A New Bijection between Natural Numbers and Rooted Trees^{*}

Peter R. Cappello Department of Computer Science University of California Santa Barbara, CA 93106

Abstract

A bijection is defined recursively between the set of natural numbers and the set of finite rooted trees. It is based on the prime decomposition of a natural number and the rank of a prime. This bijection leads naturally to a canonical presentation of rooted trees. For trees in each of two classes, bounds are given for the number of nodes in terms of the number assigned to the tree.

1 Introduction

Investigations have been conducted into both the number of rooted trees (see, e.g., Cayley [2], and Pólya [6]), and their generation (see, e.g., Read [8], and Beyer and Hedetniemi [1]). Cayley [3, 4] proves that the number of labeled trees on n vertices is n^{n-2} . Prüfer [7] displays a bijection between these two sets. The generation algorithm presented by Beyer and Hedetniemi [1] can be used to construct a bijection between rooted trees and natural numbers. In this paper, another bijection is constructed between these two sets. It is intriguingly easy to describe, yet apparently hard to compute.

2 A bijection between natural numbers and rooted trees

Let $\mathbf{N}, \mathbf{P}, \mathbf{T}$ denote the sets of the natural numbers, the primes, and the finite, undirected rooted trees, respectively. Let function $p : \mathbf{N} \mapsto \mathbf{P}$ denote the *n*th prime (e.g., p(4) = 7).

Define the function $\tau : \mathbf{N} \mapsto \mathbf{T}$ recursively as follows:

- 1. $\tau(1)$ is the rooted tree comprised of exactly one node.
- 2. For n > 1, if the prime factorization of n is $f_1 f_2 \cdots f_j$, then $\tau(n)$ is the rooted tree in which the root is adjacent to the roots of the trees $\tau(p^{-1}(f_i))$.

Figure 1: The root of each tree is bold, and in this figure contains the number associated with the tree; other nodes contain $f, p^{-1}(f)$, where f is a prime number.

Figure 1 depicts the tree $\tau(399)$. Figure 2 depicts the 15 trees associated with the natural numbers [1, 15].

The map τ is a bijection. Its inverse is defined recursively as follows:

1. $\tau^{-1}(\bullet) = 1.$

2. If the root of tree t is adjacent to subtrees t_1, t_2, \dots, t_j , then

$$\tau^{-1}(t) = \prod_{i=1}^{j} p(\tau^{-1}(t_i)).$$

A natural order (so to speak) of rooted finite trees suggests itself: If s and t are rooted finite trees, then is $s \leq t$ when $\tau^{-1}(s) \leq \tau^{-1}(t)$.

A prime factorization of a number is in *canonical order* when the primes are presented in nondecreasing order. An analogue for rooted trees is offered below. Let $\tau(n) = t$, where the canonical order of the prime factorization of n is f_1, f_2, \ldots, f_j . The tree t is presented *canonically* when:

- 1. The rooted trees t_1, t_2, \ldots, t_j , corresponding to the factors f_1, f_2, \cdots, f_j , respectively, are presented from left to right.
- 2. Each rooted tree t_i is presented canonically.

The rooted trees in Figure 2 are presented canonically.

^{*}Sections 2 and 3 were presented at the 4th SIAM Conf. on Discrete Mathematics, San Francisco, June 1988.

Figure 2: The first 15 rooted trees.

3 On the size of the trees

Two extreme classes of trees are considered:

Rooted stars: Let $B = \{2^k | k \in \mathbb{N}\}$. Then $\forall n \in B$, height $(\tau(n)) = 1$, and $|\tau(n)| = \log n + 1$.

Paths: Let the set S be defined recursively as follows:

- $1 \in S$,
- $n \in S$, if $n \in \mathbf{P}$ and $p^{-1}(n) \in S$.

The first 12 values of the set S are 1; 2; 3; 5; 11; 31; 127; 709; 5, 381; 52, 711; 648, 391; 9, 737, 333. The paths are the trees associated with the set S. Figure 2 includes the first 4 such rooted trees. For these trees, that is, for $n \in S$,

$$\operatorname{height}(\tau(n)) = |\tau(n)| - 1 = \Omega(\log n / \log \log n).$$

This can be seen as follows. The PRIME NUMBER THEOREM [5] states that the number of primes not exceeding n is asymptotic to $n/\log n$. Thus, for $n \in \mathbf{P}$, $p^{-1}(n) \sim n/\log n$, and if $p^{-1}(n) \in \mathbf{P}$ then

$$p^{-1}(p^{-1}(n)) \sim \frac{n/\log n}{\log(n/\log n)} = \Omega(n/\log^2 n).$$

Repeating this process, we see that the leaf of $\tau(n)$ corresponds to both the natural number 1, and $\Omega(n/\log^k n)$, where the height($\tau(n)$) = k. The bound on $|\tau(n)|$ follows from this.

