
Design Specification

GeoSkynet
Version 1.0

Prepared By Team BRX
Aaron Dodson (gonfunko@gmail.com)
Anthony Coccia (anthony.coccia@gmail.com)
Kenny Bier (kenbier@gmail.com)
Matthew Greenfield (mattgreenfield1@gmail.com)
Peter Huang (peterhuang913@gmail.com)

With Mentors, Aerospace
Nehal Desai (nehalmeister@gmail.com)
Setso Metodi (t.metodi@gmail.com)

Instructor
Chandra Krintz

T.A.
Stratos Dimopoulos

Course
CMPSC 189A

Date
February 26th, 2013

1



Table of Contents

1 Introduction
1.1 Product Overview
1.2 Definitions, Acronyms and Abbreviations
1.3 Technologies Used

2 Design Specifications
2.1 Modules

2.1.1 Twitter Sensors
2.1.2 MongoDB
2.1.3 Message Broker (RabbitMQ)
2.1.4 Sensor Processors
2.1.5 Middleware
2.1.6 User Display

2.2 Module Communication and Data Flow
2.3 Detailed Module Design

2.3.1 Twitter Sensors
2.3.2 MongoDB
2.3.3 Message Broker
2.3.4 Sensor Processors
2.3.5 Middleware
2.3.6 User Display

2.4 UML Diagrams
2.5 Use Cases

2.5.1 Back­End Use Cases
2.5.2 Front­End Use Cases

2.6 Timing Diagrams
2.7 User Interface

3 Moving Forward

2



1. Introduction
1.1 Product Overview
GeoSkynet is an application that collects live Twitter data, parses it for location (geospatial
coordinates), time, and context information, then stores it for later use. Tweets are typically
made by people and contain ambiguous natural language instead of explicit identifiable
properties. Because of this, the problem of identifying useful information is a difficult and
commonly researched problem. The system must distinguish between usable and unusable
strings of text and filter through colloquialisms and abbreviations to generate accurate results
while still being robust enough to not miss any important information.

GeoSkynet will initially focus on the domain of food trucks. A list of food truck Twitter accounts
will be monitored for new tweets. When a new tweet is created, the system will grab the text,
username, timestamp, and other metadata, process it, and store it in a database.

The data processed by GeoSkynet can be accessed via a web interface that allows querying of
food trucks and particular locations. The data will be presented in a list and on a map that
contains geospatial coordinates, dates, times, the context within the original tweet, and the
original tweet itself.

1.2 Definitions, Acronyms and Abbreviations
● Middleware ­ a mediator between the database and the user interface
● Natural Language ­ the language in which humans speak: complex, ambiguous, and

littered with idioms. Unlike mathematics, natural language is not exact and can be difficult
for a computer to interpret.

● NLTK ­ Stands for “Natural Language Toolkit”; A library for Python that parses and stores
natural language into data structures

● Geostring­ The part of a tweet that contains the language that describes the location.

1.3 Technologies Used

1.4.01 Python: Python version 2.7 will be used as the base language for all code.
http://www.python.org/

1.4.02 PyUnit: PyUnit version 1.4.1 will be used to unit test all Python code.
http://pyunit.sourceforge.net/

1.4.03 JavaScript: JavaScript version 1.8.5 will be used to interface with the Google
Maps API and for the front­end web user interface.

3

http://www.google.com/url?q=http%3A%2F%2Fwww.python.org%2F&sa=D&sntz=1&usg=AFQjCNEP7etIfXhra1IhmVJRuJJxa6wRxQ
http://www.google.com/url?q=http%3A%2F%2Fpyunit.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGLKZ9VVuWA4AtRpmj9_EvAMG9x8g


https://developer.mozilla.org/en­US/docs/JavaScript

1.4.04 RabbitMQ: RabbitMQ version 3.0.2 will be used as the Message Broker for
communication between all components.
http://www.rabbitmq.com/

1.4.05 Pika: Pika version 0.9.9 will be used to interface with RabbitMQ in Python.
https://github.com/pika/pika/

1.4.06 Natural Language Toolkit (NLTK): NLTK version 2.0 will be used to help
process natural language in tweets.
http://nltk.org/

1.4.07 MongoDB: MongoDB version 2.2.3 will be used to store all the tweets and their
related data.
http://www.mongodb.org/

