
Systolic Computation of Interpolating Polynomials∗

Peter R. Cappello†

Department of Computer Science
University of California

Santa Barbara, CA 93106

E. Gallopoulos‡

Center for Supercomputing Research and Development
University of Illinois at Urbana Champaign

Urbana, IL 61801

Çetin K. Koç†

Department of Electrical Engineering
University of Houston
Houston, TX 77204

Abstract

Several time-optimal and spacetime-optimal systolic arrays are presented for computing a process
dependence graph corresponding to the Aitken algorithm. It is shown that these arrays also can be
used to compute the generalized divided differences, i.e., the coefficients of the Hermite interpolating
polynomial. Multivariate generalized divided differences are shown to be efficiently computed on a 2-
dimensional systolic array. The techniques also are applied to the Neville algorithm, producing similar
results.

AMS Subject Classification: 65D05, 68Q80, 68N99.

Keywords: Newton interpolation, Hermite interpolation, Aitken’s algorithm, Neville’s algorithm, sys-
tolic array.

∗This paper was presented at the Fourth SIAM Conference on Parallel Processing for Scientific Computing, Chicago,
Illinois, December 11–13, 1989.

†This work was supported in part by the Office of Naval Research under contracts N00014-84-K-0664 and N00014-85-K-
0553.

‡Supported by the National Science Foundation under Grants Nos. US NSF-MIP-8410110, US NSF DCR85-09970, and
US NSF CCR-8717942, and by AT&T Grant AT&T AFFL67Sameh.

0

1 Introduction

McKeown [12] establishes a rationale for performing iterated interpolation using a systolic array:

“Another consequence of developments in VLSI technology is that interpolation in a table as
a means of function approximation could well rehabilitate itself, at least for certain ‘difficult’
functions. . . . the continually falling cost and increasing capacity of semiconductor memory
chips could soon make it feasible to consider storing on such a chip a table of values for a
function requiring complex direct computation. The set of ‘chip tables’ together with a systolic
array for iterated linear interpolation could thus have attractive possibilities.”

To obtain a cost-effective design, we must consider the trade-off between the cost of chip tables plus the cost
of the systolic array versus the cost of the evaluation of this ‘difficult’ function at many points using a fast
arithmetic processor. However, when we have access to the values of the function at certain points but not
to the function itself, systolic arrays will unquestionably provide parallelism. Polynomial interpolation is
widely used for curve and surface fitting or, in general, the fitting of multidimensional curves to scattered
data. In many applications of the surface-fitting techniques, the aim is to use the data to construct a
contour map of the unknown function [20]. Since the function is known only at the data points, one must
construct a contour map for one of the fitted surfaces. Contour map construction has applications in the
oil industry (petroleum explorations), geological maps, and cardiology (heart potentials).

McKeown presents a systolic implementation of Aitken’s method of iterated interpolation. In this
paper, we consider a systolic version of Newton and Hermite polynomial interpolation using the algorithms
of Aitken and Neville. This work builds on that of McKeown by:

1. presenting several alternative systolic implementations of Aitken’s algorithm, some of which are
optimal;

2. applying these implementations to Neville’s algorithm;

3. presenting a 2-level systolic array for computing generalized divided differences;

4. presenting a systolic scheme for the multivariate case;

5. showing that the interpolating polynomials can be implicitly evaluated by only reprogramming the
processors.

2 Newton and Hermite Polynomial Interpolation

The polynomial interpolation problem is defined as follows:

Input: n + 1 pairs of points (xi, fi) ∈ F × F for 0 ≤ i ≤ n, where F is a field.

Problem: Find a polynomial pn(x) ∈ F [x] of degree n such that pn(xi) = fi for 0 ≤ i ≤ n.

The interpolating polynomial of degree n exists and is unique, provided that xi 6= xj for i 6= j.
Polynomial interpolation is applied to the problem of function approximation. If the points fi are the
values of a function f(x) at the points xi for 0 ≤ i ≤ n, then the value pn(x̄) is used to approximate the
value f(x̄) for some x̄ 6= xi for 0 ≤ i ≤ n, but which usually is in the same interval as the xis.

1

The polynomial of degree n passing through the points (xi, fi) for 0 ≤ i ≤ n is given in the Newton
form as

pn(x) = f0 + f01(x− x0) + f012(x− x0)(x− x1) + · · ·
+f012···n(x− x0)(x− x1) · · · (x− xn−1) , (1)

where the coefficients f012···i are called the divided differences. The coefficients of the Newton polynomial
interpolating the function f(x) at the node points xi for 0 ≤ i ≤ n can be computed using the well-known
algorithms of Neville and Aitken [9, 11]. These algorithms use recursions to compute what is known as
the divided difference table whose diagonal entries are the desired coefficients of the Newton interpolating
polynomial. The Aitken algorithm uses the recursion:

f012···i,k =
f012···i − f012···i−1,k

xi − xk
(2)

for 0 ≤ i ≤ n− 1 and i + 1 ≤ k ≤ n. The Neville algorithm uses the recursion:

fi,i+1,...,k =
fi,i+1,...,k−1 − fi+1,i+2,...,k

xi − xk
(3)

for 0 ≤ i ≤ n− 1 and i + 1 ≤ k ≤ n.
For Hermite interpolation (the confluent case of Newton interpolation), we construct a polynomial that

passes through the values of f(x), as well as its derivatives, at the node points xi. Let m be an ordered
collection of n natural numbers: m = (m0,m1, . . . ,mn). We denote the kth derivative of f(x) evaluated
at xi by f (k)(xi), with f (0)(xi) = f(xi) = fi. If we are given

xi, fi, f
(1)(xi), f (2)(xi), . . . , f (mi)(xi)

for all 0 ≤ i ≤ n, then we can construct the Hermite polynomial to interpolate this data set. That is, we
can construct

p
(ki)
N (xi) = f (ki)(xi) for 0 ≤ i ≤ n and 1 ≤ ki ≤ mi .