4 Some related algegraic structures

Let $\alpha = (\mathbf{N}, \cdot, 1)$ denote the commutative monoid of the natural numbers under product. Let the *product* of rooted trees t_1 and t_2 , denoted $t_1 \cdot t_2$, be the tree that results from identifying their roots (see Figure 3). Let T be the set of all finite rooted trees, and $\beta = (T, \cdot, \bullet)$ be the commutative

Figure 3: (a) $\tau(9)$; (b) $\tau(10)$; (c) $\tau(9 \cdot 10) = \tau(9) \cdot \tau(10)$.

monoid of rooted trees under product. Since τ is a bijection, $\alpha \cong \beta$.

Finite trees associated with positive rational numbers

We now move to positive rational numbers. Let $\gamma = (\mathbf{N}^2, \cdot, (1, 1))$ be the commutative monoid, where $(p,q) \cdot (r,s) = (pr,qs)$. Let $\tau_i(n)$ denote the rooted tree that results from directing all paths in $\tau(n)$ towards its root. We refer to $\tau_i(n)$ as an in - tree, and $\tau(n)$ as its underlying, rooted tree. This is a one-to-one correspondence. Let $\tau_o(n)$ denote the rooted tree that results from directing all paths in $\tau(n)$ away from its root. We refer to $\tau_o(n)$ as an out - tree, and $\tau(n)$ as its underlying, rooted tree, also a one-to-one correspondence. Let the product of in-tree $\tau_i(p)$ and out-tree $\tau_o(q)$, denoted $\tau(p,p)$ and referred to as an inout-tree, be the directed tree that results from identifying their roots (see Figure 4). The product of two inout-trees, $\tau(p,q)$ and $\tau(r,s)$, denoted $\tau(p,q) \cdot \tau(r,s)$, is the inout-tree that results from identifying the roots of $\tau(p,q)$ and $\tau(r,s)$ (see Figure 5):

$$\tau(p,q) \cdot \tau(r,s) = \tau(pr,qs).$$

Let IO be the set of all finite inout-trees. $\delta = (IO, \cdot, \bullet)$ forms a commutative monoid. Let $v : \mathbf{N}^2 \mapsto IO$, where $v(p,q) = \tau(p,q)$. Since v is a bijection, $\gamma \cong \delta$.

Each underlying set has multiple representations of each particular positive rational number. Let $(p,q) \equiv_n (r,s)$ when ps = qr and $\tau(p,q) \equiv_t \tau(r,s)$ when ps = qr. Let [(p,q)] denote the equivalence class under \equiv_n of ordered pairs (r,s) that are equivalent to (p,q). Let $[\tau(p,q)]$ denote the equivalence class under \equiv_t of inout-trees $\tau(r,s)$ that are equivalent to $\tau(p,q)$ (see Figure 6.

Figure 4: (a) $\tau_i(9)$; (b) $\tau_o(10)$; (c) $\tau(9, 10)$.

Figure 5: (a) $\tau(9, 10)$; (b) $\tau(2, 3)$; (c) $\tau(18, 30)$.

Figure 6: (a) $\tau(18, 30) \equiv_t \tau(3, 5)$ (b).

Then, referring to quotient sets, $\zeta = (\gamma / \equiv_n, \cdot, (1, 1))$ is an abelian group, where $[(p, q)]^{-1} = [(q, p)];$ $\eta = (\delta / \equiv_t, \cdot, \bullet)$ is an abelian group, where $[\tau(p, q)]^{-1} = [\tau(q, p)]$. Moreover, since the resulting equivalence classes are in obvious one-to-one correspondence, $\zeta \cong \eta$. Each positive rational number thus corresponds to a unique equivalence class of ordered pairs of natural numbers and a unique equivalence class of inout-trees. For a particular positive rational number, there is a unique ordered pair, (p, q), where p and q have no common factors. Associate that positive rational number with $\tau(p, q)$. Each positive rational number thus has a unique representation as a finite inout-tree.