1.4.08 PyMongo: PyMongo version 2.4.2 will be used to interface with the MongoDB
database in Python.
http://api.mongodb.org/python/current/

1.4.09 Django: Django version 1.5 will be used to handle requests from the user
interface.
https://www.djangoproject.com/

1.4.10 Apache Tomcat: Apache Tomcat version 7.0.x will be used to set up the server
that runs the front­end website.
http://tomcat.apache.org/

1.4.11 Google Geocoding API: Geocoding API version 3 will be used to find lat­long
coordinates from a string describing a location.
https://developers.google.com/maps/documentation/geocoding/

1.4.12 Twitter API: Twitter API version 1.1 will be used to receive tweets from a list of
accounts. The tweets will be sent to RabbitMQ so they can be processed and locations
can be extracted.
https://dev.twitter.com/

1.4.13 Google Maps JavaScript API: Google Maps JavaScript API version 3 will be
used to display the map on the website that the user will interact with. It will also be used
to plot points of interest, like the user’s location or locations referenced in tweets, on the
map.

4

http://www.google.com/url?q=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FJavaScript&sa=D&sntz=1&usg=AFQjCNGo-9nSpYLHYskD6e8RBkYivf8m3g
http://www.google.com/url?q=http%3A%2F%2Fwww.rabbitmq.com%2F&sa=D&sntz=1&usg=AFQjCNHcqL0nBWlBoc0flT6fhKWU84u4bQ
http://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fpika%2Fpika%2F&sa=D&sntz=1&usg=AFQjCNHexyF4W0vwmCAzzOGD0bHoWiHctA
http://www.google.com/url?q=http%3A%2F%2Fnltk.org%2F&sa=D&sntz=1&usg=AFQjCNHtvq4avqFmToqwNAzqwlsGzMksug
http://www.google.com/url?q=http%3A%2F%2Fwww.mongodb.org%2F&sa=D&sntz=1&usg=AFQjCNEbhl-87RwAJABHUobqyutVb2nFBg
http://www.google.com/url?q=http%3A%2F%2Fapi.mongodb.org%2Fpython%2Fcurrent%2F&sa=D&sntz=1&usg=AFQjCNH9RWh0E9UtKagvgsPwkd_aQqs-mA
http://www.google.com/url?q=https%3A%2F%2Fwww.djangoproject.com%2F&sa=D&sntz=1&usg=AFQjCNHSU1ZCMW_LBb5E3mdq2QDIAj8M4g
http://www.google.com/url?q=http%3A%2F%2Ftomcat.apache.org%2F&sa=D&sntz=1&usg=AFQjCNGnG5r4GvRXSKjxo10KtAzX7MlwPw
https://developers.google.com/maps/documentation/geocoding/
http://www.google.com/url?q=https%3A%2F%2Fdev.twitter.com%2F&sa=D&sntz=1&usg=AFQjCNG1Mp5X7zz5RxJusZbUG0tZI1qzXA


https://developers.google.com/maps/

5

https://developers.google.com/maps/


2. Design Specifications
2.1 Product Modules

2.1.1 Twitter Sensors: The Sensors monitor a specific set of twitter handles in real time
and pass the Tweets to the Message Broker as they arrive. Since we are focusing on
food trucks, there could be a single sensor that handles all Twitter food truck traffic or
multiple sensors that collect data for specific geographical regions, or even a sensor for
each Twitter handle. The idea of sensors is that they are independent lightweight Python
functions with the task of collecting very specific data.

2.1.2 MongoDB: The database is central repository for storing all data for offline and
generally long­term analysis.

2.1.3 Message Broker: The Message Broker routes incoming sensor data to the
appropriate sensor processor and is also in charge of arbitrating data exchange between
the sensor processors. It is implemented using the Python­based RabbitMQ framework
and Pika API.

2.1.4 Sensor Processors: The Sensor Processors transform the raw sensor data to its
final form(s) and pass the data through the Message Broker to other sensor processors.
The sensor processors comprise a set of methods, written in Python, that Implement the
data processing algorithms for extracting the geo­locations, dates, and times contained
in each tweet. There is a separate sensor processor specifically tasked to route
processed data back into MongoDB.

2.1.5 Middleware: The middleware implements a web framework that serves the data to
the user through the front end. When the user display makes a request, the middleware
interfaces directly with MongoDB to gather the requested data and feed it back to the
user display.