The Hermite interpolating polynomial also is unique, provided xi 6= xj for i 6= j as is the case for Newton
interpolation [2]. The degree of the Hermite interpolating polynomial is

N = m0 + m1 + · · ·+ mn−1 + mn − 1 . (4)

The Hermite interpolating polynomial can be given as

pN (x) = f0 + f02(x− x0) + f03(x− x0)
2 + · · ·+ f0m0 (x− x0)

m0−1 +
f0m01(x− x0)

m0 + f0m012(x− x0)
m0(x− x1) + · · ·+ f0m01m1 (x− x0)

m0(x− x1)
m1−1 +

f0m01m12(x− x0)
m0(x− x1)

m1 + f0m01m122(x− x0)
m0(x− x1)

m1(x− x2) + · · ·+ · · ·+
f0m01m12m2 ···nmn (x− x0)

m0(x− x1)
m1(x− x2)

m2 · · · (x− xn)mn−1 . (5)

The simplest instance of the Hermite interpolating polynomial is when m = (1, 1, . . . , , 1), which cor-
responds to the Newton interpolating polynomial. The coefficients of (5) are referred to as the generalized
divided differences [9, 22, 11]. The Aitken and Neville recursions can be used to compute the generalized
divided differences, provided that we avoid division by zero in the recursion formulae (2) and (3) by defining

fiii···i =
1

(k − 1)!
f (k−1)(xi) , (6)

2

where the subscript i is repeated k times [2]. We also denote the generalized divided difference (6) by fik .
The Aitken algorithm for generalized divided differences uses the recursion:

f0a0 ···iai ,kak =
f0a0 ···iai ,kak−1 − f0a0 ···iai−1,kak

xi − xk
(7)

for 0 ≤ i ≤ n− 1 and i + 1 ≤ k ≤ n; the corresponding Neville algorithm uses the recursion:

fiai ···kak =
fiai ···kak−1 − fiai−1···kak

xi − xk
(8)

for 0 ≤ i ≤ n − 1 and i + 1 ≤ k ≤ n where ai ≤ mi for 0 ≤ i ≤ n. The recursion formulae (7) and (8)
specialize to (2) and (3) respectively when m = (1, 1, . . . , 1).

3 Aitken Algorithm

In this section we give the Aitken algorithm in a Pascal-like notation which allows us to construct its
process dependence graph. To illustrate, let n = 3 and m = (2, 2, 2, 2). The input data, then, consists of
the function and derivative values xi, fi, fii for 0 ≤ i ≤ 3. The following matrices, Aij ∈ Fmi×mj , contain
the generalized divided differences for 0 ≤ i ≤ 2 and i < j ≤ 3 as follows:

A03 =

[
f033 f0033

f03 f003

]
, A13 =

[
f00133 f001133

f0013 f00113

]
, A23 =

[
f0011233 f00112233

f001123 f0011223

]
,

A02 =

[
f022 f0022

f02 f002

]
, A12 =

[
f00122 f001122

f0012 f00112

]
,

A01 =

[
f011 f0011

f01 f001

]
.

We denote an entry of the above matrices with Aij(p, q) where 1 ≤ p ≤ mi and 1 ≤ q ≤ mj . For notational
convenience we assume that the index p increases from left to right, and the index q increases from bottom
to top.

In the general case, the input data is given as (xi, fik) for 0 ≤ i ≤ n and 1 ≤ k ≤ mi. The following
procedure given in a Pascal-like notation computes Aij(p, q) for all 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n, and
1 ≤ p ≤ mi, 1 ≤ q ≤ mj using recursion (7).

Procedure Aitken
Input: (xi, fik) for 0 ≤ i ≤ n and 1 ≤ k ≤ mi.
Output: Aij(p, q) for 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n, 1 ≤ p ≤ mi, and 1 ≤ q ≤ mj .
BEGIN
FOR i = 0 TO n− 1 DO

FOR j = i + 1 TO n DO
FOR p = 1 TO mi DO

FOR q = 1 TO mj DO
Aij(p, q) = Aij(p,q−1)−Aij(p−1,q)

xi−xj
.

END PROCEDURE

3

In the above procedure, p and q may take the value 0, corresponding to boundary and interface values
of the Aitken table. When this happens, that value of the matrix entry is replaced with the appropriate
one of the following:

A0j(p, 0) = f0p for 1 ≤ p ≤ m0 ;
Aij(p, 0) = Ai−1,i(mi−1, p) for 1 ≤ i ≤ n− 1 , 2 ≤ j ≤ n , and 1 ≤ p ≤ mi ;
A0j(0, q) = fjq for 1 ≤ j ≤ n and 1 ≤ q ≤ mj ;
Aij(0, q) = Ai−1,j(mi−1, q) , 1 ≤ i ≤ n− 1 , 2 ≤ j ≤ n , and 1 ≤ q ≤ mj .

