A New Bijection between Natural Numbers and Rooted Trees*

Peter R. Cappello
Department of Computer Science
University of California
Santa Barbara, CA 93106

Abstract

A bijection is defined recursively between the set of natural numbers and the set of finite rooted trees. It is based on the prime decomposition of a natural number and the rank of a prime. This bijection leads naturally to a canonical presentation of rooted trees. For trees in each of two classes, bounds are given for the number of nodes in terms of the number assigned to the tree.

1 Introduction

Investigations have been conducted into both the number of rooted trees (see, e.g., Cayley [2], and Pólya [6]), and their generation (see, e.g., Read [8], and Beyer and Hedetniemi [1]). Cayley [3, 4] proves that the number of labeled trees on n vertices is n^{n-2}. Prüfer [7] displays a bijection between these two sets. The generation algorithm presented by Beyer and Hedetniemi [1] can be used to construct a bijection between rooted trees and natural numbers. In this paper, another bijection is constructed between these two sets. It is intriguingly easy to describe, yet apparently hard to compute.

2 A bijection between natural numbers and rooted trees

Let $\mathbf{N}, \mathbf{P}, \mathbf{T}$ denote the sets of the natural numbers, the primes, and the finite, undirected rooted trees, respectively. Let function $p: \mathbf{N} \mapsto \mathbf{P}$ denote the nth prime (e.g., $p(4)=7$).

Define the function $\tau: \mathbf{N} \mapsto \mathbf{T}$ recursively as follows:

1. $\tau(1)$ is the rooted tree comprised of exactly one node.
2. For $n>1$, if the prime factorization of n is $f_{1} f_{2} \cdots f_{j}$, then $\tau(n)$ is the rooted tree in which the root is adjacent to the roots of the trees $\tau\left(p^{-1}\left(f_{i}\right)\right)$.

3,2			19,4		
2,1	2,1	2,1	2,1	2,1	2,1

Figure 1: The root of each tree is bold, and in this figure contains the number associated with the tree; other nodes contain $f, p^{-1}(f)$, where f is a prime number.

Figure 1 depicts the tree $\tau(399)$. Figure 2 depicts the 15 trees associated with the natural numbers [1,15].

The map τ is a bijection. Its inverse is defined recursively as follows:

1. $\tau^{-1}(\bullet)=1$.
2. If the root of tree t is adjacent to subtrees $t_{1}, t_{2}, \cdots, t_{j}$, then

$$
\tau^{-1}(t)=\prod_{i=1}^{j} p\left(\tau^{-1}\left(t_{i}\right)\right)
$$

A natural order (so to speak) of rooted finite trees suggests itself: If s and t are rooted finite trees, then is $s \preceq t$ when $\tau^{-1}(s) \leq \tau^{-1}(t)$.

A prime factorization of a number is in canonical order when the primes are presented in nondecreasing order. An analogue for rooted trees is offered below. Let $\tau(n)=t$, where the canonical order of the prime factorization of n is $f_{1}, f_{2}, \ldots, f_{j}$. The tree t is presented canonically when:

1. The rooted trees $t_{1}, t_{2}, \ldots, t_{j}$, corresponding to the factors $f_{1}, f_{2}, \cdots, f_{j}$, respectively, are presented from left to right.
2. Each rooted tree t_{i} is presented canonically.

The rooted trees in Figure 2 are presented canonically.

[^0]

Figure 2: The first 15 rooted trees.

3 On the size of the trees

Two extreme classes of trees are considered:
Rooted stars: Let $B=\left\{2^{k} \mid k \in \mathbf{N}\right\}$. Then $\forall n \in B$, $\operatorname{height}(\tau(n))=1$, and $|\tau(n)|=\log n+1$.
Paths: Let the set S be defined recursively as follows:

- $1 \in S$,
- $n \in S$, if $n \in \mathbf{P}$ and $p^{-1}(n) \in S$.

