UCSB

Computer Science Capstone 2013

_KINECTS IN UNITY

Design Specifications

Team Hex Pistols

Anthony Narsi
Jerry Boyang Peng
Sea Pong
Alexander Scarlett
Kevin Sheridan

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

1

Table of Contents

LI 0T Lo 10 1 OO 4
1.1 Product OVEIVIEW...coiiiiiiiiicencstniintntestssesesssesase st st ssssasesesase e sabe st sabe st ssesasesesasentsubestsssesasnesasentsssssesssssses 4
1.2 Definitions, ACronyms, ADDIevIAtionsceieivnrisiininininiininiisisiiiissiesesmessmessssees 4
L T 1 5 TS 4
1.4 DocCUMENTt OVEIVIEW wuuriiiiieinineiiininineiiieisiseiineisseineisstemneisstommstsstommsssstomssssssosssssssssosssssssssosssssssssessanssssns 4

DESIGI OVEIVIEW w.uciuiiiiiiiiiiinieiiciniiin et sa s sa e s b e b e bt e as s b s sas s s s b e s s b e s b e ssssassnnsssassns 6
28 S 01T T T T 6
2.2 Implementation StrAtEGY ...cvivnririivisisiisisisiisisnisississisiieniisisisesisesioesisossisoeststsssssessossssessesssseses 7
2.3 Data FIoOW DIagraml....iiiiiniiiiniiiiniiisiesisimesiisiesiesiesimssissomssssssssssssns 8
2.4 Global Class Diagram (UML)ccciniiiinniiiiiiesmsies e e 8
2.5 Application Execution State DIagrammcviininnisnniiiniiiesemsesesessesesssses 9

Design SPECifiCatiON ...uciiriniiviiiniiiirisiiiiiiiiiiiiiiisreiisreisssesssssesssssssessosessessossnsssosssnessosssnessosssnsssssssnenes 10
3.1 Kinect SDK COre COe couuininiiniriiniiiinenenennininiintntnsesssesasesesasesessestsssesasesesasessssestssesssssesssesssssessssssssessssssss

3.1 OVEIVIEW cirirurceininisncsininisnesisiessssssssesssssssssessssssssstssssssssssssssssosstssnessssesssnessane

3.1.2 Local Class Diagram (UML)c.ccccusisinnsiinnsiimssiimsiimiimmsmnmsmn s s

3.1.3 Class Data and Method Descriptions

3.1.3.1 SEATTCIASS ...voveviriaeieieseieieaete ettt ettt eae bttt bbbt s bbbt eae bbbt ae b et st s b sebetne st sbnsbebsnnnaes
3.1.3.1.1 Class PrOPEItis....ccuciicueiieiiiieciciiecieieieiiteeisiese st sssesessesese s sessassessesesessssessssssesssssasssssesesssacses
3.1.3.1.2 Private Member Variables
3.1.3.1.3 Private Member Methods........ccceccueieeininiiiriecriccinicicinecieseesetseese e sesesetsesessesaessasesessessaes
3.1.3.1.4 Public Member Methodscceueuiriririeiniieirieieeicieisieie sttt st ssssssessssssessssesssasans
3.1.3.2 KINECtALL ..ottt esaeses

3.1.3.2.1 Class Properties
3.1.3.2.2 Private Member Variables
3.1.3.2.3 Private Member Methods

3.1.32.4 Public Member MethOdscocoeiueriieieinieiiccciceeeie et sssssss s ssse s s s s ssssasssassns
3.1.3.3 KINECESINGLE ..ttt e et
3.1.3.3.1 Class PrOPEItes...ccueueucueueucuririaeieiseietsieicteetietseese st ssesesetseaese st s sseaesessesesesseaessssesesesasaessssesesssneses 13
3.1.3.3.2 Private Member Variables..........cccccceririrriniririiesnsiesisisesseseessseseesesessssssssssssssssssssssssesessssssssssssens 13
3.1.3.3.3 Private Member Methods........ccccoveueiririniriniiiieeeeieieiesese st sessssssesssessssssssesessssssssssssesssens 15
3.1.3.3.4 Public Member MethOdscoeiveviieieinieiiccccieeete ettt sesesasss s ssses s s s ssssasssassns 15
3.1.34 CAlCULALION ..ttt ettt be bbb ss e s s s e b et e b e b s s s asasesssseseseses st nesanassssne 16
3.1.3.4.1 ClaSS PIOPEITIES.....cuevmivieciretieceeiieeietteeietsteeeeteeese st sstse et essessesssssssesssssssesesssssesessenas 16
3.1.3.4.2 PUDLC MEROMAS c.evveveirieieiiiiieceieieietstetetee sttt e be b s se s sesssssasesesssesssssnsnsssssssns 16
3.1.35 MESSAZE ...ttt bbbt 16
3.1.3.5.1 Class PrOPEIties...cccuecueueuiueiricieieicieicienitectseesesetstaesstsesessesesesseaesesstacsessesesessesessssesesssatasssasesessecses 16
3.1.3.5.2 PUDLC MEROMAS c..evvivevireieiciecccte ettt et bbb s s ss s s bbb b s s s sesasanaes 16
3.1.3.6 KINECECOMIN 1.ttt sttt ea ettt st et se s bt e b et s b e b et ese st ebe st ebentssenessenentesenersen 17
B.1306.1 OVEIVIEW cevuiiiiieiiieietetetsteststesesteaestese et et sbesessebestese st bestebesessesetesestesentssentsesertesentesentesenessesensensnsasens 17
3.1.3.6.2 Network Time Sequence DIiagram ... 17
3.1.3.6.3 Public Member MethOdsc.cvcceueriieieieieiiecciceeete et sss s s s bbb ss e sasasassne 17
3.1.3.7 DeDUGWINAOW ..ot s 18