The outputs of this procedure are the generalized divided differences:

Aij(p, q) = f0m01m12m2 ···ipjq

for 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n, and 1 ≤ p ≤ mi, 1 ≤ q ≤ mj . The coefficients of the Hermite interpolating
polynomial are the entries of the matrices Ai−1,i for 1 ≤ i ≤ n, and expressed in this notation as

f0m01q = A01(m0, q) for 1 ≤ q ≤ m1 ;
f0m01m12q = A12(m1, q) for 1 ≤ q ≤ m2 ;

...
f0m01m12m2 ···nq = An−1,n(mn−1, q) for 1 ≤ q ≤ mn .

4 Process Dependence Graph of the Aitken Algorithm

The data dependences among the entries in the divided difference tables computed by the Aitken and
Neville algorithms lend themselves to systolic implementation. In order to exploit the properties of these
tables we look at the algorithms to compute the entries. This allows us to form the em process dependence
graph of each algorithm to compute the divided differences.

We start with n = 4 and m = (1, 1, 1, 1, 1). In this case, the matrices Aij are simply scalars. In order
to see the functional dependence of each entry on the previously computed entries and on the node points
xi in the table, we use the recursion (2) and fill the Aitken table as follows:

A04 = f0−f4

x0−x4
A14 = A01−A04

x1−x4
A24 = A12−A14

x2−x4
A34 = A23−A24

x3−x4

A03 = f0−f3

x0−x3
A13 = A01−A03

x1−x3
A23 = A12−A13

x2−x3

A02 = f0−f2

x0−x2
A12 = A01−A02

x1−x2

A01 = f0−f1

x0−x1

In the denominator terms, xi − xj , the node point xi is repeated along a column whereas the node
point xj is repeated along a row. The positions of the numerator terms, (e.g. the divided difference terms)
are similar. First, a divided difference term of the form Ai−1,i is computed on the diagonal, then this term
is used in every operation along the ith column. Based on these observations, we illustrate the process
dependence graph of the Aitken algorithm for n = 4 and m = (1, 1, 1, 1, 1) in Figure 1. The graph is drawn
on the (i, j) coordinate system. The nodes of this acyclic directed graph represent the operations, and the

4

oriented edges correspond to dependences between the variables used in the operations. The node at point
(i, j) computes Aij by performing the operation

Aij =
Ai−1,i −Ai−1,j

xi − xj
. (9)

A comparison of Figure 1 with the above table reveals the fact that the necessary operands are present for
the operations performed in the nodes.

These observations can be used to compute the generalized divided differences. In this case we have
m = (m0,m1, . . . , mn) with mi > 1 and Aij are matrices of dimension mi×mj . If the nodes represent the
operations to compute the entries of the matrix Aij , then the process dependence graph for the generalized
divided difference tables is the same as the Newton case, illustrated in Figure 1. Let mi = 3 and mj = 4.
By using Procedure Aitken, these entries are computed as follows:

Aij(1, 4) = Aij(1,3)−Ai−1,j(mi−1,4)
xi−xj

Aij(2, 4) = Aij(2,3)−Ai,j(1,4)
xi−xj

Aij(3, 4) = Aij(3,3)−Ai,j(2,4)
xi−xj

Aij(1, 3) = Aij(1,2)−Ai−1,j(mi−1,3)
xi−xj

Aij(2, 3) = Aij(2,2)−Ai,j(1,3)
xi−xj

Aij(3, 3) = Aij(3,2)−Ai,j(2,3)
xi−xj

Aij(1, 2) = Aij(1,1)−Ai−1,j(mi−1,2)
xi−xj

Aij(2, 2) = Aij(2,1)−Ai,j(1,2)
xi−xj

Aij(3, 2) = Aij(3,1)−Ai,j(2,2)
xi−xj

Aij(1, 1) = Ai−1,i(mi−1,1)−Ai−1,j(mi−1,1)
xi−xj

Aij(2, 1) = Ai−1,i(mi−1,2)−Ai,j(1,1)
xi−xj

Aij(3, 1) = Ai−1,i(mi−1,3)−Ai,j(2,1)
xi−xj

The process dependence graph of the above operations is illustrated in Figure 2. The node at the
point (i, j) here represents mi × mj smaller nodes connected in a rectangular mesh where the entries of
the matrix Aij are computed. If mi = 1 for all 0 ≤ i ≤ n, then this graph consists of only one node
and the process dependence graph of the generalized Aitken table reduces to the simple case depicted
in Figure 1. We thus can view Figure 1 as the process dependence graph of the general case, where
the nodes represent rectangular meshes of simpler nodes (operations). This hierarchical view simplifies
the treatment of each case, and allows us to embed the process dependence graph in spacetime, producing
various systolic arrays. In the following sections, the process dependence graph, GA, for Aitken’s algorithm
is embedded in spacetime, obtaining several different systolic arrays (for spacetime embedding techniques,
see [14, 15, 3, 13, 16, 4, 17]).