The first 12 values of the set S are $1 ; 2 ; 3 ; 5 ; 11 ; 31 ; 127 ; 709 ; 5,381 ; 52,711 ; 648,391 ; 9,737,333$. The paths are the trees associated with the set S. Figure 2 includes the first 4 such rooted trees. For these trees, that is, for $n \in S$,

$$
\operatorname{height}(\tau(n))=|\tau(n)|-1=\Omega(\log n / \log \log n) .
$$

This can be seen as follows. The prime number theorem [5] states that the number of primes not exceeding n is asymptotic to $n / \log n$. Thus, for $n \in \mathbf{P}, p^{-1}(n) \sim n / \log n$, and if $p^{-1}(n) \in \mathbf{P}$ then

$$
p^{-1}\left(p^{-1}(n)\right) \sim \frac{n / \log n}{\log (n / \log n)}=\Omega\left(n / \log ^{2} n\right) .
$$

Repeating this process, we see that the leaf of $\tau(n)$ corresponds to both the natural number 1 , and $\Omega\left(n / \log ^{k} n\right)$, where the height $(\tau(n))=k$. The bound on $|\tau(n)|$ follows from this.

4 Some related algegraic structures

Let $\alpha=(\mathbf{N}, \cdot, 1)$ denote the commutative monoid of the natural numbers under product. Let the product of rooted trees t_{1} and t_{2}, denoted $t_{1} \cdot t_{2}$, be the tree that results from identifying their roots (see Figure 3). Let T be the set of all finite rooted trees, and $\beta=(T, \cdot, \bullet)$ be the commutative

Figure 3: (a) $\tau(9)$; (b) $\tau(10)$; (c) $\tau(9 \cdot 10)=\tau(9) \cdot \tau(10)$.
monoid of rooted trees under product. Since τ is a bijection, $\alpha \cong \beta$.

Finite trees associated with positive rational numbers

We now move to positive rational numbers. Let $\gamma=\left(\mathbf{N}^{2}, \cdot,(1,1)\right)$ be the commutative monoid, where $(p, q) \cdot(r, s)=(p r, q s)$. Let $\tau_{i}(n)$ denote the rooted tree that results from directing all paths in $\tau(n)$ towards its root. We refer to $\tau_{i}(n)$ as an $i n-$ tree, and $\tau(n)$ as its underlying, rooted tree. This is a one-to-one correspondence. Let $\tau_{o}(n)$ denote the rooted tree that results from directing all paths in $\tau(n)$ away from its root. We refer to $\tau_{o}(n)$ as an out - tree, and $\tau(n)$ as its underlying, rooted tree, also a one-to-one correspondence. Let the product of in-tree $\tau_{i}(p)$ and out-tree $\tau_{o}(q)$, denoted $\tau(p, p)$ and referred to as an inout-tree, be the directed tree that results from identifying their roots (see Figure 4). The product of two inout-trees, $\tau(p, q)$ and $\tau(r, s)$, denoted $\tau(p, q) \cdot \tau(r, s)$, is the inout-tree that results from identifying the roots of $\tau(p, q)$ and $\tau(r, s)$ (see Figure 5):

$$
\tau(p, q) \cdot \tau(r, s)=\tau(p r, q s)
$$

Let IO be the set of all finite inout-trees. $\delta=(I O, \cdot, \bullet)$ forms a commutative monoid. Let $v: \mathbf{N}^{2} \mapsto I O$, where $v(p, q)=\tau(p, q)$. Since v is a bijection, $\gamma \cong \delta$.

Each underlying set has multiple representations of each particular positive rational number. Let $(p, q) \equiv_{n}(r, s)$ when $p s=q r$ and $\tau(p, q) \equiv_{t} \tau(r, s)$ when $p s=q r$. Let $[(p, q)]$ denote the equivalence class under \equiv_{n} of ordered pairs (r, s) that are equivalent to (p, q). Let $[\tau(p, q)]$ denote the equivalence class under \equiv_{t} of inout-trees $\tau(r, s)$ that are equivalent to $\tau(p, q)$ (see Figure 6 .