2.1.6 User Display: The user display will allow users to specify food truck, location, date,
and time information that they are interested in, then query the middleware to display the
data.

6



2.2 Module Communication and Data Flow
2.2.1 Data Flow: Backend

The backend data flow begins at the Twitter Sensor module. As relevant tweets are
posted, the Twitter Sensor receives a continuous stream of input tweets. (1) Each tweet
is in the form of a JSON object, represented as a string, with the fields outlined at
https://dev.twitter.com/docs/platform­objects/tweets. The Twitter Sensor sends the
complete Tweet object to the RabbitMQ message broker, (2) which dispatches it in
parallel to the Database Writer module and all Location Processor modules. (3)
The Database Writer module writes the “raw” tweet to MongoDB. (4) It is important to
note that although much of the system operates in parallel, race conditions are not a
problem – a new document will be created regardless of whether a write from a Location
Processor or a write from a Geocoder gets to the Database Writer first. Since none of
these sources write the same fields, whichever one arrives first will create the document,
and the others will append the data in the fields they are responsible for to the document.

At (approximately) the same time, the raw tweet is also dispatched to the Location

7

http://www.google.com/url?q=https%3A%2F%2Fdev.twitter.com%2Fdocs%2Fplatform-objects%2Ftweets&sa=D&sntz=1&usg=AFQjCNHBeFjTVk8gwD6YqU780ssQocg2Rg


Processor modules. (3) Each one runs its heuristic, identifies what portion of the tweet (if
any) it thinks is a location, and sends that data­­appended to the Tweet object it
received­­back to RabbitMQ. (4) The data is tagged such that it is routed to both the
Database Writer module and the Geocoder module. (5)

As before, when the Database Writer module receives the Tweet object­­now with
identified location substrings­­it writes it to MongoDB (6).

When the Geocoder receives the Tweet object with identified location substrings, it
sends a request to the Google Geocoding API. Assuming coordinates are returned, it
appends them to the Tweet object it received and dispatches it to RabbitMQ (6).

RabbitMQ routes the Tweet received from the Geocoder to the Database Writer (7),
which writes it to MongoDB (8) as usual. At this point, the tweet is fully processed and
stored in the database, along with sections identifying a location and the coordinates
corresponding to that location.

Although the system is highly asynchronous, there are a few hard dependencies.
Specifically, every part of the system is unable to proceed until the Twitter Sensor has
received a tweet and dispatched it to RabbitMQ. Additionally, the Geocoder is dependent
on at least one Location Processor having completed its task.

In general, the “expected” order of processing, taking into account processing time and
network latency, is that a tweet is received by the Twitter Sensor, dispatched to
RabbitMQ, routed to the Database Writer and written to MongoDB, sent to the Location
Processors, sent to RabbitMQ, routed to the Database Writer and written to MongoDB,
then sent to the Geocoder, sent to RabbitMQ and routed to the Database Writer and
MongoDB.

8



2.2.2 Data Flow: Frontend

In contrast to the backend, the frontend of the system is synchronous. When a user visits
the GeoSkynet homepage, their location will be determined using the HTML 5 location API
via Javascript, which is executed automatically in response to an onload event. The
Javascript will then send an XMLHttpRequest to
http://www.aerotestbed.com/location/00­00­00­00­00­00, with the 00’s replaced by the
hours/minutes/seconds of the latitude and longitude, respectively. The Apache web
server will handle the request and dispatch it to Django, which extracts the location
parameters from the URL. Django will then pass these as integers in a tuple to the
Database Reader module, which will calculate a 20 mile radius and query MongoDB for
tweets with location coordinates within that region. MongoDB will return matching tweets
to the Database Reader as JSON, which will in turn return it to Django, then to Apache,
and back to the site’s Javascript. The Javascript will iterate through the tweets, and plot
each coordinate on the site’s embedded Google Map.

9

http://www.google.com/url?q=http%3A%2F%2Fwww.aerotestbed.com%2Flocation%2F00-00-00-00-00-00&sa=D&sntz=1&usg=AFQjCNGmWPrxqgLxepKsz6kwdnSNy-f_ew


2.2.3 Data Flow: Example Tweet

First the tweet is brought into the system from Twitter via the Twitter Sensor. The Twitter
Sensor sends it to RabbitMQ which ships it off to the Sensor Processors dedicated to
extracting the geostring.The geostring from the processed tweet is sent from RabbitMQ
to the Google Geocoding API to find geographic coordinates for the location. Everything is
send to the Database Writer which prepares the JSON string and send it to MongoDB.