5 The McKeown Array

In this section, we present McKeown’s array [12]. We embed the process dependence graph for Aitken’s
algorithm in spacetime. The abscissa is interpreted as time (t); the ordinate as space (s). The linear
embedding, E1, is as follows:

[
t
s

]
= T1

[
i
j

]
where T1 =

[
1 1
1 0

]

The result, depicted in Figure 3 for n = 6, is McKeown’s array. Data that flows south→ north in Figure
1, flows in the direction of time (perpendicular to space) in the McKeown design: It is in the processors’
memory. Data that flows west → east in Figure 1, flows up through the McKeown array. Data that flows
south → east in Figure 1, also flows up through the McKeown array, but at half the speed of the west →
east data.

5

Process (i, j) is executed at time i + j in processor j. By inspection, we see that the array uses n
processors, finishing the computation in 2n − 1 steps. The number of vertices (processes) in a longest
directed path in any process dependence graph is a lower bound on the number of steps of any schedule
for computing the processes. In our graph, the number of vertices in a longest path is 2n− 1. McKeown’s
array thus uses a spacetime embedding that is optimal with respect to the number of steps used. Such an
embedding is referred to as time-optimal .

6 A Spacetime-Optimal Version of the McKeown Array

Definition 1 A graph’s embedding is spacetime-optimal when it is space-minimal among those embeddings
that are time-optimal.

We now make a slight modification to the McKeown array, producing a spacetime-optimal array. There
is unused time on the lower numbered processors. We reschedule the computation done on the upper
processors onto these lower processors. More formally, we embed the process dependence graph as follows:

[
t
s

]
:= T1

[
i
j

]
for i + j ≤ n ;

[
t
s

]
:=

[
i + j
n− j

]
for i + j > n .

This embedding, E2, is illustrated, for n = 6, in Figure 4. This design has 2 phases of data movement.
In the 1st phase, data moves as in the McKeown design. As the 1st phase ends, and the 2nd begins, there
is a transition: When n is even (as depicted in Figure 4), there are 2 time steps in which the south → east
data flows in the direction of time: It is in the uppermost processor’s memory for these 2 steps. When n
is odd, the south → east data always moves through the array.

In the 2nd phase, data moves as follows. Data that flows south→ north in Figure 1, flows down through
the array. Data that flows west → east in Figure 1, flows in the direction of time: It is remembered in this
phase. Data that flows south → east in Figure 1, also flows down through this array, but at half the speed
of the south → north data.

Of those spacetime embeddings that are time-optimal, this embedding also is space-minimal:

Theorem 1 Embedding E2 of GA is spacetime-optimal.

Proof The embedding E2 is identical to E1 with respect to time: it too is time-optimal. We argue space
minimality as follows. To reduce space, we must reschedule a processor’s processes to other processors. Let
us focus on the points in time where all processors are used. In Figure 4, they occur for t = 5, 6, 7. During
these points all 3 processors are used. We refer to such points in time as the space-maximal points of the
embedding. In order to reduce the spatial extent of this embedding, it is necessary that the processes from
some processor’s space-maximal points be rescheduled onto other processors. We can reduce the spatial
extent of the embedding depicted in Figure 4, for example, if processes embedded at coordinates (5,3),
(6,3), and (7,3) can be rescheduled onto other processors. Notice that these processes are on a longest
directed path in the process dependence graph. This means that none can be rescheduled for earlier
completion without violating an order constraint. Neither can they be scheduled for later completion
without either violating an order constraint or extending the overall completion time, violating the time-
optimality property. In fact, in this embedding every process is on some longest path, and hence can
be rescheduled onto neither an earlier nor a later cycle. For this process dependence graph, processes

6

occurring during the space-maximal points, in particular, cannot be rescheduled. Therefore the number of
processors used cannot be reduced without violating time-optimality. We conclude that the embedding is
spacetime-optimal: Any spacetime embedding of this process dependence graph that completes in 2n− 1
cycles, must use at least dn

2 e processors. 2

Moreover, the nonlinearity of our spacetime transformation is necessary: There does not exist a linear
embedding of the initial indices that is spacetime-optimal.

7 Some Other Spacetime-Optimal Arrays

We now present 2 other spacetime-optimal embeddings of the process dependence graph of Figure 1. The
first is another variation of McKeown’s array. We again reschedule the computation done on the upper
processors onto the lower processors. To do this, we connect the endpoints of the linear array, making a
ring of processors. More formally, we nonlinearly embed the process dependence graph as follows:

t := i + j ;

s := j mod bn
2
c .

This embedding, E3, is illustrated, for n = 6, in Figure 5. This design has data flow characteristics that
are identical to the McKeown array, except that the upper processor is attached to the lower processor,
and data movement wraps around.

Since this embedding results in a computation of the process dependence graph that uses 2n− 1 steps
and dn

2 e processors, it too is spacetime-optimal.
Finally, we present a bilateral array in which the south → north data of Figure 1 moves up through

the array, while the west → east data moves down through the array. Such a data movement scheme may
be useful, depending on the larger context of which this computation is a part. The spacetime embedding,
E4, is presented in 2 steps:

1. First, we embed the process dependence graph, illustrated in Figure 6, as follows:
[

t
s

]
:= T2

[
i

j − 1

]
where T2 =

[
1 1
−1 1

]
.

In this spacetime embedding, when processors are used, they are used every other time step.