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

3.2 Unity Front ENd Code.... s 18
3,21 OVEIVIEW weviiiiiiiiiinnieininies ettt s st et saa s b s sa e b e s e b s sabssa b e s s b e s b e b b s anssbassaessbessnassasssases 18

3.2.2 Local Class Diagram (UML).....ccoiviienesinenesnisissesniessenisnenimsnenisesissssimsssssssssssssessesssssssssesneses 19

3.2.3 Class Data and Method DesCrIPIONSocvvivvierisninisniinisininiisissiiseiieimmesssss 19
3.2.3.1 CameraAll (Main() Class)ccceeveeererereerereeeerseseseseseseessssssesesesesssssssesesesesssssssssesesesessssssesesesesssssssesens 20

3.2.3.2 CameEraSiNgle.......c.ovuveueurecinieererreieieiseeeieseee et seesesesesaesnens Error! Bookmark not defined.

3.3 Front End User INTEIface ...cvinrieriniinininiiniiniiisiissiisssiisssiisieimieimsmimssssmmsssssssses 18
331 OVEIVIEW weviiiiiiiiiiniiiiniiiesies et ss s sas st e st sa s sa e sh e b e s e b s eab s sa b e s R b e b e b b s be s sbassaessbessnassnsssnses 21

3.3.2 MOCK UP DiIaBramsS...c.coiiviicniesineniisiiessninnisieniisiesniissssisisssssesissssismssessessossssessosessessossssessosssnesss 21

4 L0703 1Yol LT 103 22
Appendix A. L LT T RN 23
Appendix B. T O 24

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

1
1.1

1.2

1.3

1.4

Introduction

Product Overview

This project will create an integrated system of multiple Microsoft Kinect sensors and large format displays to
create a naturalized viewing of 3D panoramas on non-panoramic screens, similar to looking outside a ‘virtual’
window. NASA’s astrophysicists are looking forward to the day where they can simply enter a room, flip a
switch, and be surrounded by a previously unreachable territory like Mars.

Kinects in Unity is setting the basis for these scientists to be virtually immersed in a complex augmented
reality, just as any other scientist could simply go to a lab or field and perform experiments. The main
intention of this project is to allow a user to realistically experience an environment that he or she could not
otherwise be physically present in. The Human-Computer Interaction Department at JPL wanted to simplify
the process of tracking movements by cameras and transferring these movements to an augmented reality.
Simplifying the process entails decreasing the cost of the system as a whole. NASA is working with Microsoft
Kinects to prove to astrophysicists that entering a virtual environment does not require highly expensive
camera and tracking equipment. Our project provides the foundation for this significant benefit.

Definitions, Acronyms, Abbreviations

See Appendix A. Glossary

References

Kinect SDK Documentation
(http://www.microsoft.com/en-us/kinectforwindows/develop/resources.aspx)

Unity 3D API Documentation
(http://unity3d.com/company/support/documentation/)

Document Overview

This document will detail the specifics of the Kinects in Unity application. It will include descriptions of each
of the functions used in Kinect SDK and in Unity3d. The function descriptions will also cover the hierarchy of
the code and the flow of data in our application. The document also details how the user interacts with the
application.

The remainder of the document provides detailed specifications regarding the design of the Kinects in Unity
application. The document includes descriptions of all project modules and explanations for all interactions
between modules. The document will specify the user of each module and the module will be interacted with
by such a user.

