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Abstract

Using a directed acyclic graph (dag) model of algo-
rithms, several computational complexity measures are
defined in terms of time, period, and processors. Re-
search interest is explained for designs that are time-
minimal, processor-time-minimal, and period-processor-
time-minimal. Such designs are illustrated with the stan-
dard matrix product algorithm, modeled by the n×n×n
directed mesh.

1 Introduction

Although it is only one style of concurrent computation, systolic
computation is both physically suited to VLSI technology [17],
and natural for many algorithms [13, 20]. These properties sug-
gest that it has an important, enduring role to play in concur-
rent computation. The systolic paradigm consequently has been
applied to a wide variety of problems [13]. The ‘goodness’ of
a systolic array is an issue in concrete computational complexity.
Such issues can be investigated using a computational model that
is either algorithm-dependent or algorithm-independent. With an
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algorithm-independent model, the computation typically is mod-
eled by a set of binary inputs and outputs, where each output bit
is defined as a boolean function of the input bits. When it is incon-
venient or intractable to use an algorithm-independent model, we
turn to an algorithm-dependent model. In such a model the com-
putation often is viewed as a directed acyclic graph (dag). This
is especially suitable for investigating systolic arrays—systolic al-
gorithms have an iterative dag representation which can be ex-
tracted automatically from, for example, uniform recurrent equa-
tions [21], a system of uniform recurrence equations [12], regular
iterative arrays [24, 10], a localization of a system of linear recur-
rence equations [6, 22, 23], as well as computations specified in
the model of Moldovan and Fortes [18, 7, 19, 8].

We consider parameterized families of dags Gn = (N,A) (n
is the size parameter), whose nodes can be labelled with integral
index points in a k-dimensional index space, and whose node set
consists of all the integral points inside a convex polyhedron in
k-space. The number of nodes in the dag is the volume of the
polyhedron: |N | = O(nk). N can be partitioned into 3 sets Nin,
Nout, and Nint, which respectively are the input nodes, the out-
put nodes, and the internal nodes. Nin and Nout are typically
the nodes on 1 or more faces of the polyhedron. |Nin| and |Nout|
hence are O(nk−1).

Given a dag, a multiprocessor schedule assigns node v for pro-
cessing during step τ(v) on processor π(v). The range of π also is
a convex polyhedron (usually of k− 1 dimensions). The schedule
is subject to 2 constraints:

1. A node can be computed only when its children have been
computed at previous time steps: (u, v) ∈ A ⇒ τ(u) < τ(v).

2. No processor can compute 2 different nodes during the same
time step: τ(v) = τ(u) ⇒ π(v) 6= π(u).

In most of the work on systolic mapping, the schedules are
restricted to be linear transformations:

[
τ(v)
π(v)

]
= Mv

for some k × k matrix, M . In general, the designer is interested
in determining the ‘best’ τ and π for a given dag, and a number
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of different cost functions have been used. This paper attempts
to develop a unified view of these measures. We first define these
measures, study some relationships between them, and then dis-
cuss how they can be combined.

We are interested in these cost measures from 2 perspectives.
By investigating the costs associated with linear mappings, we
propose guidelines for practical mappings. From the complexity
viewpoint, we are interested in the best that one can do for a
given dag, regardless of the mapping chosen — we investigate
some intrinsic properties of the dag.

2 Cost Measures for Mapping

Definition 1 [14] The computation time (T ) is the time interval
between the first computation and the last computation.

T = max
v∈N

τ(v)−min
v∈N

τ(v) = max
v∈Nout

τ(v)− min
v∈Nin

τ(v)

Definition 2 [14] The processor pipelining period (α) is the time
interval between 2 successive computations in a processor (its
reciprocal is called the pipelining rate or processor utilization.

Definition 3 [14] The block pipelining period, β, (also called the
period—its reciprocal is throughput) is the time interval between
the initiations of 2 successive computations by the processor array.

Definition 4 [14] The array size (P ) is its number of processors.

Definition 5 The input pipelining period (γ) is the maximum
time interval for any processor between 2 successive data inputs
from the external world.

Definition 6 The total computation time (Ttot) is the time in-
terval between the first data input (from the external world) to
the array and the last result output from the array.