2. We now compress the spatial extent of this embedding with the following nonlinear transformation:

T2 = bCc ,

where

C =

[
1 0
0 1

2

]
, and y = bCcx = bCxc , where

⌊[
i
j

]⌋
=

[
bic
bjc

]
.

Processor efficiency (i.e., the percentage of time that a processor is used) is doubled asymptotically
by this nonlinear transformation. Figure 7 illustrates the result.

This design has 2 phases of data movement which alternate with each time step. Regardless of the
phase, data that flows south → east in Figure 1, flows in the direction of time: It is remembered.

7

In phase A, data that flows south → north in Figure 1, flows up through the array; data that flows
west → east in Figure 1, flows in the direction of time.

In phase B, data that flows south → north in Figure 1, flows in the direction of time; data that flows
west → east in Figure 1, flows up through the array.

Since this second transformation results in an embedding that uses 2n− 1 steps and dn
2 e processors, it

too is spacetime-optimal.

8 Two-Dimensional Array

We now present a 2 − d array for computing the process dependence graph of Figure 1. This is done by
embedding the process dependence graph into a 3−d space. One way to do this is with a linear embedding,
E5:

t
s1

s2

 := T3

[
i
j

]
where T3 =

1 1
1 0
0 1

 .

Figure 8 illustrates the result. In this array, there is a processor for every process (in the process dependence
graph). The flow of data between processors corresponds to the arcs in the process dependence graph.
Every processor whose corresponding vertex in Figure 1 has indices whose sum is k executes its process
at step k. Execution completes after 2n − 1 steps. This embedding has the property that each processor
is used exactly once per execution of the process dependence graph. The array can start executing a new
process dependence graph every step. Figure 9 is intended to illustrate the pipeline quality of this array;
it shows 2 process dependence graphs embedded in spacetime such that execution of the 2nd starts 1 step
after the 1st. Consequently, executing k such process dependence graphs uses 2n + k − 2 steps.

The 2-d systolic array is useful when one is computing many interpolation polynomials with possibly
different set of points. Such is the case for multivariate interpolation, which we consider in §11.

9 Computing Generalized Divided Differences

In this section, we incorporate extensions to Aitken’s algorithm, enabling it to be used to compute gener-
alized divided differences. As mentioned in §4, the process dependence graph for the generalized divided
differences has a two-level structure. At the top level, its structure is that of the divided differences process
dependence graph, illustrated in Figure 1. Each node in this top level structure comprises a rectangular
mesh of nodes that perform scalar operations, illustrated in Figure 2. Figure 10 illustrates how these
rectangular meshes are interconnected to form the 2-level process dependence graph GGA. The spacetime
embeddings used for computing the divided differences (see §5-8) can be applied to the process dependence
graph for computing generalized divided differences. The McKeown embedding for the generalized case is
illustrated in Figure 11. Table 1 contains the time and space complexities of these embeddings. Embed-
dings E2, E3, and E4 also are spacetime-optimal for the process dependence graph, GGA, that computes
generalized divided differences.

There are several other ways to embed this 2-level process dependence graph. Some of these design
alternatives are touched upon in the Conclusion.

8

10 Neville Algorithm and its Process Dependence Graph

In this section we describe the Neville algorithm and its process dependence graph. For simplicity of
illustration, we assume that n = 3 and m = (2, 2, 2, 2). Analogous to the Aitken algorithm, we define the
matrices Nij ∈ Fmi×mj for 0 ≤ i ≤ 2 and i < j ≤ 3 as follows:

N03 =

[
f00112233 f0112233

f0011223 f011223

]
, N13 =

[
f112233 f12233

f11223 f1223

]
, N23 =

[
f2233 f233

f223 f23

]
,

N02 =

[
f001122 f01122

f00122 f0112

]
, N12 =

[
f1122 f122

f112 f12

]
,

N01 =

[
f0011 f011

f001 f01

]
.

In general we have

Nij(p, q) = fip(i+1)mi+1 ···(j−1)mj−1jq

where index p is assumed to increase from right to left and index q from bottom to top. Here, the diagonal
entries, N01, N12, and N23, are computed first, followed by the entries above the main diagonal, N02, and
N13, and so on. This process is formalized in the following procedure.

Procedure Neville
Input: (xi, fik) for 0 ≤ i ≤ n and 1 ≤ k ≤ mi.
Output: Nij(p, q) for 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n, 1 ≤ p ≤ mi, and 1 ≤ q ≤ mj .
BEGIN
FOR j = 0 TO n DO

FOR i = 0 TO n− j DO
FOR p = 1 TO mi DO

FOR q = 1 TO mj DO
Ni,i+j(p, q) = Ni,i+j(p,q−1)−Ni,i+j(p−1,q)

xi−xi+j
.

END PROCEDURE

The boundary and interface conditions for the Neville Procedure are found to be

Ni,i+1(p, 0) = fip for 0 ≤ i ≤ n− 1 and 1 ≤ p ≤ m0 ;
Ni,i+j(p, 0) = Ni,i+j−1(p,mi+j−1) for 2 ≤ j ≤ n , 0 ≤ i ≤ n− j , and 1 ≤ p ≤ mi ;
Ni,i+1(0, q) = f(i+1)q for 0 ≤ i ≤ n− 1 and 1 ≤ q ≤ mi+1 ;
Ni,i+j(0, q) = Ni,i+j+1(mi+j+1, q) for 2 ≤ j ≤ n , 0 ≤ i ≤ n− j , and 1 ≤ q ≤ mi+j+1 .