2.3 Detailed Module Design

2.3.1 Twitter Sensor Operations:

2.3.1.1 Run: Sequentially calls initializing and starter functions.
Function Name: run()
Pre Conditions:

● None
Post Conditions:

● Either:
○ All required functions have been called
○ Some functions have been called and appropriate error

messages have been logged
Details:

10



● Calls authorize()
● If no errors, calls get_handles()
● If the list of generated handles is not empty, calls stream()

2.3.1.2 Authorize Twitter Account: Connect to Twitter using a designated
developer Twitter account that has API read permissions

Function Name: authorize()
Pre Conditions:

● None
Post Conditions:

● Sensor is authorized and connected to Twitter
Details:

● Using the python­twitter API, logs in with developer account via
oAuth

○ Retries three times if unsuccessful
○ If fails, logs the error

2.3.1.3 Get Twitter Handles: Get a list of food truck Twitter handles that we’ll be
reading from.

Function Name: get_handles()
Pre Conditions:

● None
Post Conditions:

● A list of Twitter handles to stream from is generated
Details:

● Sensor attempts to read handle configuration file
● If configuration file exists, reads in handles separated by newline

characters
● If configuration file does not exist, generates a smaller default list of

handles to stream
● Stores the generated list to be streamed from that is

○ If the generated list is empty, log an error

2.3.1.4 Get Stream of Tweets: A single Twitter sensor is constantly connected
to a food truck’s twitter account, listening for new tweets to be made.

Function Name: stream()
Pre Conditions:

● Sensor is connected to the network
● Twitter is up
● Logged in
● Authorized
● List of Twitter handles to stream from exists

11



Post Conditions:
● Sensor is streaming to designated handles

Details:
● Iterates through the list of Twitter handles to stream from
● Starts streaming from as many Twitter handles as the API will

allow
○ If fails, logs the error

2.3.1.5 Receive New Tweets: When a new tweet is made by a particular food
truck, it is automatically sent to twitter sensors listening to that food truck.

Function Name: recv_tweet()
Pre Conditions:

● Already listening for tweets
● A new tweet is available

Post Conditions:
● New tweet is passed to MongoDB

Details:
● Handles the event of a new Tweet coming in
● Takes the JSON string from the Twitter API and splits it up into

only the pieces that we are interested in (as seen in the MongoDB
specifications: Username, timestamp, text, etc.)

○ If tweet does not have required pieces, log the error
● Calls the send_tweet() function

2.3.1.6 Send raw tweet data to MongoDB: After receiving a raw tweet from a
twitter handle, the sensor then sends the data to MongoDB

Function Name: send_tweet(tweet: String)
Pre conditions:

● Has received a new tweet
● Mongo service is running
● There is enough Mongo memory to hold new tweet

Post conditions:
● Mongo actually received raw data tweet

Details:
● Opens a connection to MongoDB

○ Retries three times if unsuccessful
○ If fails, logs the error

● Sends the JSON string to Mongo
○ Retries three times if unsuccessful
○ If fails, logs a send_tweet

2.3.2 MongoDB Structure:

12



The MongoDB database will store a document for each tweet in one collection.
The document will contain the following fields for each tweet:

● username
● id
● timestamp
● coord_lat
● coord_long
● tag
● location_substring
● time_substring
● expected_time
● tokenized_text

The tweets in this collection will be indexed both by id and by a (username,
coordinates, time) tuple.

2.3.3 Message Broker Operations:

2.3.3.1 Get raw_tweet from Mongo
Function Name: get_tweet()
Pre conditions:

● There are raw_tweets to process
Post conditions:

● Have received raw_tweet
Details:

● Opens a connection to MongoDB
○ Retries three times if unsuccessful
○ If fails, logs the error

● Gets a new Tweet from the database
○ Retries three times if unsuccessful
○ If fails, logs a send_tweet

● Calls send_tweet(tweet: String), passing in the Tweet gathered
from the database

2.3.3.2 Send raw_tweet data to sensor processor
Function Name: send_tweet(tweet: String)
Pre conditions:

● At least one sensor processor is available
Post conditions:

● raw_tweet has been sent to sensor processor
Details:

● For all sensor processors subscribed, the tweet consuming

13



queue, send the JSON string passed into the function to that
processor

○ If any of message passing fails, logs the error

2.3.3.3 Listen for partially processed tweet from sensor processor
Function Name: listen(tweet: String)
Pre conditions:

● Listening job is working
Post conditions:

● None
Details:

● Listens for messages added onto the tweet listening queue from
various sensor processors

● When a new message is added into the queue, calls update(tweet:
String), passing in the tweet received

2.3.3.4 Send partially processed tweet to sensor processor
Function Name: update(tweet: String)
Pre conditions:

● Have partially processed tweet to send
● Sensor processor is available

Post conditions:
● Partially processed tweet has been sent to sensor processor

Details:
● Creates a new JSON string that holds the only the primary key of

the document in the database, and the new information to be
appended to the document.

● Sends the request to MongoDB to update the document
○ Retries three times if unsuccessful
○ If fails, logs the error

2.3.4 Sensor Processor Operations:

2.3.4.1 Initialize: Initializes required connections and variables
Function Name: init()
Pre conditions:

● None
Post Conditions:

● Subscription to RabbitMQ’s processed Tweet queue is established
○ Retries three times if unsuccessful
○ If fails, logs the error

Details:

14



● Attempts to subscribe to the processed Tweet queue
● Generates any data required for processing

2.3.4.2 Receive raw_tweet from RabbitMQ: When RabbitMQ has a new tweet
that needs to be processed, it will send it to one or many Sensor Processors to
be processed.

Function Name: recv_tweet(tweet: String)
Pre conditions:

● RabbitMQ has a new raw_tweet that needs to be processed
Post conditions:

● The Sensor Processor receives the raw_tweet
Details:

● Gets a new tweet from the RabbitMQ queue
● Calls the send_tweet(tweet: String) function with the new tweet

received

2.3.4.2 Send processed tweet to RabbitMQ: When the Sensor Processor has
finished processing a raw_tweet, it will send the geostring and the tweet id to
RabbitMQ to be forwarded to the Data Writer.

Function Name: send_tweet(tweet: String)
Pre conditions:

● The Sensor Processor has identified a possible geostring.
Post conditions:

● RabbitMQ receives the geostring and id to pass to the Data Writer.
Details:

● Sends a JSON string of the processed tweet to RabbitMQ’s
processed tweet queue

○ Retries three times if unsuccessful
○ If fails, logs the error

2.3.4.3 Perform Operation: When a Sensor Processor has a raw_tweet to
process, it will use its perform_operation method to extract a possible geostring,
timestring, or other useful information.

Function Name: perform_operation(input: String)
Pre conditions:

● The Sensor Processor has received a raw_tweet from RabbitMQ.
Post conditions:

● The Sensor Processor has identified a geostring for the
raw_tweet.

Details:
● Each sensor processor will be responsible for executing certain

heuristics on a tweet. Some of these include:

15



○ Parsing address strings
○ Parsing area code strings
○ Parsing city/state strings
○ Parsing prepositional phrases
○ Looking through Twitter profiles for additional information
○ Inferring information based on #hashtags
○ Parsing keywords and inferring locations

● After the sensor processor is done processing the street, it calls
send_tweet(tweet: String) to return any additional information it
gathered during processing.

2.3.5 Middleware:

2.3.5.1 Get food truck request: Get a request from the user display to look up
location and time information for a particular food truck.

Function Name: get_foodtruck(truck: String)
Pre conditions

● User display has sent request to receive food truck information
Post conditions

● Request is sent to MongoDB
Details:

● Creates a MongoDB query that will return specific food truck data
● Calls request(query: String) with the generated query
● Calls send(result: String) with the result returned from the request

2.3.5.2 Get specific location request: Get a request from the user display to
look up food truck location and time information on all food trucks in a specified
location.