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

http://www.microsoft.com/en-us/kinectforwindows/develop/resources.aspx
http://unity3d.com/company/support/documentation/

1.5 Team Contact Information

Chandra Krintz (Professor)
ckrintz@gmail.com

Stratos Dimopoulos (Teaching Assistant)

stratos.dimopoulos@gmail.com

Victor Luo (Mentor)
victor.luo@jpl.nasa.gov

Jerry Peng
jerry.boyang.peng@gmail.com

Sea Pong
sea@seapong.com

Alex Scarlett
scarlett.alex@gmail.com

Anthony Narsi
ajnarsi0l @gmail.com

Kevin Sheridan

kdsheridan37@gmail.com

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

mailto:ckrintz@gmail.com
mailto:stratos.dimopoulos@gmail.com
mailto:victor.luo@jpl.nasa.gov
mailto:jerry.boyang.peng@gmail.com
mailto:sea@seapong.com
mailto:scarlett.alex@gmail.com
mailto:ajnarsi01@gmail.com
mailto:kdsheridan37@gmail.com

2 Design Overview

2.1 Introduction

The execution of Kinects in Unity can be summed up in two steps. The first is to process raw data from
multiple Microsoft Kinects to track one user’s location. The second is to show the user’s observation windows
of a 3D scene provided by multiple displays.

The project will be developed in Visual Studio 2012 Ultimate and Unity 3D Development Studio. The code
will consist of mainly C# with some C++ used in low-level wrapper functions. The usage of C# means this
project is heavily object-oriented. For an overview of what object-oriented programming entails and its general
code structure, please visit: http://en.wikipedia.org/wiki/Object-oriented programming. A decent knowledge

and understanding of object-oriented is required for the comprehension of this design specification document.

Stretch goals include increasing the number of Kinects for a wider range of view and increasing the number of
users present in the workspace.

Figure 2. User Standing on Left Looking Right Figure 1. User Standing on Right Looking Left

As seen in the figures above, the user has no input to the system, with the exception of his movement. The
controls of the system are completely invisible to the user, and results are immediately effective.

2.2 Hardware Diagram

The hardware setup is very simple. To use a dual monitor setup with one computer, an additional device is needed to
split the computer’s VGA output into 2 separate VGA outputs. The device recommended to use is called the
DualHead2Go. Simply connect VGA cables to the TVs and attached them to the DualHead2Go. Then attach a VGA
cable from the computer to DualHead2Go. The Kinects should also attach to the same computer through USB. If the
computer does not have 2 free USB ports, a USB hub should be used. It is reccommended that the Kinects be directly

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

http://en.wikipedia.org/wiki/Object-oriented_programming

attached to the computer while other USB devices be attached to the USB hub.

¢ g To Wall Socket To Wall Socket

VGA-Laptop-Display Connection USB-Kinect-Power Connection

>@PS - g © < Eo® g

2.3 Implementation Strategy

As previously mentioned, this project will be broken up into two major parts. The Kinect data processing
module and the Unity front end rendering module. The two modules will be joined together via a wrapper
class.

END USER

["4 ~
KINECT SENSOR UNITY 3D

CUSTOM INTERFACE LIBRARY

~

Figure 3. Implementation Strategy

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

2.4 Data Flow Diagram

- ™

KINECT SENSOR(s)

LARGE FORMAT DISPLAY

‘)

, ¥ ‘

KINECT SDK

UNITY 3D

*)

SCENE CONTROL
STREAM(s)

SKEL | ‘ ‘ DEPTH

-

MULTI KINECT PROCESSING & COMMUNICATION LIBRARY

o

Figure 4. Software Data Flow Diagram

2.5 Global Class Diagram (UML)

Z MultiKinectProcessor #A Unity 3D
A MainClass MainClass
r= = 7 =2 Attributes 1
I
I = Operations
! 1
I
, MainClass 1 <>1 1
: MainClass KinectComm |, 1
‘Debquinduw 1
| ~ R KinectComm =
I ~ DebugWindow PSS IS R ~ UnityClient
l = Attributes
| =l Attributes + Attributes
" =/ Operations
" =l Operations 1 + Operations
f T T
I 1 | | 1
: I i
" pocoocoocooooo alls == - !
I 1
i v v
: E Message = |~ _ _ _ _ L J 2 KinectAll
| KinectAll
- = = 3 Attributes ~~"7 1>' + Attributes
=l Operations : + Operations 1
|
”:\ : KinectAll{)1 1
1 1
1 1
1 1
1 1
1 ! KinectSingle | *
1 1
A Calculation e - S . KinectSingle
1
= Attributes ' =l Attributes
=I Operations =/ Operations
Figure 5. Global Class Diagram (UML)

Last Revision: March 7, 2013

Based on github code branch: jerrypeng/capstone/with_calibration_code

and kdsheridan/unitycapstone/master

2.6 Application Execution State Diagram

Kinect Data
Processor Initial

Start All
Kinects

Vs

Start All
Data Streams

Start Kinect
Processing Serv

Start Command
er Console

Unity TCP Link Lost

or Add/Remave

= Exit Application

y

L] [}

T

Kinect Data Processing Server Waiti

L=

for User Input or Sendi

eceiving event

—)