5 Recursive factor-exponent notation

In what follows, we are motivated to reduce replicated substructures in our number representation. Let $n = f_1^{e_1} f_2^{e_2} \cdots f_m^{e_m}$, where the f_i are the *m* unique prime factors of *n* and e_i is the number of times that f_i occurs in the prime decomposition of *n*. A number *n* thus can be represented by a multiset set of its prime factors and their exponents:

$$\{f_1 \cdot e_1, f_2 \cdot e_2, \ldots, f_m \cdot e_m\}.$$

In this representation, since each prime factor has an associated exponent, a notation that lists these pairs in increasing order of prime factor is an unambiguous representation of n:

$$(f_1 e_1 f_2 e_2 \ldots f_m e_m).$$

Since the first, third, fifth, etc. numbers in such a list are prime factors, it is unambiguous to replace them with their rank:

$$(p^{-1}(f_1) e_1 p^{-1}(f_2) e_2 \dots p^{-1}(f_m) e_m).$$

This process can recursively be applied to each of these natural numbers in such a list, with 1 represented by (). We can formalize this representation as follows:

$$\lambda(n) = (), \text{if } n = 1$$

$$= (\lambda(p^{-1}(f_1)) \ \lambda(e_1) \ \lambda(p^{-1}(f_2)) \ \lambda(e_2) \ \dots \ \lambda(p^{-1}(f_m)) \ \lambda(e_m), \text{if } n = f_1^{e_1} f_2^{e_2} \cdots f_m^{e_m}$$
(1)
(2)

The application of these rules to the number 360 is given below:

Figure 7 displays $\lambda(n)$, for $n = 1, 2, \ldots, 16$.

Each number is well-formed with respect to nesting of parentheses. In a sequence of such numbers, boundaries between successive numbers thus is easy to detect.

1	()	01
2		001011
3		0001011011
4		0010010111
5		00001011011011
6		00101001011011
7		00010010111011
8	(() ((() ()))))	00100010110111
9	((() ()) (() ()))	00010110010111
10		001010001011011011
11		000001011011011011
12		001001011001011011
13		000101001011011011
14		001010010010111011
15		0001011010001011011011
16		00100100101111

Figure 7: $\lambda(n)$, for n = 1, 2, ..., 16. Each right column entry is its left column entry transformed: "(" \mapsto "0" and ")" \mapsto "1".

Given two natural numbers in prime factor-exponent form, putting their product in the same form would seem to require adding the exponents of common factors. For this reason, λ does not appear to have a simple, structural, homomorphic product operator. Perhaps there are applications where a computationally complexity product is desirable (e.g., encryption/decryption).

Natural numbers and labeled trees

In this section, we represent the prime-factor-exponent description of a natural number as a rooted, undirected tree whose edges are labeled with natural numbers. In what follows, we refer to a rooted, undirected tree whose edges are labeled with natural numbers, perhaps with undue brevity, as a *labeled tree*. Let \mathbf{L} be the set of finite labeled trees.

Define the function $\mu : \mathbf{N} \mapsto \mathbf{L}$ recursively as follows:

- 1. $\mu(1)$ is the labeled tree comprised of exactly one node.
- 2. For n > 1, let $n = f_1^{e_1} f_2^{e_2} \cdots f_m^{e_m}$, where the prime factors of n are f_1, f_2, \ldots, f_m and e_i is the number of times that f_i is a factor in n. $\mu(n)$ is the labeled tree whose root is adjacent to labeled subtrees $\mu(p^{-1}(f_1)), \mu(p^{-1}(f_2)), \ldots, \mu(p^{-1}(f_m))$ and the edge joining the root to labeled subtree $\mu(p^{-1}(f_i))$ is labeled e_i .

Figure ?? displays the trees associated with n = 1, 2, ..., 16.

Figure 8: The first 16 labeled trees.

We will say that two labeled trees t and u are *isomorphic* when

- 1. the underlying trees are isomorphic
- 2. if edge $e \in t$ corresponds to edge $f \in u$ then these edges are labeled with the same natural number.

That is, two labeled trees are isomorphic when both their structure and their labeling match.

Let $\mathbf{M} \subset \mathbf{L}$ be the set of labeled trees such that, if u and v are distinct direct subtrees of $t \in \mathbf{M}$, then u is not isomorphic to v. We refer to \mathbf{M} as the set of distinct-sibling labeled trees. μ is a bijection between the natural numbers and \mathbf{M} , a fact that can be proved by strong induction on n. Consequently, $\mu(\tau^{-1}(n))$ is a bijection between finite, rooted, undirected trees and distinct-sibling labeled trees.