Function Name: get_location(location: String)
Pre conditions

● User display has sent request to receive specified location
information

Post conditions
● Request is sent to MongoDB

Details:
● Creates a MongoDB query that will return specific location food

truck data
● Calls request(query: String) with the generated query
● Calls send(result: String) with the result returned from the request

2.3.5.3 Get current location request: Get a request from the user display to
look up food truck location and time information on all food trucks at the user’s

16



current location.
Function Name: get_current_location(location: String)
Pre conditions:

● User display has sent request to receive current location
information

Post conditions:
● Request is sent to MongoDB

Details:
● Creates a MongoDB query that will return specific location food

truck data
● Calls request(query: String) with the generated query
● Calls send(result: String) with the result returned from the request

2.3.5.4 Request data from MongoDB: Using the PyMongo API, the middleware
queries the MongoDB database for information based on the criteria provided
from the user display

Function Name: request(query: String)
Pre conditions

● A request from the user display has been made
● MongoDB service is running

Post conditions
● A result is ready to be sent back to the user display (potentially

empty)
Details:

● Opens a connection to MongoDB
○ Retries three times if unsuccessful
○ If fails, logs the error

● Sends query to MongoDB
○ Retries three times if unsuccessful
○ If fails, logs a send_tweet

● Calls send(result: String[]), with the resulting JSON string array

2.3.5.5 Send information to user display: Send results of MongoDB query back
to the user display

Function Name: send(result: String[])
Pre conditions:

● MongoDB sent back a query result (potentially empty)
● The server is running

Post conditions:
● The result is sent back to the user display

Details:

17



● Sends an array of query result JSON strings to the user display
○ Retries three times if unsuccessful
○ If fails, logs the error

2.3.6 User Display Operations:

2.3.6.1 Send food truck request: Send a request to receive location and time
information based on a particular food truck.

Function Name: get_foodtruck(truck: String)
Pre conditons:

● A food truck is selected
Post conditions:

● If available, location and time information is displayed
● Otherwise, an error message is displayed that no results were

found
Details:

● Creates a JSON string request with the designated food truck
● Submits the request to the middleware

○ Retries three times if unsuccessful
○ If fails, logs the error and displays the error “Could not get

current location.”
● Passes the results to process_results(results: String[])

2.3.6.2 Send specific location request: User sends a request to receive food
truck location and time information on all food trucks in a specified location.

Function Name: get_location(location: String)
Pre conditons

● A location is specified
Post conditions

● If available, location and time information is displayed
● Otherwise, an error message is displayed that no results were

found
Details:

● Creates a JSON string request with the specified location
● Submits the request to the middleware

○ Retries three times if unsuccessful
○ If fails, logs the error and displays the error “Could not get

current location.”
● Passes the results to process_results(results: String[])

2.3.6.3 Send current location request: User sends a request to receive food
truck location and time information on all food trucks at the user’s current location

18



Function Name: get_current_location()
Pre conditions

● The browser is able to get the user’s current location
Post conditions

● If available, location and time information is displayed
● Otherwise, an error message is displayed that no results were

found
Details:

● Attempts to get the users current location
○ Retries three times if unsuccessful
○ If fails, logs the error and displays the error “Could not get

current location.”
● Creates a JSON string request with the determined location
● Submits the request to the middleware

○ Retries three times if unsuccessful
○ If fails, logs the error and displays the error “Could not

connect to server.”
● Passes the results to process_results(results: String[])
● Upon receiving result from the middleware, parses the results into

pin objects, bubble objects, and left panel objects.
● Displays the food trucks on the left panel
● Displays pins on the map
● The bubbles remain hidden until the associated pins are clicked

2.3.6.4 Process Results: After receiving a request result from the middleware,
map and other display objects are created and shown on the page.

Function Name: process_results(results: String[])
Pre conditions:

● A result was returned from the middleware
Post conditions:

● A collection of user interfaces objects is generated
Details:

● Parses and groups the results by food trucks and locations.
● For a unique food truck and geospatial location, a single pin and

hidden bubble object is created.
● Food truck, location, and tweet information is added to the bubble.
● For every time the food truck plans to visit that location, another

datetime is added to the associated bubble.
● For each unique food truck (not split by individual locations), an

item is added to the left panel.
● For each location and time the food truck plans to make an

appearance, an initially hidden description line is added to the item

19



on the left panel.
● Calls display_objects(objects: Object[])

2.3.6.5 Display Objects: Adds pin, bubble, and, panel objects to the user display.
Function Name: display_objects(objects: Object[])
Pre conditions:

● Pin, bubble, and panel objects were generated.
Post conditions:

● User interface objects are displayed on the screen and ready to
interact with the user

Details:
● For each pin/bubble pair, a simple call to the Google Maps API to

add a pin and bubble is called.
● For each panel object, a new object is added to the panel on the

left side of the page.

