dependence maps generate a finite group.

7. After a tree conversion, the linear parts of all cycle dependence maps starting in ai are roots
of I.

8. After a tree conversion, the linear parts of all cycle dependence maps in the RDG are roots of
I.

9. After a tree conversion, all compositions of the linear parts of dependence maps are roots of I.

10. After a tree conversion, the linear parts of all semicycle dependence maps starting in ai are
roots of I.

11. After a tree conversion, the linear parts of all semicycle dependence maps in the RDG are roots
of I.
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All the properties above impose an upper bound on the root, as proved in Thm. 3.4. The number
of folds needed in statement 1 of the above corollary also is bounded, as proved in Thm. 3.1.

The above corollary provides many equivalent conditions for convertibility, not all of which are
easy to decide. Alg. 3.1 decides if conditions (6,9) hold. The next corollary gives a property that
is simpler to decide, in the special case of a two dimensional SARE. The “if” part of the corollary
below, in a slightly different setting, is due to Delosme and Ipsen [12].

Corollary 3.9.2 A computable 2-dimensional SARE is convertible if and only if all the nonuniform
dependences after a tree conversion have the same linear part, and its eigenvalues are 1 and -1.

Proof. Since the ‘only if’ part is proved in Cor. 3.7.1, we only have to prove the ‘if’ part. If there
is only one linear part D 6= I, and D has eigenvalues 1 and −1, then D can be decomposed into its

Jordan form: F

(
1 0
0 −1

)
F−1. Thus D2 = I. From Thm. 3.9, the SARE is convertible.

For example, in Ex. 1A in § 2 there is only one linear part which is not I, and its eigenvalues are
1 and −1. As seen in Ex. 1B, it is convertible.

The following example illustrates the construction of a PLT for the 2-dimensional case.

3.7 Example 3

From Cor. 3.9.2, a computable and convertible 2-dimensional SARE has at most one nonidentity
linear part D after a tree conversion. The eigenvalues of D are 1 and −1. For this group of matrices
(namely D, I), we define the PLT:

P0 = {x|aT x ≤ 0}, P1 = {x|aT x > 0}, T0 = I, T1 = D

where l = {x|aT x = 0} is the line of all eigenvectors of the eigenvalue 1 of D (there is exactly one
such line).

The above example is a special case of Proc. 3.1, since if we choose p ∈ R2 such that DT p 6= p and
choose any eigenvector v of an eigenvalue 1 of D, we get pT (D−I)v = 0. Therefore, c·pT (D−I) = aT

for some constant c, because there is exactly one line l of eigenvectors for the eigenvalue 1, as
mentioned before. The vector a can be chosen to be any nonzero vector which is perpendicular to
an eigenvector of an eigenvalue 1 of D. Also, T1 = D−1 = D.

3.8 Conversion of an SARE to an SQURE

Given a convertible SARE S, procedure 3.2 below converts S into an SQURE.
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3.9 Procedure 3.2: Convert an SARE to an SQURE.

1. Perform a tree conversion on S.

2. Invoke Proc. 3.1 with G = {Di}|G|−1
i=0 , the group generated by the linear parts of the direct

dependence maps. This procedure produces a set P of polytopes {Pi}|G|−1
i=0 , and a set of linear

transformations {Ti = D−1
i }|G|−1

i=0 which define a PLT.

3. Partition each domain of computation Ci as follows:

∀ 0 ≤ j ≤ |G| − 1 Cij = Ci

⋂
Pj .

Each recurrence equation is split into up to |G| equations (some Cijs may be empty).

4. Invoke Proc. 3.3, partitioning Rn into P ki = {δ−1
ki (Pj)}|G|−1

j=0 , for all direct dependences δki.

5. For each array ai, partition Rn by super-imposing all the partitions P ki computed above.

6. Each Cij is further partitioned into C
(0)
ij , C

(1)
ij , . . . , C

(h)
ij (the corresponding equations also are

split) by restricting to Cij the partition of Rn for ai in step 5. This partition satisfies:

∀ 0 ≤ t ≤ h, ∀k, δki(C
(t)
ij ) ⊂ Ps(i,j,k,t) for some 0 ≤ s(i, j, k, t) < |G|.