~
. — P
A A
i Recognized
Bogi o eyation Gilent Alve Packet - Sendinital | A Fgset
EVENT I I Kinect Info | Change Scene | /
1 I EVENT | Location \
| | | EVENT / Y
| H Includes: \
| | Kinect Count | , Stop Al
1 | SUser F[osilinn) \ Kinects
N Il cene Location
Calibration ﬁf’;‘lb{,%'n";" \ H (defaultbackup) | :
Previously Done Calibration | I 1 !
Not Done | | | 1 senaib UoP Clear All
1 i I ndi
Calibration In Galibration | H : i Data Stream Data Structures
Progress Previol 1 |) EVENT
reviously Done H H) \
1
: : : : Rescan for
Establish 1 1 I 1 Kinects
Connection with ! ! Déta 1
Unity . Received !
Connéction | ACK |
Unsuccessful | I ! Start All Data
TIME,OUT ! ! Backug Scene Streams
7 1 ! Location to
- - Kinect Data
- -O— -——- Connéction Smfm,e
’ Successful
I ACH i
1 1 /
\ S -
N -
Broadcast S =7 All Congecutive
Client Alive i UDP Data
I Stream Packets
A | First UDP Data Reset
,l Stream Packet
Decoding UDP Camera
P Capen Rz UE? Wait for First UDP Control Data Stream and

o

Data Stream Packet

Connection Lost

Movements

Translate to Camera

Figure 6. Application Execution State Diagram

Last Revision: March 7, 2013

Based on github code branch: jerrypeng/capstone/with_calibration_code

and kdsheridan/unitycapstone/master

10

3 Design Specification
3.1 Kinect SDK Core Code

3.1.1 Overview

The Microsoft Kinect SDK is used to receive three streams of data (skeleton, color, and depth) from each
Kinect device in the system. These three streams of camera data will be used to translate user movement
data into raw camera angles that can be converted into Unity Pro camera actions. The output of the Kinect
SDK module of the system will be then modified by a wrapper class to correctly format the data for use in the
Unity Pro module.

3.1.2 Local Class Diagram (UML)

A «Ci# class» A «C# classe A «C# class»
DebugWindow MainClass MultiKinectProcessor::MainClass
= Attributes ! 1| = Attributes = Attributes
+ debugWindow : DebugWindow + mainClass : MainClass + kinectSensor : KinectSensor
- - mainClassPrivatelnstance : MainClass - ANGLE_BUFFER : Double
- centerPointBrush : Brush = Operations - calibrationCheck : Boolean
=Cli i Thick + InitializeComponent() mainClass - colorPixels : Byte[*]
- clockCounter : Int1§ . Mai ke - dataCopyLock : Object
- colorBitmap : WriteableBitmap] - MainClass() 1 - d_epth\xe\s : DepthImagePixel[*]
- colorPixels : Byte[*] h - distance : Double
- debugWindowPrivatelnstance : DebugWindow ' MainClass | 1 MainClass | 1 - distanceStatic : Double
- drawingGroup : DrawingGroup - DISTANCE_BUFFER ; Double
- drawingGroupTopView : DrawingGroup : - faceDetected : Boolean
- errorMessage : Brush i Kinectall |, 1 - faceTracker : FaceTracker
- imageSource : DrawingImage j o «C# classs - faceTrackFrame ; FaceTrackFrame
- imageSourceTopView : DrawingImage ' P— - height : Double
- InferredBonePen : Pen ' - heightStatic : Double
N H ' R K
inferredJointBrush : Brush | D Attributes HEIGHT_BUFFER : Double
- infoMessage : Brush H + Kinectal : Kinectall - skeletonData : Skeleton[*]
- JointThickness | + kinecthl: kinectal - skelltonld : Integer
- kinectPointBrush ; Brush ' + kinectsList : List<KinectSingle> . - stabilityDistance : Double
- maxScale : Single : - count : lnrleger N KinectAll K'"Eras'"gle - stabilityDistanceCount : Integer
- kinectAllPrivatelnstance ; KinectAll
- Renderteight I L { 7| - stabiityHeight : Double
- i Iy = = = [= Operations - stabilityHeightCount : Integer
- trackedBanePen : Pen H ! + CalibrateAll() - stabilityTheta : Double
- trackedJointBrush : Brush n + getFirstKinectSingle() : KinectSingle - stabilityThetaCount : Integer
- _contentLoaded : Boolean :I + getKinectCount() : Integer <---- '] - STABILITY_LEVEL : Double
~ BeginCalibration : Button " + StartallKinects() | - stableCheck : Boolean
~ checkBoxSeatedMode : CheckBox N + StartUnifiedDataStreamall() ! - theta : Double
~ debugTextBox : RichTextBox :n - AddKinect(k : KinectSensor) : Baclean kinectAll : - thetaStatic : Double
~ layoutGrid : Grid .: - Fii K) = - trackedSkeletons : Integer
~ SkeletonCanvas : Image " - KinectAll() 1 ! = Operations
~ : I
stanBar : Sahshar " inectal | 1 i + CalibrateKinect() : Bookean
~ statusBarText : TextBlock 1 ! + enableKinectSensors{) : Boolean
~ T.oanew + Image :. | + GetColorPixels() : Byte[*]
~ Video : Image I | + GetDepthPixels() : DepthImagePixel(*]
&l Operations N A «C# classs ' + GetDynamicAngle() : Double
+ e input ; Strin " ade::C h + GetDynamicDistance() : Double
+ getDebugTextBox() : String |: ! + GetDynamicHeight() : Double
+ InitializeComponent() n 1= Attributes i + GetkinectSensor() : KinectSensor
- BeginCalibration_Click(sender : Object, & : Rout. :: B Operations e + GetSkelData() : Skeleton[*]
- CheckBoxSeatedModeChanged(sender : Object,.. il + Calculation() <---- : =l ==1 + GetStaticAngle() : Double
- DebugWindow() + GetStaticDistance() : Double
+ Ra : Double) : D
- DrawBone(skeleton : Skeleton, drawingContext... . h rl . an e d : N | + GetStaticHeight() : Double
- DrawBonesAndloints(skeletan : Skeleton, drawi... T N - el | + KinectSingle()
- IComponentConnector. Connect(connectionld : L.. |- _ _ _ _ _ _ N . . 1 + kinect_Calibrate(sender : Object, e : Skele...
- KinectPointToScreen(distanceraw : Double, thet... F= = = = = = -1 \ + StartAllDataStreams() : Boolean
. RenderCl 1 : Skeleton, drawi... " I - CopySkeletonDataTaClass()
- SensorAllFramesReady(sender : Object, & : AlFr. ' - Initialize()
- SensorColorFrameReady(sender : Object, & : Co... ' - kinect_AlFramesReady(sender : Object, all...
- SensorSkeletonFrameReady(sender : Object, e : A «Cit classe DY - PositionStable() : Boolean
- SkeletonPointToScreen(skelpoint : SkeletonPoin... < : ST 7T - Teststable()
- WindawClosing(sender : Object, e : CancelEven... '
- WindowLoaded(sender : Object, e : RoutedEven... " = Attributes !
[B Operati |
e e et | Operations |
DebugWindow > . I A «C# class»
+ Errortmsa ; String) 1
+ Info{msq : String} | KinectComm
+ Message() | b
+ i =l Attributes
(EEEEEE =/ Operations.
+ EstablishConnection(int IP, int port) : Bool
+ SendData(string data) KinectComm
+ StartServer() : Bool
+ StopDataStream() 1
KinectComm | 1