2.3.6.6 Pop­Up Bubble: When a pin on the map is clicked, the information
bubble associated with that pin is displayed. This operation is completely handled
by the Google Maps API.

2.3.6.7 Expand Food Truck Info: When a food truck item in the panel on the left
side of the screen is clicked, the item expands in an accordion­like fashion to give
more details about the food truck.

Function Name: expand()
Pre conditions:

● None
Post conditions:

● The food truck item expands
● The user interface is not cropped or distorted

Details:
● Uses basic Javascript and CSS accordion methods of expanding

list elements to display the additional information original hidden
within the panel object.

2.4 UML Diagrams
Sensor Processor Class Hierarchy

20



With the exception of the Twitter Sensor and Database Reader, all other backend modules are
instances of the SensorProcessor class. SensorProcessor is an abstract class that exists to
defines a common communication interface between all SensorProcessors, which
communicate and interact through the RabbitMQ message broker. Every SensorProcessor has
a reference to the message broker, and each SensorProcessor implements only one public
method: perform_operation, which takes as input a JSON representation of a tweet as a string.

LocationProcessor is an abstract subclass of SensorProcessor. It is responsible for registering
with RabbitMQ for tweets that need location processing, and for providing a common subclass
so that the various concrete implementations can be referred to without specifying exactly which
one ­ that is, it mostly exists for polymorphism. Each heuristic is a concrete subclass of
LocationProcessor. These modules implement perform_operation to identify any substring(s) in
the tweet their heuristics indicate may be locations, then append these to the tweet JSON string
and add it to Rabbit’s queue for further processing.

DBWriter is a concrete subclass of SensorProcessor. It communicates with MongoDB via
PyMongo, and is responsible solely for extracting the values in the JSON string it receives in
perform_operation and writing them into the database. Unlike the other sensor processors, it
does not place anything into the RabbitMQ queue itself.

2.5 Use Cases
2.5.1 Back­End Use Cases

21



Actors:
Twitter Sensor

Uses Cases:
■ Stream Twitter Feed

● Listen for new tweets on a Twitter handle
■ Collect Tweet

● Process a newly created tweet and put it into a nice format
■ Send Tweet to DB

● Send tweet JSON to database
● If could not connect to database → Log Error

■ Log Error
Dependencies:

■ MongoDB
MongoDB

Uses Cases:
■ Store Raw Tweet

● Store tweet sent from Twitter sensor into tweet collection
● If could not store the document → Log Error

■ Update Processed Tweet
● Update the original tweet record with additional information

gathered by sensor processors
● If could not update the document → Log Error

■ Log Error

22



Dependencies:
■ None

● MongoDB does not depend on any other module in the system. It
simply handles insert, update, and select requests from other
modules and returns results

Message Broker
Uses Cases:

■ Read Raw Tweet
● Makes a call to MongoDB to get any new tweet
● If could not reach MongoDB → Log Error

■ Distribute Raw Tweet
● Puts the tweet into a queue for sensor processors to read
● Note: The Message Broker does not actually send out the tweet.

It simply adds to the pool of available tweets from which
subscribed sensor processors can read.

● If If could not reach MongoDB → Log Error
■ Update Processed Tweet

● Makes a call to MongoDB to update a tweet document with the
updated information from the sensor processors

● If could not reach MongoDB → Log Error
■ Log Error

Dependencies:
■ MongoDB

● Database for reading and updating tweet records
Sensor Processor

Uses Cases:
■ Get Tweet

● Read a new tweet from the Message Broker’s pool of new tweets
● If could not read from Message Broker → Log Error

■ Process Tweet
● Perform designated operations on tweet

■ Return Tweet
● Return the processed tweet to the Message Broker’s queue
● If could not reach Message Broker → Log Error

■ Log Error
Dependencies:

■ Message Broker
● Queueing system to return and get tweets to and from the

database

2.5.1 Front­End Use Cases

23



Actors:
User Display

Uses Cases:
■ Send Request

● Sends a food truck, specific location, or current location request to
the Middleware