9

To illustrate, we take n = 4 and m = (1, 1, 1, 1, 1).

N04 = N03−N14
x0−x4

N14 = N13−N24
x1−x4

N24 = N23−N34
x2−x4

N34 = f3−f4

x3−x4

N03 = N02−N13
x0−x3

N13 = N12−N23
x1−x3

N23 = f2−f3

x2−x3

N02 = N01−N12
x0−x2

N12 = f1−f2

x1−x2

N01 = f0−f1

x0−x1

For the denominator terms xi − xj , the point xi is repeated along a column whereas the point xj is
repeated along a row. Also when a divided difference term, Nij , is computed, then this term is used to
compute Ni−1,j and Ni,j+1. The process dependence graph of the Neville algorithm, GN , is given in Figure
12 drawn on the (i, j) coordinate system where the node at the point (i, j) computes Nij , performing the
operation

Nij =
Ni,j−1 −Ni+1,j

xi − xj
(10)

For the generalized divided differences, similar to the Aitken case, we have m = (m0,m1, . . . , mn) with
mi > 1 and Nij are matrices of dimension mi ×mj . Now we let the nodes in Figure 12 represent the set
operations to compute the entries of the matrix Nij . Figure 12, then, represents the process dependence
graph for the generalized divided difference table as well. If mi = 3 and mj = 4, then by using Procedure
Neville we compute the entries of Nij as

Nij(3, 4) = Nij(3,3)−Nij(2,4)
xi−xj

Nij(2, 4) = Nij(2,3)−Nij(1,4)
xi−xj

Nij(1, 4) = Nij(1,3)−Ni+1,j(mi+1,4)
xi−xj

Nij(3, 3) = Nij(3,2)−Nij(2,3)
xi−xj

Nij(2, 3) = Nij(2,2)−Nij(1,3)
xi−xj

Nij(1, 3) = Nij(1,2)−Ni+1,j(mi+1,3)
xi−xj

Nij(3, 2) = Nij(3,1)−Nij(2,2)
xi−xj

Nij(2, 2) = Nij(2,1)−Nij(1,2)
xi−xj

Nij(1, 2) = Nij(1,1)−Ni+1,j(mi+1,2)
xi−xj

Nij(3, 1) = Ni,j−1(3,mj−1)−Nij(2,1)
xi−xj

Nij(2, 1) = Ni,j−1(2,mj−1)−Nij(1,1)
xi−xj

Nij(1, 1) = Ni,j−1(1,mj−1)−Ni+1,j(mi+1,1)
xi−xj

The process dependence graph of the above operations is illustrated in Figure 13. Similar to the Aitken
algorithm, the node at the point (i, j) represents mi ×mj smaller nodes connected in a rectangular mesh.

The Neville algorithm’s process dependence graph can be embedded in spacetime in a way that is
similar to the embeddings of the Aitken algorithm described in §5-8. Here we describe one such embedding
which is a variation of McKeown’s array. The spacetime embedding of the process dependence graph given
in Figure 12 is as follows:

[
t
s

]
=

[
1 1
0 1

] [
−1 0
0 1

] [
i
j

]
.

This embedding is illustrated in Figure 14 for n = 4. Data that flows south → north in Figure 12, flows in
the direction of time and space. It flows up through the array. Data that flows east → west in Figure 12,
flows in the direction of time: it stays in the processors’ memory. We see that the array uses n processors,
finishing the computation in n steps.

10

11 Computation of Multivariate Divided Differences

In this section we consider the problem of multivariate interpolation. We illustrate the underlying algo-
rithms and systolic arrays for computation of the bivariate divided differences. Extension to more than
two variables is straightforward.

The general problem of multivariate interpolation of an arbitrary set of points is difficult, and the
algorithms are complicated. The main reason for this is that unisolvence cannot be satisfied for arbitrarily
spaced data [2]. In one dimension, the distribution of the points is restricted enough to satisfy unisolvence
[21]. In more than one dimension, one usually needs to make assumptions regarding the distribution
of the points (see, e.g., [18, 8, 7]). Otherwise it is required that certain determinants which appear in
constructing the interpolating polynomials do not vanish [19]. We consider bivariate interpolation only
on a two-dimensional grid. This case is common, and also offers a natural generalization of the divided
difference algorithms to higher dimensions. The machinery developed so far for the computation of the
univariate divided differences is well suited to this case. We assume that there exists a bivariate function
f(x, y) evaluated at (n + 1)(n + 1) points on the Euclidean plane (xi, yj) for 0 ≤ i, j ≤ n. Denote f(xi, xj)
by fi,j ; then the points are arranged as follows:

f0,n f1,n f2,n · · · fn,n
...

...
...

...
...

f0,2 f1,2 f2,2 · · · fn,2

f0,1 f1,1 f2,1 · · · fn,1

f0,0 f1,0 f2,0 · · · fn,0

The bivariate Newton polynomial interpolating this data set can be given as

P (x, y) =
n∑

i=0

n∑

j=0

(x− x0) · · · (x− xi−1)(y − y0) · · · (y − yj−1)f01···i,01···j

where the coefficients f01···i,01···j are bivariate divided differences, found by applying the univariate divided
difference algorithms repeatedly in the x and y directions. We first simultaneously apply the Aitken (or
the Neville) Algorithm in the x direction for all 0 ≤ j ≤ n, finding

f0,n f01,n f012,n · · · f012···n,n
...