(a)

(b)

(c)

Figure 4: (a) $\tau_{i}(9)$; (b) $\tau_{o}(10)$; (c) $\tau(9,10)$.

(a)

(b)

(c)

Figure 5: (a) $\tau(9,10)$; (b) $\tau(2,3)$; (c) $\tau(18,30)$.

(a)

(b)

Figure 6: (a) $\tau(18,30) \equiv_{t} \tau(3,5)(\mathrm{b})$.

Then, referring to quotient sets, $\zeta=\left(\gamma / \equiv_{n}, \cdot,(1,1)\right)$ is an abelian group, where $[(p, q)]^{-1}=[(q, p)]$; $\eta=\left(\delta / \equiv_{t}, \cdot, \bullet\right)$ is an abelian group, where $[\tau(p, q)]^{-1}=[\tau(q, p)]$. Moreover, since the resulting equivalence classes are in obvious one-to-one correspondence, $\zeta \cong \eta$. Each positive rational number thus corresponds to a unique equivalence class of ordered pairs of natural numbers and a unique equivalence class of inout-trees. For a particular positive rational number, there is a unique ordered pair, (p, q), where p and q have no common factors. Associate that positive rational number with $\tau(p, q)$. Each positive rational number thus has a unique representation as a finite inout-tree.

5 Recursive factor-exponent notation

In what follows, we are motivated to reduce replicated substructures in our number representation. Let $n=f_{1}^{e_{1}} f_{2}^{e_{2}} \cdots f_{m}^{e_{m}}$, where the f_{i} are the m unique prime factors of n and e_{i} is the number of times that f_{i} occurs in the prime decomposition of n. A number n thus can be represented by a multiset set of its prime factors and their exponents:

$$
\left\{f_{1} \cdot e_{1}, f_{2} \cdot e_{2}, \ldots, f_{m} \cdot e_{m}\right\}
$$

In this representation, since each prime factor has an associated exponent, a notation that lists these pairs in increasing order of prime factor is an unambiguous representation of n :

$$
\left(f_{1} e_{1} f_{2} e_{2} \ldots f_{m} e_{m}\right)
$$

Since the first, third, fifth, etc. numbers in such a list are prime factors, it is unambiguous to replace them with their rank:

$$
\left(p^{-1}\left(f_{1}\right) e_{1} p^{-1}\left(f_{2}\right) e_{2} \ldots p^{-1}\left(f_{m}\right) e_{m}\right) .
$$

This process can recursively be applied to each of these natural numbers in such a list, with 1 represented by (). We can formalize this representation as follows:

$$
\begin{align*}
\lambda(n) & =(), \text { if } n=1 \tag{1}\\
& =\left(\lambda\left(p^{-1}\left(f_{1}\right)\right) \lambda\left(e_{1}\right) \lambda\left(p^{-1}\left(f_{2}\right)\right) \lambda\left(e_{2}\right) \ldots \lambda\left(p^{-1}\left(f_{m}\right)\right) \lambda\left(e_{m}\right), \text { if } n=f_{1}^{e_{1}} f_{2}^{e_{2}} \cdots f_{m}^{e_{m}}\right. \tag{2}
\end{align*}
$$

The application of these rules to the number 360 is given below:

$$
\begin{aligned}
\lambda(360) & =\lambda\left(2^{3} 3^{2} 5^{1}\right) \\
& =\left(\lambda\left(p^{-1}(2)\right) \lambda(3) \lambda\left(p^{-1}(3)\right) \lambda(2) \lambda\left(p^{-1}(5)\right) \lambda(1)\right) \\
& =(()((()())())(()())(()())((()())())())
\end{aligned}
$$

Figure 7 displays $\lambda(n)$, for $n=1,2, \ldots, 16$.
Each number is well-formed with respect to nesting of parentheses. In a sequence of such numbers, boundaries between successive numbers thus is easy to detect.