● If cannot read server → Log Error
■ Probe Food Truck

● Find additional information about a food truck result
■ Click Panel Item

● Case of Probe Food Truck
● Expands the list item on the left panel of the UI displaying more

information about the food truck
■ Click Map Pin

● Case of Probe Food Truck
● Shows the Google Maps API bubble displaying more information

about the food truck
■ Log Error

Dependencies:
■ Middleware

● The user display sends all data requests to the Middleware server,
then handles all manipulation and analysis of the data on the client
side

Middleware

24



Uses Cases:
■ Get Request

● Receive a request from the user display
● Then uses Send Request to DB

■ Send Request to DB
● Sends the request to the database
● If cannot reach MongoDB → Log Error
● If successful, Returns Result

■ Return Result
● Returns the resulting data to the user display
● If cannot return data → Log Error

■ Log Error
Dependencies:

■ MongoDB
● Database holding all processed tweets

■ User Display
● While the user display relies much more heavily on the Middleware

server, the server has nothing to do without a user display
MongoDB

Uses Cases:
■ Return Query Result

● Returns the result of query
● If could not run the query → Log Error
● If could not return the result to the Middleware → Log Error

■ Log Error
Dependencies:

■ None
● MongoDB does not depend on any other module in the system. It

simply handles insert, update, and select requests from other
modules and returns results

2.6 Timing Diagrams

2.6.1 Back­end Timing Diagram

25



When a Twitter sensor receives a new tweet, it is sent to MongoDB. When a new tweet is
available, it is the sent over to the message broker in the queue. The Twitter sensor sending data
to MongoDB does not trigger for the tweet to passed down the chain. Instead, the message
broker continuously looks for new tweets and puts them in the queue to be processed. This
asynchronous separation allows for the system to adapt easily to any future changes.

When the message broker has a raw tweet in its queue, any available sensor processor can
process the raw tweet and return it back to the message broker, which in turn updates the
document in the database. While these actions happen sequentially, the message broker does
not wait for the sensor processor to finish before performing any actions. The message broker is
able to send and receive additional messages while the sensor processors perform operations.

2.6.1 Front­end Timing Diagram

Unlike the back­end of the system, the components of the front­end must wait for a response
before proceeding when making a request. A user is able to make a request to view food truck
location information based on multiple different criteria. The request is sent to the middleware
application residing on the web server. The middleware then transforms the request into a
database query to return the desired data. The middleware may need to wait a short period of

26



time while MongoDB processes requests from other sources and generates query results. After
the result is returned to the middleware, it is then passed back to be shown on the user display.

2.7 User Interface

2.7.1 First View
GeoSkynet will be available through modern web browser (including ones used on mobile
devices). The site initially opens with the same view you would see on Google Maps. All of the
inherent features of the Google Maps API will be available, including panning, zooming, street
view, determining current location, etc.

2.7.2 Search Box
At the top right corner of the page, the user is able to type in a food truck, specific location, or
“current location”, to query food truck locations.

2.7.3 Result Panel
On the left side of the page, a list of result food trucks is displayed. When clicking on an element
in this pane, additional information will display: the location, time of the food truck visit, the

27



original tweets associated with the match, and other identifying information. The Google Maps
bubble associated with the item will also activate, providing additional information on that food
truck location.

2.7.4 Map Pins and Bubbles
For each food truck location, there will be a corresponding pin displayed on the map. When the
user clicks on the pin, a bubble pops up that displays food truck information, more detailed
location information, the different times the food truck will visit that location, and the original
tweets from the food truck.

If the system is able to read the user’s current location, a pin of a different color is also displayed
on the map for that location. When clicking on that pin, a bubble pops up with more detailed
location information.

3. Moving Forward
The initial phase of the system focuses entirely on food truck tweets on Twitter. This allows us
the developers to keep focus on producing particular results from a specific data source under a
specific domain. With a specific goal in mind to display food truck information that was gathered
and processed from Twitter, there is a clear and comprehensive state that the application must
reach before release.

However, the nature of the system allows for generalization in several areas.

● Several components are decoupled and receive messages in a queueing system,
additional computing power can be applied to handle a much larger domain.

● The language and time processing algorithms are not food truck specific. The domain
can be attributed to restaurants, to business, to virtually anything that could have location
information.

● The methods for passing raw data to the back­end of the system are separated from the
methods for collecting the data, allowing for other data sources to be used in the future
(like Facebook, RSS feeds, blogs, etc.)

While the initial product has its own application, in the future (after the initial release), the product
can expand to include much larger and more interesting problem sets.

28