We denote by C
(0)
ij the domain of computation that satisfies: ∀k, Dki(C

(0)
ij ) ⊂ Ps(i,j,k,0). This

step ensures that each C
(t)
ij is mapped by any dependence map of ai on some array ak to only

one part in partition P .

7. For each equation that computes ai in the domain of computation C
(t)
ij do

(a) update the domain of computation as follows: C
(t)
ij → D−1

j C
(t)
ij (update the boundaries

and the lattice18),

(b) rename the array on the left side of the equation: ai → aij ,

(c) for each term ak(δki(p)) on the right side of the equation, given that δki(C
(t)
ij ) ⊂ Pl (i.e.,

s(i, j, k, t) = l), do

i. rename the array: ak → akl,

ii. update and rename the dependence map19:

δki → δkl,ij , where Dkl,ij = D−1
l DkiDj , dkl,ij = D−1

l dki.

18The lattice in Zn is based on n independent vectors. We update the lattice by multiplying these vectors by D−1
j .

19Superscripts may be used to differentiate names in different equations or different terms in the same equation.
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The matrices Dl, Dj are members of the group G, while Dki, dki are the original linear
part and translation parts of δki. (The above follows from the choice of Ti = D−1

i in
Proc. 3.1.)
According to the construction of the PLT, for C

(0)
ij , we get Dki → I.

Proc. 3.2 converts an SARE by a specific PLT constructed in its first two steps. If one wants to
convert the SARE by another PLT, the first two steps are omitted and step 7 is changed accordingly
(for more detail, see [35]).

The procedure below uses a the notion of fundamental regions, introduced by Coxeter [7]:

“We have now reached a suitable place to introduce the important notion of a fundamen-
tal region. For any group of transformations of a plane (or of space), this means a region
whose transforms just cover the plane (or space), without overlapping and without inter-
stices. In other words, every point is equivalent (under the group) to some point of the
region, but no two points of the region are equivalent unless both are on the boundary.”

3.10 Procedure 3.3: Partition Rn into {P ki
j }.

Let δki(p) = Dkip + dki, δ−1
ki (p) = D−1

ki p − D−1
ki dki, and {Fi}|G−1|

i=0 be the parts constructed in
Proc. 3.1 step 5, where Fi = {x|Aix ≤ 0}. Let q ∈ F i

0 be the point constructed in Proc. 3.1 step 6.

1. Construct20 qr = Drq ∀Dr ∈ G.

2. Construct the linear constraints for P ki
j from those of Fj as follows.

If [Aj ]l(D−1
ki q) < 0

then use [Aj ]l(x + D−1
ki dki) ≤ 0

else use [Aj ]l(x + D−1
ki dki) < 0.

3. For every part P ki
j constructed in step 2, find the subscript r that satisfies P ki

j = δ−1
ki (Pr) by

finding the vector qr that satisfies qr = Dkiqj .

The above construction is valid since D−1
ki ∈ G, and thus D−1

ki (Fj) = Fl for some l. If we let j go
through 0 to |G|−1, we get that l goes through 0 to |G|−1 too. Thus {D−1

ki (Fj)}|G|−1
j=0 = {Fj}|G|−1

j=0 .
The part Pj is constructed in Proc. 3.1 step 7 from Fj by using the point q ∈ F i

0. Thus, the
point D−1

ki Pj is constructed from D−1
ki Fj = {x|AjDkix ≤ 0}, by using the point D−1

ki q. The term
x + D−1

ki dki replaces x, since the translation part of δ−1
ki is −D−1

ki dki.
The points {qr}|G|−1

r=0 have a one-to-one correspondence with the matrices {Dr}|G|−1
r=0 . This follows

from the fact that q ∈ F i
0, and F0 is a fundamental region [36]. Thus, the test Dkiqj = qr in the last

step ensures that DkiFj = Fr. And thus δkiP
ki
j = Pr, or equivalently P ki

j = δ−1
ki (Pr).