...
...

...
...

f0,2 f01,2 f012,2 · · · f012···n,2

f0,1 f01,1 f012,1 · · · f012···n,1

f0,0 f01,0 f012,0 · · · f012···n,0

The application of the Aitken (or the Neville) Algorithms in the y direction for all 0 ≤ i ≤ n yields the
bivariate divided differences:

f0,012···n f01,012···n f012,012···n · · · f012···n,012···n
...

...
...

...
...

f0,012 f01,012 f012,012 · · · f012···n,012

f0,01 f01,01 f012,01 · · · f012···n,01

f0,0 f01,0 f012,0 · · · f012···n,0

The 2-d array developed in §8 can be used to perform the above computations efficiently. Assume
initially that Bij = fi,j for 0 ≤ i, j ≤ n. The following procedure computes the bivariate divided differences
using a 2-d Aitken array that is attached to a host computer.

11

Procedure Bivariate(xi, yj , Bij ; 0 ≤ i, j ≤ n)
BEGIN
FOR j = 0 TO n DO

Bij =Univariate(xi, Bij ; 0 ≤ i ≤ n).
FOR i = 0 TO n DO

Bij =Univariate(yi, Bij ; 0 ≤ j ≤ n).
END PROCEDURE

At the end of all computations the arrays Bij holds the bivariate divided differences: Bij = f01···i,01···j ,
for 0 ≤ i, j ≤ n.

The execution of k process dependence graphs on a 2-d Aitken array takes 2n + k− 2 time steps where
each step is a divided difference operation (9). Thus, the above procedure uses 3n− 1 steps to execute the
first loop, and the same number of steps for the second loop; which gives the total parallel time as Tpar =
6n− 2. Since the sequential computation of the bivariate divided differences takes Tseq = n(n− 1)(n + 1),
and 2-d array contains p = n(n−1)

2 processing elements, the efficiency of this scheme will be

E =
Tseq

pTpar
=

n + 1
3n− 1

≈ 0.33 ,

which is asymptotically optimal. Computation of bivariate (or multivariate) generalized divided differences
can be done by a straightforward extension of the above algorithm.

12 Discussion and Conclusion

The graph used to represent the Aitken algorithm is very similar to that of the Neville algorithm. Since
both graphs have a triangular shape, their space-time embeddings are similar.

We have presented several systolic designs for implementing the Aitken and the Neville algorithms.
There are, in fact, an exponential number (in the number of indices) of possible designs. Indeed, it is well
known that given 1) a process dependence graph (i.e., a directed acyclic graph), 2) a completion time, and
3) a number of processors, finding a multiprocessor schedule for the dag meeting the time and processor
bound is NP-complete [6]. Thus, it is unlikely that an efficient algorithm exists for synthesizing space-time
optimal designs, given a process dependence graph.

As a complexity measure, space-time optimality indicates how many processors are needed [sufficient]
to extract the maximum amount of parallelism from an algorithm. Since this measure depends only on
the [graph representation of the] algorithm, it is machine-independent.

The Aitken and the Neville algorithms, explained in §2, compute the coefficients of interpolating poly-
nomials. Their recursions can be modified to evaluate the interpolating polynomial at a point x̄ without
actually computing its coefficients. This implicit evaluation of the interpolating polynomial is named
iterated interpolation. In this case, recursions (9) and (10) become

Aij =
(x̄− xj)Ai−1,i − (x̄− xi)Ai−1,j

xi − xj
(11)

Nij =
(x̄− xj)Ni,j−1 − (x̄− xi)Ni+1,j

xi − xj
(12)

We can use these systolic arrays for iterated interpolation as follows:

12

1. Instead of using xi as input, we use x̄− xi.

2. instead of programming the processors according to recursion (9) and (10), we program them accord-
ing to recursions (11) and (12).

There are several extensions of the material that we have presented. We sketch some of them; a
presentation of details is tedious but straightforward, hence omitted. First, the 2-level process dependence
graph for computing generalized divided differences admits composite embeddings, each of which possesses
its own data flow and spacetime tradeoffs. For example, the 2-level process dependence graph for computing
generalized divided differences can be embedded in spacetime so that the top level graph has a spatial
projection that is a 1-d array of processing elements, while the bottom level graph — the rectangular
mesh process dependence graph — is embedded so that its spatial projection is a 2-d array of processing
elements. Its dual embedding, a 2-d triangular array of 1-d arrays, also is possible.

Second, one can ‘compose’ our solutions for generalized divided differences and multivariate computa-
tion. That is, the schemes and arrays presented can be implemented hierarchically.

All of these design options have a place, indicating the potential usefulness of software implementa-
tions on a programmable systolic/wavefront array. Examples of such software-oriented systolic computing
systems include 1) an array of Transputers1 [10], 2) the Warp [1], and 3) the Matrix-1 [5].