2.1 Relation between α, γ, and P

A common misconception in systolic array design is that a high
value of α is inherently bad. Consider the hexagonal array for
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band matrix product proposed by Kung and Leiserson which has
α = 3. A trivial modification (clustering 3 adjacent processors)
not only reduces α to 1, but also reduces the number of processors
by 2/3. Zhong and Rajopadhye [31] show that such clustering
can be determined automatically, using quasi-linear mappings∗

In most work on linear mappings, the array size is taken to be
the volume V of the image of N under π. The clustering result of
Zhong and Rajopadhye shows that this is not an accurate view—
the proper cost measure is V/α. The determination of linear (or
quasi-linear) processor maps π(v) that minimize V/α is an open
problem. Such clustering may affect the input pipelining period,
γ. Depending on the clustering chosen, γ may be reduced by a
constant factor or may not change. However, the block pipelining
period remains unaffected by any such clustering.

For a large class of problems, the dag is infinite. Such a situ-
ation may arise when dealing with signal processing applications
where the input is a sampled signal. In such cases, the compu-
tation time and the period are always infinite, thus not subject
to minimization. In this case, the only cost function that can
be optimized is the input pipelining period, γ. S. Y. Kung [14]
presents a procedure to minimize α (over linear transformations).
This procedure can be adapted to optimize γ.

2.2 Relation between T and Ttot

There is an important difference between computation time, T ,
and total computation time, Ttot: T ≤ Ttot. We are concerned
with mappings that schedule a dag with O(nk) nodes on a pro-
cessor array with (usually) O(nk−1) processors. Of these, only
O(nk−2) are on the boundary (since the processor array is it-
self ‘convex’). Ideally, the O(nk−1) nodes in Nin and Nout are
mapped by π to boundary processors. When this is not the case,
an input (output) node in the dag is mapped to an internal pro-
cessor, even though it has no predecessors (successors) in the dag.
The data required for (produced by) this computation comes from
(goes to) the external world, which cannot directly communicate
with this processor. Hence, one pays a time penalty for the data

∗These are mappings where π is given by the floor of a rational linear
transformation.
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that is propagated to (from) this processor from (to) the bound-
ary. In this case, the optimal schedule for the dag as determined
by T is not an accurate measure of the time required by the array.
An example of this is the array presented for the algebraic path
problem presented by Rote [25]; it has a total computation time
of 7n. However, the first (and last) n time steps are for I/O. The
actual computation time is 5n. Indeed, if this array is clustered
using the techniques developed by Zhong and Rajopadhye [31],
then one obtains a processor-time-minimal array which has the
same cost as those developed by Scheiman and Cappello [26] and
Benaini and Robert [1].

3 Hierarchical combination of cost

measures

We now are interested in combining the various cost measures,
with a view to understanding the inherent properties of the dag—
the perspective of concrete computational complexity. While it
is true that the total computation time is an accurate measure of
the time cost, it remains an open problem whether this can be
expressed in an architecture-independent manner. The definition
of ‘boundary’ processors seems architecture-dependent. For the
purpose of this paper, we therefore consider only the computation
time. As described above, the optimization of processor pipelining
period is relevant typically for problems with infinite dags. We
however shall deal only with families of finite dags. We illustrate
algorithm-dependent complexity issues with a specific problem:
matrix product. Its standard algorithm can be modeled by the
cubical mesh (defined later)∗. The standard algorithm does not
imply the cubical mesh—it is but 1 dag obtainable by localizing
the algorithm. Nevertheless, most systolic array designers use
this dag as the representation of the algorithm, and all complexity
issues are addressed in the context of such a specific dag. Systolic
array designers map the cubical mesh into processor-time with a
transformation that typically is linear. That is, the nodes of the
dag are labelled with index vectors, [i j k ]T , and the time step

∗The dependence dag associated with banded matrix product is a sub-
graph of the cubical mesh.
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and processor location to which [i j k ]T is mapped is given by:




step
location1

location2


 = M




i
j
k


 ,

for some matrix M ∈ Z3×3. Fig. 1 depicts a linear map of the
cubical mesh into processor-time. Linear maps of iterative depen-