1	()	01
2	$(()())$	001011
3	$((()())())$	0001011011
4	$(()(()()))$	0010010111
5	$((()())())())$	00001011011011
6	$(()()(()())())$	00101001011011
7	$((()(()()))())$	00010010111011
8	$(()((()))()))$	00100010110111
9	$((()())(()()))$	00010110010111
10	$(()()(()())())())$	001010001011011011
11	$(((()())())())())$	000001011011011011
12	$(()(()())(()))())$	001001011001011011
13	$((()()(()())())())$	000101001011011011
14	$(()()(()(()()))())$	001010010010111011
15	$((()())()(())))())())$	0001011010001011011011
16	$(()(()(()())))$	00100100101111

Figure 7: $\lambda(n)$, for $n=1,2, \ldots, 16$. Each right column entry is its left column entry transformed: "(" \mapsto " 0 " and")" \mapsto " 1 ".

Given two natural numbers in prime factor-exponent form, putting their product in the same form would seem to require adding the exponents of common factors. For this reason, λ does not appear to have a simple, structural, homomorphic product operator. Perhaps there are applications where a computationally complexity product is desirable (e.g., encryption/decryption).

Natural numbers and labeled trees

In this section, we represent the prime-factor-exponent description of a natural number as a rooted, undirected tree whose edges are labeled with natural numbers. In what follows, we refer to a rooted, undirected tree whose edges are labeled with natural numbers, perhaps with undue brevity, as a labeled tree. Let \mathbf{L} be the set of finite labeled trees.

Define the function $\mu: \mathbf{N} \mapsto \mathbf{L}$ recursively as follows:

1. $\mu(1)$ is the labeled tree comprised of exactly one node.
2. For $n>1$, let $n=f_{1}^{e_{1}} f_{2}^{e_{2}} \ldots f_{m}^{e_{m}}$, where the prime factors of n are $f_{1}, f_{2} \ldots, f_{m}$ and e_{i} is the number of times that f_{i} is a factor in $n . \mu(n)$ is the labeled tree whose root is adjacent to labeled subtrees $\mu\left(p^{-1}\left(f_{1}\right)\right), \mu\left(p^{-1}\left(f_{2}\right)\right), \ldots, \mu\left(p^{-1}\left(f_{m}\right)\right)$ and the edge joining the root to labeled subtree $\mu\left(p^{-1}\left(f_{i}\right)\right)$ is labeled e_{i}.

Figure ?? displays the trees associated with $n=1,2, \ldots, 16$.

Figure 8: The first 16 labeled trees.

We will say that two labeled trees t and u are isomorphic when

1. the underlying trees are isomorphic
2. if edge $e \in t$ corresponds to edge $f \in u$ then these edges are labeled with the same natural number.

That is, two labeled trees are isomorphic when both their structure and their labeling match.
Let $\mathbf{M} \subset \mathbf{L}$ be the set of labeled trees such that, if u and v are distinct direct subtrees of $t \in \mathbf{M}$, then u is not isomorphic to v. We refer to \mathbf{M} as the set of distinct-sibling labeled trees. μ is a bijection between the natural numbers and \mathbf{M}, a fact that can be proved by strong induction on n. Consequently, $\mu\left(\tau^{-1}(n)\right)$ is a bijection between finite, rooted, undirected trees and distinct-sibling labeled trees.

Define the product of labeled trees t_{1} and t_{2}, denoted, $t_{1} \cdot t_{2}$, to be the labeled tree that results from:

1. identifying their roots
2. identifying s_{1}, labeled subtree directly beneath the root of t_{1}, with s_{2}, labeled subtree directly beneath the root of t_{2}, when s_{1} is isomorphic with s_{2}. In this case, the label of the edge connecting the root of the product labeled tree and this labeled subtree is $e_{1}+e_{2}$, where $e_{1}\left[e_{2}\right]$ is the label of the edge between the root of $t_{1}\left[t_{2}\right]$ and $s_{1}\left[s_{2}\right]$.