Figure 7. Kinect SDK Module UML Class Diagram

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

11

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

12

3.1.3 Class Data and Method Descriptions

3.1.3.1

3.1.3.11

3.1.3.1.2

3.1.3.1.3

3.1.31.4

3.1.3.2

3.1.3.2.1

3.1.3.2.2

3.1.3.2.3

StartClass

The startcClass is the class that serves as a main starting point when calling the Kinect SDK Module
independent of the wrapper or Unity modules. This class contains support function that allow the debug
window to appear and be able to test and debug the Kinect SDK module output without any Unity 3D
renderings

Class Properties

Singleton Class

Private Member Variables

private static StartClass mainClassPrivateInstance

The self-instantiated single instance of StartClass

Private Member Methods

private StartClass()

Private constructor method ensures that this class is never created again in program runtime
Public Member Methods

public static StartClass mainClass()
Public getter function returns the private instance of main class.

KinectAll

The Kinectall class is a singleton class that contains Kinect system wide parameters. This includes a
KinectSingle list and a count of number of connected Kinects.

Class Properties

Singleton Class

Private Member Variables

private static KinectAll kinectAllPrivateInstance
The self-instantiated single instance of KinectAll.

private List<KinectSingle> kinectsList
A list of all the Kinects that is connected to the system.

Private Member Methods

private KinectAll()
Constructor for KinectAll class. The constructor creates the single instance of the KinectAll class.

private bool AddKinect(KinectSensor k)
Adds KinectSensor k to List<KinectSingle> kinectsList. This function also checks whether KinectSensor k
has already been previously added.

Parameters
KinectSensor k - A newly detected Kinect that needs to be added to List<KinectSingle> kinectsList

Returns

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

3.1.324

13

Boolean (True/False) - Return True to indicate that KinectSensor k has been successfully added to
List<KinectSingle> kinectsList. Return False to indicate KinectSensor k has been unsuccessfully added
to List<KinectSingle> kinectsList.

private KinectSingle FindKinect(KinectSensor k)
This function determines whether KinectSensor k is in List<KinectSingle> kinectsList.

Parameters
KinectSensor k - The kinect the function tries to find in List<KinectSingle>

Returns
Boolean (True/False) - Return True to indicate that KinectSensor k has been successfully found in

List<KinectSingle> kinectsList. Return False to indicate KinectSensor k has not been found in

List<KinectSingle> kinectsList.