Define the product of labeled trees t_1 and t_2 , denoted, $t_1 \cdot t_2$, to be the labeled tree that results from:

- 1. identifying their roots
- 2. identifying s_1 , labeled subtree directly beneath the root of t_1 , with s_2 , labeled subtree directly beneath the root of t_2 , when s_1 is isomorphic with s_2 . In this case, the label of the edge connecting the root of the product labeled tree and this labeled subtree is $e_1 + e_2$, where $e_1[e_2]$ is the label of the edge between the root of $t_1[t_2]$ and $s_1[s_2]$.

Figure 9 illustrates this definition.

Let $\kappa = (\mathbf{M}, \cdot, \bullet)$ denote the monoid of finite labeled trees under product. Since μ is a bijection, $\kappa \cong \alpha \cong \beta$. Thus, there is a bijection between finite rooted undirected trees and distinct-sibling labeled trees:

$$\mu \circ \tau^{-1}(t) \in \mathbf{M}$$
, where $t \in A$.

Analogous to unlabeled, rooted trees, we can define labeled in-trees, labeled out-trees, and labeled inout-trees, and analogous algebraic structures and congruences, finally leading to an abelian group that is congruent to the positive rationals, and a representative finite labeled inout-tree that corresponds to a particular rational number.

Note: We could create a representation where the natural number labels are replaced with a labeled tree (except that they would be special trees whose edges were (or were associated with) labeled trees. We do not do this; it would lead to the same algebraic problem: The product operator requires adding exponents (i.e., edge labels), which is computationally complex - again, perhaps that is merely a feature.

Note: Related bijections between natural numbers and trees: Let $P \subset \mathbf{N}$ be a property possessed by some natural numbers such that every natural number [nonnegative integer] has a unique

Figure 9: $\mu(18) \cdot \mu(15) = \mu(18 \cdot 15)$.

decomposition as a subset of P or a multisubset of P. Since natural numbers [nonnegative integers] are totally ordered, P is totally ordered. If the least element in P is greater than 1 [greater than 0], the index of an element $e \in P$ is less than $p: e_i \in P \Rightarrow i < p$. This immediately leads to a recursive map from the natural numbers to rooted undirected trees. Examples of such properties are

- 1. $\{b^n | n \ge 0\}$, for base b > 1 (decomposition is addition)
- 2. $\{n! | n \ge 1\}$ (decomposition is addition)
- 3. the set of prime numbers (decomposition is product)
- 4. others?

When is this a bijection between natural numbers [nonnegative integers] and rooted undirected trees? The set of such n bijections gives rise to a set n choose 2 bijections between the different indexed sets of trees. (There are many such bijections between countably infinite sets, but these are simply to describe.) When does the homomorphism $m(n_1 \cdot n_2) = m(n_1) \cdot m(n_2)$ have a natural structural correspondence (like primes: simply identify the roots)? (Hint: Show that it must be a decomposition into multisets.) For multiset decompositions, there is a labeled decomposition (e.g., prime-exponent representation) and the map is to distinct-sibling labeled trees.

6 Conclusion

This bijection between the natural numbers and the rooted trees is intriguing for at least two reasons:

- 1. its construction is easy to describe, yet apparently hard to compute;
- 2. the sequence of rooted trees corresponding to the increasing sequence of natural numbers is *not* monotonically nondecreasing in the number of vertices. For example, $|\tau(15)| = 6$, while $|\tau(16)| = 5$.

This bijection leads to a canonical presentation of rooted trees that is different from Beyer and Hedetniemi's [1]. By introducing the product operations, some algebraic structures on finite rooted trees arise naturally, including a unique representation of positive rational numbers as finite inout-trees. In addition to being an intriguing bijection, the apparent difficulty of computing τ and τ^{-1} may be of use practical use.

References

- T. Beyer and S. M. Hedetniemi. Constant time generation of rooted trees. SIAM J. Comput., 9(4):706-712, 1980.
- [2] A. Cayley. On the analytical forms called trees. Mathematical Papers, 11:365–367, 1896.
- [3] A. Cayley. A theorem on trees. Mathematical Papers, 13:26–28, 1897.
- [4] Shimon Even. Graph Algorithms. Computer Science Press, Inc, Rockville, MD, 1979.
- [5] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 5th edition, 1979.
- [6] G. Pólya. Kombinatorische Anzahlbestimmungen f
 ür Gruppen, Graphen und chemische Verbindungen. Acta Math., 68:145–254, 1937.
- [7] H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys., 27:742–744, 1918.
- [8] R. C. Read. How to grow trees. In *Combinatorial Structures and Their Applications*, pages 343–347. Gordon and Breach, 1970.