20This is done once for all direct dependences.
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3.11 Generalizing to non-strongly connected SAREs

We have assumed that the SARE is strongly connected. If not, the results derived cannot be used.
We however can modify the definition of n-dimensionality so that the same results follow in this more
general setting. The modification is as follows. In the definition of an n-dimensional SARE, and
all the lemmata, theorems, and corollaries, the word ‘cycle’ is replaced by ‘semicycle’, and ‘directed
path’ is replaced by ‘semipath’. Also, in the definition of ‘tree conversion’, the tree is a spanning
tree in the underlying graph21 of the RDG. The only theorems which are not correct for this case
are Cor. 3.7.1 and Cor. 3.9.2; these special-case corollaries require one of the eigenvalues of every
linear part to be 1. This property need not hold when the linear parts are associated with an RDG
that is not strongly connected.

4 Conclusions

A system of uniform recurrence equations typically can be mapped linearly into spacetime so that
interprocessor communication requires only a fixed amount memory, and fixed-length interconnec-
tions. There is no such linear mapping into spacetime for systems of affine recurrence equations
that are not uniform.

The first step in eliminating non-local connections by folding, was made by Choffrut and Culik [6].
They treat a specific I/O problem: folding the systolic array so processing elements on the periphery
of the array that produce output are neighbors of, and provide input to, processing elements on the
periphery of the array that consume input. Choffrut and Culik deal with folds that can eliminate
2-dimensional reflections and/or rotations, whereas this paper deals with 1) any affine dependence
(with a nonsingular linear transformation) between array elements, and 2) arrays of any dimension.

Delosme and Ipsen [12] also consider systems of affine recurrence equations. Their paper treats
systems of affine recurrence equations such that:

1. The range of any cycle dependence map must be a translation of its domain.

2. All arrays in the system of recurrence equations must have the same domain of computation.

From these properties, they show that the linear parts of the dependence maps are roots of I. Other
results in their paper, for systems of affine recurrence equations, apply only to 2-dimensional systems.
Specifically, they show that in a 2-dimensional system of affine recurrence equations, there exists
only one linear part of a cycle dependence map (or any dependence map after a tree conversion),
which is not I in the reduced dependence graph.

21The underlying graph of a digraph is the graph resulting from the digraph if the orientation of the arcs is

ignored[13].
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Recently, Zheng and Kiaei [38] have contributed to the understanding of affine recurrence equa-
tions that are not uniform. They define a subclass of affine recurrence equations called Directional
Affine Recurrence Equations, and deal with the non-uniformities via a Multi-Rate Array.

Our work is inspired primarily by that of Delosme and Ipsen. We formulate a ‘generalized fold’,
and provide the following:

• a proof that a system of affine recurrence equations can be converted, by a generalized fold, to
an equivalent system of quasi-uniform recurrence equations if and only if the linear parts of the
cycle dependence maps in the reduced dependence graph generate a finite group. (Cor. 3.9.1
gives many equivalent conditions.)

• an algorithm for deciding if a system of affine recurrence equations can be so converted;

• a procedure for converting a system of affine recurrence equations to an equivalent system of
quasi-uniform recurrence equations.

Where linear embeddings fail, a generalized fold may succeed in enabling a VLSI array imple-
mentation.

The finiteness of the SARE’s associated group follows from a theorem by Burnside, requiring it to
have a matrix representation. Our characterization of convertible systems brings together classical
ideas in algebraic geometry (fundamental regions —see page 29), number theory (§3.2), and matrix
representations of groups (Theorems 3.8 and 3.9). While the complete proof of this characterization
is complex, the characterization itself is simple, suggesting that these classical mathematical ideas
are well chosen for this difficult problem in array design.

Currently, systems of affine recurrence equations that are not uniform are rarely used by al-
gorithmic researchers. We hope that the results in this paper encourage researchers to use these
systems.
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