Public Member Methods

public void StartAllKinects()
This function detects all connect Kinects, populates a list of all the connected Kinects and starts/enables
them.

public void CalibrateAll()
Calibrates all the Kinects detected in the system.

public void StartUnifiedDataStreamAll()
Starts all the need data streams for each Kinect

3.1.3.3 KinectSingle

3.1.3.31

3.1.3.3.2

Class Properties

No special properties

Private Member Variables

private Object dataCopylLock
Thread lock object that ensures whatever code encapsulated in a lock{} is allowed to complete
undisrupted.

private double distance
Holds the distance of the user from the Kinect sensor in meters (dynamic). This value constantly gets
updated regardless of calibration done.

private double distanceStatic
Holds the distance of the user from the Kinect at the completion of calibration sequence.

private double height
Holds the height of the user relative to the Kinect (dynamic). This value constantly gets updated
regardless of calibration done.

private double heightStatic
Holds the height of the user relative to the Kinect at completion of calibration sequence.

private double theta
Holds the dynamic angle of the Kinect relative to the user (dynamic). This value constantly gets updated

regardless of calibration done.
private double thetaStatic

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

14

Holds the static angle of Kinect relative to user obtained at completion of calibration sequence.

private Skeleton[] skeletonData
Holds an array of Skeleton objects that is copied from the KinectSensor at each frame. Each Skeleton item
represents an entire body, each body will receive one index in this array

private int skeletonId
Holds unique skeleton ID of the tracked individual

private bool calibrationCheck
Is true if calibration has been successfully performed

private int stabilityDistanceCount
Counts the number of frames that the distance value is in stable state.

private int stabilityThetaCount
Counts the number of frames that the theta value is in stable state.

private int stabilityHeightCount
Counts the number of frames that the height value is in stable state.

private double stabilityTheta
Used during calibration to hold the base theta value for stability comparison until the calibration process
is successfully completed.

private double stabilityDistance
Used during calibration to hold the base distance value for stability comparison until the calibration
process is successfully completed.

private double stabilityHeight
Used during calibration to hold the base height value for stability comparison until the calibration
process is successfully completed.

readonly private double STABILITY_LEVEL
Parameter that is used during calibration. There must by STABILITY_LEVEL frames elapsed in stable position
before calibration values are stored and declared calibrated

readonly private double DISTANCE_BUFFER
Parameter that is used during calibration. The distance +/- range that the person can move to still be
considered stable.

readonly private double HEIGHT_BUFFER
Parameter that is used during calibration. The height +/- range that the person can move to still be
considered stable.

readonly private double ANGLE_BUFFER
Parameter that is used during calibration. The theta +/- range that the person can move to still be
considered stable.

private FaceTracker faceTracker
Face tracker class instance that contains the Track() function, enabling user face detection.

private FaceTrackFrame faceTrackFrame
Holds face tracking data from each frame, also contains public bool TrackSuccessful()

private bool faceDetected
True when a face is detected in the latest frame received from KinectSensor

private byte[] colorPixels
Holds color stream pixel data in the latest frame received from KinectSensor

private short[] depthPixels

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

3.1.3.3.3

3.1.3.34

15

Holds depth stream pixel data in the latest frame received from KinectSensor

private Skeleton skeletonOfInterest

Main Skeleton that is used to control the entire Unity 3D scene. Passed into the Track() function inside
faceTracker

Private Member Methods

private void Initialize()

Initializes all stability variables to zero to prepare for calibration and initializes stableCheck and
calibrationCheck to false

private bool PositionStable()
Checks that skeleton position is stable

private void kinect_Calibrate(object sender, SkeletonFrameReadyEventArgs e)
Event handler called at each ready skeleton data frame to initiate the stability check method. When
counters have determined stability is reached, values are stored and calibration is finished.

private void kinect_AllFramesReady(object sender, AllFramesReadyEventArgs
allFramesReadyEventArgs)

Event handler called each time all 3 data streams have changed (30fps). This handler copies all of the
KinectSensor data to data structures in KinectSingle class to begin processing. Processing includes
detecting if the person is facing to or away from the Kinect and then calculating theta and distance for
each Kinect. The handler begins with locking a semaphore to prevent the camera from taking any data
while data is being processed. At the end of the sequence, the semaphore is released.

Public Member Methods

public KinectSingle()

Constructor of this class is public, as many instances of this class may be created as long as it is added to
the List<KinectSingle> kinectsList list. Calls Initialize() to make sure all calibration values are reset and
Kinect is added in uncalibrated mode.

public bool enableKinectSensors()
Starts Kinect Sensor by enabling skeleton, color, and depth streams

Returns
True if Kinect Sensor is successfully enabled

public bool StartAllDataStreams()
Links kinect_AllFramesReady as thr Al1FramesReadyEventArgs event handler. Initializes skeletonData,
colorPixels, and depthPixels arrays to size of their respective data lengths for each frame

Returns
True if successfully completed

public bool CalibrateKinect()
Sets up event handler as kinect_Calibrate every time a new Skeleton Frame is received from the Kinect

Sensor. Calls Positionstable() to hold the thread open until calibration completes. Disconnects event
handler upon calibration success.