In this paper, we have:

1. presented 3 variations on the McKeown linear systolic array, each of which is spacetime optimal;

2. presented a 2-D interpolation systolic array, and shown its applicability in the multivariate case;

3. generalized these arrays to 2-level arrays that compute generalized divided differences;

4. indicated how these techniques can be applied to Neville’s algorithm;

5. sketched the reprogramming that enables these same systolic arrays to implicitly evaluate the inter-
polating polynomials.

1Transputer is a trademark of INMOS, Ltd.

13

References

[1] A M. Annaratone, E. Arnould, T. Gross, H-T Kung, M. Lam, O. Menzilcioglu, J. Webb, “The WARP
Computer: Architecture, Implementation, and Performance,” IEEE Trans. on Computers, Vol. C-36,
No. 12, pp. 1523-1538, December 1987.

[2] I. S. Berezin and N. P. Zhidkov, Computing Methods, Vol. 1, Addison-Wesley, 1965.

[3] P. R. Cappello and K. Steiglitz, “Unifying VLSI Array Designs with Linear Transformations of Space-
Time,” in Advances in Computer Research, edited by F. P. Preparata, Vol. 2, pp. 23-65, JAI Press,
1984.

[4] J. A. B. Fortes and D. I. Moldovan, “Parallelism detection and algorithm transformation techniques
useful for VLSI architecture design”, J. Parallel Distrib. Comput., Vol. 2, pp. 277-301, August 1985.

[5] D. E. Foulser, and R. Schreiber, “The Saxpy Matrix-1: a General-Purpose Systolic Computer,” IEEE
Computer , Vol. 20, No. 7, pp. 35-43, July 1987.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, 1979.

[7] M. Gasca and J. I. Maeztu, “On Lagrange and Hermite Interpolation in Rk,” Numerische Mathematik ,
Vol. 39, No. 1, pp. 1-14, 1982.

[8] R. B. Guenther and E. L. Roetman, “Some Observations on Interpolation in Higher Dimensions,”
Mathematics of Computation, Vol. 24, No. 111, pp. 517-527, July 1970.

[9] F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, 1956.

[10] IMS T800 transputer , Rpt. 72 TRN 117 01, INMOS Ltd., Almondsbury, Bristol, UK, November 1986.

[11] F. Krogh, “Efficient Algorithms for Polynomial Interpolation and Divided Differences,” Mathematics
of Computation, Vol. 24, No. 109, pp. 185-190, January 1970.

[12] G. P. McKeown, “Iterated Interpolation using a Systolic Array,” ACM Transactions on Mathematical
Software, Vol. 12, No. 2, pp. 162-170, June 1986.

[13] W. L. Miranker, and A. Winkler, “Spacetime Representations of Computational Structures,” Com-
puting , Vol. 32, pp. 93-114, 1984.

[14] D. I. Moldovan, “On the Analysis and Synthesis of VLSI Algorithms,” IEEE Transactions on Com-
puters, Vol. C-31, pp. 1121-1126, November 1982.

[15] D. I. Moldovan, “On the Design of Algorithms for VLSI Systolic Arrays,” Proc. IEEE , Vol. 71, No.
1, pp. 113-120, January 1983.

[16] P. Quinton, “Automatic synthesis of systolic arrays from uniform recurrent equations”, Proc. 11th
Ann. Symp. on Computer Architecture, pp. 208-214, 1984.

[17] S. K. Rao, Regular Iterative Algorithms and Their Implementation on Processor Arrays,Ph.D. disser-
tation, Stanford University, October, 1985.

[18] H. E. Salzer, “Some New Divided Difference Algorithms,” in On Numerical Approximation, edited by
R. E. Langer, pp. 61-98, The University of Wisconsin Press, 1956.

14

[19] H. E. Salzer, “Divided Differences for Functions of Two Variables for Irregularly Spaced Arguments,”
Numerische Mathematik , Vol. 6, No. 2, pp. 68-77, 1964.

[20] L. L. Schumaker, “Fitting Surface to Scattered Data,” in Approximation Theory , Vol. II, edited by
G. G. Lorentz, C. K. Chui, and L. L. Schumaker, pp. 203–268, Academic Press, 1976.

[21] H. C. Thacher, Jr., “Derivation of Interpolation Formulas in Several Independent Variables,” Annals
of New York Academy of Sciences, Vol. 86, No. 3, pp. 758-775, May 1960.

[22] N. K. Tsao and R. Prior, “On Multipoint Numerical Interpolation,” ACM Transactions on Mathe-
matical Software, Vol. 4, No. 1, pp. 51-56, March 1978.

15

Table 1. Complexities for various embeddings of GGA, a 2-level process dependence graph for computing

generalized divided differences.

Embedding Time Complexity Space Complexity

McKeown(E1) m0 + mn − 1 + 2
∑n−1

i=1 mi
∑n−1

i=0 mi

Optimal McKeown(E2) m0 + mn − 1 + 2
∑n−1

i=1 mi

⌈
1
2

∑n−1
i=0 mi

⌉

Optimal Ring(E3) m0 + mn − 1 + 2
∑n−1

i=1 mi

⌈
1
2

∑n−1
i=0 mi

⌉

Optimal Bilateral (E4) m0 + mn − 1 + 2
∑n−1

i=1 mi

⌈
1
2 [

∑n
i=0 mi − 1]

⌉

2-d (E5) m0 + mn − 1 + 2
∑n−1

i=1 mi
∑n−1

i=0

∑n
j=i+1 mimj

16