Figure 9 illustrates this definition.
Let $\kappa=(\mathbf{M}, \cdot, \bullet)$ denote the monoid of finite labeled trees under product. Since μ is a bijection, $\kappa \cong \alpha \cong \beta$. Thus, there is a bijection between finite rooted undirected trees and distinct-sibling labeled trees:

$$
\mu \circ \tau^{-1}(t) \in \mathbf{M} \text {, where } \mathrm{t} \in
$$

Analogous to unlabeled, rooted trees, we can define labeled in-trees, labeled out-trees, and labeled inout-trees, and analogous algebraic structures and congruences, finally leading to an abelian group that is congruent to the positive rationals, and a representative finite labeled inout-tree that corresponds to a particular rational number.

Note: We could create a representation where the natural number labels are replaced with a labeled tree (except that they would be special trees whose edges were (or were associated with) labeled trees. We do not do this; it would lead to the same algebraic problem: The product operator requires adding exponents (i.e., edge labels), which is computationally complex - again, perhaps that is merely a feature.

Note: Related bijections between natural numbers and trees: Let $P \subset \mathbf{N}$ be a property possessed by some natural numbers such that every natural number [nonnegative integer] has a unique

Figure 9: $\mu(18) \cdot \mu(15)=\mu(18 \cdot 15)$.
decomposition as a subset of P or a multisubset of P. Since natural numbers [nonnegative integers] are totally ordered, P is totally ordered. If the least element in P is greater than 1 [greater than 0], the index of an element $e \in P$ is less than $p: e_{i} \in P \Rightarrow i<p$. This immediately leads to a recursive map from the natural numbers to rooted undirected trees. Examples of such properties are

1. $\left\{b^{n} \mid n \geq 0\right\}$, for base $b>1$ (decomposition is addition)
2. $\{n!\mid n \geq 1\}$ (decomposition is addition)
3. the set of prime numbers (decomposition is product)
4. others?

When is this a bijection between natural numbers [nonnegative integers] and rooted undirected trees? The set of such n bijections gives rise to a set n choose 2 bijections between the different indexed sets of trees. (There are many such bijections between countably infinite sets, but these are simply to describe.) When does the homomorphism $m\left(n_{1} \cdot n_{2}\right)=m\left(n_{1}\right) \cdot m\left(n_{2}\right)$ have a natural structural correspondence (like primes: simply identify the roots)? (Hint: Show that it must be a decomposition into multisets.) For multiset decompositions, there is a labeled decomposition (e.g., prime-exponent representation) and the map is to distinct-sibling labeled trees.

6 Conclusion

This bijection between the natural numbers and the rooted trees is intriguing for at least two reasons:

1. its construction is easy to describe, yet apparently hard to compute;
2. the sequence of rooted trees corresponding to the increasing sequence of natural numbers is not monotonically nondecreasing in the number of vertices. For example, $|\tau(15)|=6$, while $|\tau(16)|=5$.

This bijection leads to a canonical presentation of rooted trees that is different from Beyer and Hedetniemi's [1]. By introducing the product operations, some algebraic structures on finite rooted trees arise naturally, including a unique representation of positive rational numbers as finite inouttrees. In addition to being an intriguing bijection, the apparent difficulty of computing τ and τ^{-1} may be of use practical use.

References

[1] T. Beyer and S. M. Hedetniemi. Constant time generation of rooted trees. SIAM J. Comput., 9(4):706-712, 1980.
[2] A. Cayley. On the analytical forms called trees. Mathematical Papers, 11:365-367, 1896.
[3] A. Cayley. A theorem on trees. Mathematical Papers, 13:26-28, 1897.
[4] Shimon Even. Graph Algorithms. Computer Science Press, Inc, Rockville, MD, 1979.
[5] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 5th edition, 1979.
[6] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math., 68:145-254, 1937.
[7] H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys., 27:742-744, 1918.
[8] R. C. Read. How to grow trees. In Combinatorial Structures and Their Applications, pages 343-347. Gordon and Breach, 1970.

[^0]: *Sections 2 and 3 were presented at the 4th SIAM Conf. on Discrete Mathematics, San Francisco, June 1988.