Returns:
True if successful completed

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

16

3.1.3.4 Calculation

3.1.3.4.1

3.1.34.2

Class Properties

Static, class constructor is private and never ever gets instantiated

Public Methods

static public double findDistance(double c, double d)
Find the distance from coordinate (0, 0) to coordinate (c, d) by using the distance formula.

Parameters
double c - X coordinate

double d - Y coordinate

Returns
Distance (in Meters) given the coordinate for a user's center point

static public double findUserTheta(double c, double d, double e, double f)
Finds the angle of the Kinect location relative to the user starting at the positive y axis being 0 degrees,
using the law of Cosine

Parameters
double c
double d
double e
double f
Returns

A double value of angle of the Kinect location relative to the user

static public double degrees2Radians(double degrees)
Converts degree value to radian value

static public double radians2Degrees(double radians)
Converts radian value to degree value

3.1.3.5 Message

3.1.3.5.1

3.1.3.5.2

Class Properties

Static, class constructor is private and never ever gets instantiated

Public Methods

static void Error(String msg)

Adds string msg to the debug textbox in the debug console UT and prints to Debug Console with Error
message type. Error message types will append “ERROR:” to the beginning of the string and color it red
where rich text is supported

static void Warning(String msg)

Adds string msg to the debug textbox in the debug console UT and prints to Debug Console with
Warning message type. Warning message types will append “WARNING:” to the beginning of the string and
color it yellow/orange where rich text is supported

static void Info(String msg)
Adds string msg to the debug textbox in the debug console UI and prints to Debug Console with Info
message type. Info message types have standard black text formatting.

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

3.1.3.6 KinectComm

3.1.3.6.1

3.1.3.6.2

3.1.3.6.3 Public Member Methods

Overview

17

This class contains the code used for communications between the Kinect module and the Unity module.

The Kinect module serves as a server while the Unity module serves as a client

Network Time Sequence Diagram

€——— Time

public bool StartServer()

ddl

dan

ddll

Connection Establish Seqeunce

Kinect

Unity

Client Alive
Client Alive
Client plive

Start Data Stream

AMEra Position pats

C*
Camerg Position Data
Camera Position Data

Stop Data Stream

S
top Data Strean Reuest

Figure 8. Network Connection Time Sequence Diagram

Starts the server for the kinect module. Binds listening ports.

Return:

Last Revision: March 7, 2013

Based on github code branch: jerrypeng/capstone/with_calibration_code

and kdsheridan/unitycapstone/master

18

Boolean that states whether the server was started successfully or not. Return true if server is started
sucessfully. Return false if server was not able to start.

public bool EstablishConnection(int IP, int port)
Establishes the connection parameters between the Kinect Module and Unity Module

Parameters:
IP address of Unity module and ports its listening on.

Returns:
Boolean that states whether connection between Kinect and Unity module has been successfully

established.

public void SendData(string data)
Sends a data stream over UDP

Parameters:
String data that needs to be sent from Kinect to Unity

public bool StopDataStream()
Sends a stop signal from Kinect Module to Unity.

Returns:
A boolean stating whether the stop signal has been successfully transmitted.

3.1.3.7 DebugWindow

3.2 Unity Front End Code

3.2.1 Overview

The Unity3D sector of the Program acts as the Client. The Unity Client begins with a Broadcast message sent
over TCP to tell the Kinect Server the Client’s IP address. When the Kinect Server is done with its calibration
phase, it establishes a connection to Unity. The Unity Client then receives Control info (# of Kinects,
Position, Location (Default if first time)), creates the Camera objects, and sets initial user position and scene
location. After this phase of Unity calibration, an ACK is sent to the Server and the Server responds with a
message to start the data stream. The data stream connection is established and Unity is now waiting for
Kinect User Input data. In this state, Unity is constantly receiving and using data to portray the User’s view
of the window. If the scene location is moved in Unity, the location is saved in Unity and also sent to the
Kinect Server. If the Kinect Server resets to adjust for more or less Kinects, it sends a Stop message to the
Unity Client. Unity then handles this reset and clears all Cameras. The process returns to when the Unity
Client receives Control info. If the Kinect Server or the Unity Client crashes, this whole process restarts with
Unity sending a Broadcast message.