Figure 1: A geometric representation of a schedule for the cubical
mesh, for n = 2. The projection below is the processor array. The
schedule uses 3n− 2 steps, n2 processors.

dence dags have been researched intensely. There also has been a
great deal of work on optimizing systolic arrays. The work pur-
sued by Li and Wah [11], Fortes and Parisi-Presicce [9], Rao [24],
Delosme and Ipsen [5], Chen [4], Lee and Kedem [15], Shang and
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Fortes [28], and most recently by Wong and Delosme [29, 30],
all contribute to methods for optimizing systolic arrays. These
efforts constrain the processor-time mapping to be a linear or
affine transformation of the problem’s index set. The first reason
that this constraint is used is because it yields systolic arrays that
are both intuitively appealing and practical to implement. The
question nonetheless arises as to whether relaxing the linearity
constraint results in an even more efficient use of time and space.
This question leads to the second reason that extant optimiza-
tion efforts constrain the processor-time mapping to be linear or
affine: the general problem of precedence constrained scheduling
onto a set of processors is NP-complete. Computations that are
NP-complete may be dealt with in several ways. One way is to
isolate a fundamental, indexed family of problem instances, and
find an optimal parameterized solution for that family. The dag
family we shall use is the cubical mesh, Gn = (Nn, An), where

• Nn = {(i, j, k) | 0 ≤ i, j, k ≤ n− 1}.
• An = {[(i, j, k), (i′, j′, k′)] | where exactly 1 of the following

conditions holds

1. i′ = i + 1

2. j′ = j + 1

3. k′ = k + 1

for 0 ≤ i, j, k ≤ n− 1}.
We henceforth focus on 3 properties of schedules of unweighted

dags: computation time, processors, and period.

Definition 7 A schedule for a dag is time-minimal when the
number of steps in the schedule equals the number of nodes in
a longest directed path in the dag.

The longest directed path in the cubical mesh clearly has
3n − 2 nodes. The array depicted in Fig. 1 is time-minimal.
Time-minimality measures the dag’s maximum parallelism. It
is more interesting than minimizing either processors or period.
Minimizing processors is easy—scheduling all nodes onto a single
processor is optimal. Minimizing the period also is easy—assign
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a distinct processor to each node, interconnecting them isomor-
phic to the dag. This construction always achieves a period of
1 step. For example, we can construct a matrix product array
with a period of 1 step by assigning a distinct processor to each
of the n3 nodes in Fig. 1, interconnecting them as a cubical mesh.
Within time-minimality, it is more challenging to minimize pro-
cessors than to minimize period; achieving the latter is easy, and
does not affect time-minimality.

Definition 8 A time-minimal schedule for a dag is processor-
time-minimal when it uses as few processors as any time-minimal
schedule for the dag.

Processor-time-minimality discloses the minimum number of
processors that are sufficient to extract the dag’s maximum par-
allelism. Research on processor-time-minimal schedules recently
has been conducted by Benaini and Robert [1] on a dag family
for the algebraic path problem, by Louka and Tchuente [16] on a
dag family for Gauss-Jordon elimination, by Benaini and Robert
[1] on a dag family for Gaussian elimination, by Cappello [3, 2] on
a dag family for matrix product, and by Scheiman and Cappello
[26] on a dag family for transitive closure.

In order to sketch this lower bound for the cubical mesh, we
define the notion of a concurrent set of nodes.

Definition 9 Let G = (N, A) be a dag. We uniquely label each
node v ∈ N with number:

• i, when v is the ith node on a longest directed path in G;

• 0, otherwise.

Let L be the set of longest directed paths in G. This labeling
partitions N into equivalence classes:

Q0 = {v ∈ N | 6 ∃l ∈ L ∧ l contains v}

Qi6=0 = {v ∈ N | v is the ith node on some l ∈ L}

We refer to each nonzero equivalence class as a concurrent set of
nodes.

Using this definition, we state a simple but useful theorem.
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Theorem 1 Let G = (N, A) be a dag, Qi ⊆ N be a concurrent
set of nodes, and P be the number of processors implementing a
time-minimal schedule. Then |Qi| ≤ P .

The cubical mesh, it turns out [3, 2], contains a concurrent
set of size d3n2/4e. Thus, according to Theorem 1, any time-
minimal schedule of the cubical mesh requires at least d3n2/4e
processors. The topology of the processor-time-minimal systolic
array reported by Cappello [3, 2] is that of a hexagonally shaped,
cylindrically connected 2D directed mesh. We now define the
most stringent dag property illustrated in this paper.

Definition 10 A processor-time-minimal schedule for a dag is
period-processor-time-minimal when it has the minimum period
among all processor-time-minimal schedules for the dag.

Although only one of many performance measures, period-
processor-time-minimality measures the maximum throughput ob-
tainable when using the minimum number of processing elements
that are sufficient to extract the dag’s maximum parallelism. The
dag family and an optimal schedule jointly imply architectural
requirements for an optimal realization.

What is a lower bound for the period of a processor-time-
minimal schedule? Let G = (N,A) be a dag that has been sched-
uled using P processors. Consider the processor that uses the
most steps in the schedule (determining the schedule’s period).
This number of steps, β, can be bounded from below by the fol-
lowing inequality:

|N | nodes ≤ P processors× β nodes/processor. (1)

For a processor-time-minimal systolic array for the cubical mesh,
the lower bound for period is

n3 nodes

3n2/4 processors
=

4n

3
nodes/processor ≤ β nodes/proc.

These bounds are not merely asymptotic, they are precise.
For example, the 30 × 30 × 30 mesh for computing a 30 × 30
matrix product requires at least 88 steps. Any multiprocessor
that achieves this time-minimal schedule needs at least 675 inner-
product-step processors. At least 1 of these processors requires at
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least 40 steps for each matrix product. Scheiman and Cappello
[27] present a schedule for the cubical mesh that achieves exactly
this period-processor-time lower bound, whenever n is a multiple
of 6. The optimal architecture implied by their schedule is a
toroidally connected n/2× n/2× 3 systolic array.

One may be interested in trading among period, proces-
sors, and time in order to minimize their product: period ×
processors× time (whose unit is processor× step2). From Eq. 1,
we see that the period× processors product is bounded from be-
low by |N |. This bound always is achievable (e.g., when P = 1
processor and the period β = |N | steps, or when P = |N | proces-
sors and the period β = 1 step). Thus, we have the following.

Lemma 1 A schedule for dag G = (N,A) is period×processors-
minimal if and only if its period×processor product β×P = |N |.

Multiplying this bound by the lower bound on time, we ob-
tain the following lower bound for the cubical mesh: 3n4− 2n3 ≤
period × processors × time. A schedule can be (period ×
processor)-minimal and time-minimal, and still not be period-
processor-time-minimal. For example, the systolic array of Fig. 1
is both (period × processor)-minimal, and time-minimal, but it
is not period-processor-time-minimal. We however do have the
following.

Theorem 2 If a schedule is (period × processor)-minimal and
processor-time-minimal, then it is period-processor-time-minimal.

A period-processor-time-minimal schedule is, in effect, an
optimal concurrent communication program for the dag [fam-
ily]. Investigating fundamental algorithms with respect to period-
processor-time-minimality increases our basic understanding of
their potential for concurrent realization. Finding the best [sys-
tolic] algorithm (i.e., [localized] dag) for a given problem is a
difficult research problem that remains open.
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[28] Weijia Shang and José A. B. Fortes. Time optimal linear sched-
ules for algorithms with uniform dependencies. In Int. Conf. on
Systolic Arrays, pages 393–402, San Diego, May 1988.

[29] Yiwan Wong and Jean-Marc Delosme. Optimization of compu-
tation time for systolic arrays. Dept. of Computer Sci. RR-651,
Yale Univ., May 1989.

[30] Yiwan Wong and Jean-Marc Delosme. Optimization of processor
count for systolic arrays. Dept. of Computer Sci. RR-697, Yale
Univ., May 1989.

[31] Xiaoxiong Zhong and Sanjay V. Rajopadhye. Deriving fully effi-
cient systolic arrays by quasi-linear allocation functions. In Paral-
lel Architectures and Languages, Europe, Eindhoven, the Nether-
lands, June 1991. Springer Verlag. extended version submitted
to J. VLSI Signal Processing.

13