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

19

3.2.2 Local Class Diagram (UML)

A UnityClient

- Attributes
+ Camera CameraSingle
+ Camera[] Cameralist
+ int controlSockFD, dataSockFD
+ int numKinects
+intx, vy, z, theta
+ Queue<string> data
+ struct Scene Location
= Operations
+ void Awake()
+ void FixedUpdate()
+ void Start()
- int ConnectControl()
- int ConnectData()
- void Broadcast()
- void Clear()
- void CreateCameras()
- void ParseData()
- void ReadControl(int controlSock...
- void ReadData(int dataSockFD)
- void SetCam(int n)

3.2.3 Local Class Activity Diagram

Program
Initiated |

Send IPAddress to Server

oy =
% J

Establish TCP connectionwith Server .
L 3 Kinect Server
(!
ConnectControl()
Awake() \r
>

ReadContral)] Control Communication between Client and Server ‘
g ot A
ConnectData() J
blishUDP ionwith Server

IfKinect Count Changes
] Clear()

5 Readata) |

Data Communication between Client and Server

" —

® o Start()

Called automatically afterAwake() finishes

‘ Called 30 times per second

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

20

3.2.4 Class Data and Method Descriptions

3.2.4.1 UnityClient Script (Main() Class)

public Camera[] CameraList = NULL;

public Queue<string> data = new Queue<string>();

public Camera CameraSingle;

public int controlSockFD, dataSockFD;

public int x, y, z, theta; //user location coordinates and angle
public int numKinects;

public struct SceneLocation
//variables to store location of Scene in Unity

public void Awake()
Calls Broadcast()
Call ConnectControl()
Spin off new thread ReadControl() to handle TCP Control Stream
Call ConnectData()
Spin off new thread ReadData() to handle UDP Data Stream
When function is completed, Start() is automatically called
private void Broadcast()
Broadcasts IP address for Kinect Server to find
private int ConnectControl()
Wait for TCP connection initiation packet
Receive packet
Sends ACK
Wait for Control info
Receive Number of Kinects, User Position, and Scene Location (Default if first time)
Updates Global Variables
Sends ACK
return controlSockFD
private void ReadControl(int controlSockFD)
Constantly receiving control messages over TCP
If scene location moved
Update SceneLocation Struct variables
send ScenelLocation Struct variables to Kinect Server
If Control message received
Call Clear()
private int ConnectData()
Wait for UDP connection initiation packet
Receive packet
Sends ACK (Connection established)
Waiting for User Input Data
return dataSockFD
private void ReadData(int dataSockFD)
Constantly receiving data over UDP
Constantly storing packet info in the data queue
public void Start()
CameraSingle = Camera.Main
If number of Kinects > 1
Calls CreateCameras()
private void CreateCameras()
For each additional KinectSingle in KinectAll.kinectList
Create new Camera object in Unity3D scene
Adds Camera object to CameraList
Set initial user position
Set scene location (Default if first time)
public void FixedUpdate() //automatically called 30 times per second
Calls ParseData()
Calls SetCam(int n)

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

private void ParseData()

21

Reads data from the data queue
Parses the data so that it can be used in SetCam()

private void SetCam(int n)

Sets Camera n’s position in the scene based on the x,y,z,theta values from ParseData()

private void Clear()

Destroy all Camera Objects except CameraSingle

Clear CameraList
Clear the data queue

3.3 Front End User Interface
3.3.1 Overview

3.3.2 Mock Up Diagrams

KINECT

Multi-Kinect System Status

Individual Kinect Data Streams

D Seated Mode

A JPL Mult D

COMMAND CONSOLE

SKEIEWON SUeani CHauIey 101 USD\VIU_U4JCOFIU_UZAT
\B003622239540518

Color Stream Enabled for USB\VID_045E8(PID_02AE ‘ Reload Tabs ‘
\B003622239540518 —
Depth Stream Enabled for USB\VID_045E&PID_02AE

\B003622239540518

Kinect started...

Attempting to Start All Kinect Data Stream Handler

Successfully started All Data Stream Changed Event Handler |E

Allocating Memory for individual (skeleton, color, depth)

streams

‘ Begin Calibration ‘

KINECTS LIST: USB\VID_045E&PID_02AE\B003622239540518
debugWindow connected to sensor USB
\VID_045E&PID_02AE\B003622239540518

Frame processed

DETECTED

Figure 9. Command Console UI Mockup

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

22

4 Conclusion
Work In Progress here

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

23

Appendix A. Glossary
3D - Three Dimensional
API - See Application Programming Interface

Application Programming Interface — A set of source code with a protocol intended for software packages to
communicate with each other. It may also contain documentation that describes its code structure.

Attribute — A structure item of a class. Equivalent to member variable, property, data member, or field.

Boolean - a 1-bit variable type that is either 1 (true) or 0 (false)

FPS - Frames Per Second

IDE - See Integrated Development Environment

Integrated Development Environment — An application tool suite which assists in developing code

JPL - Jet Propulsion Laboratory

Kinect SDK - The libraries provided by Microsoft to communicate and effectively use data received from the Kinect

Method - A behavior item of a class. It is the standard naming of a function that is defined within a class and is
essentially a member of it. A method has all access to private and public data members of its class.

NASA - National Aeronautics and Space Administration
SDK - Software Development Kit

Singleton Class — A class that is instantiated once and only once at program startup. Constructors are of private type
to prevent the class from being instantiated again elsewhere. No member function should take advantage of this
private constructor and call it any time throughout the program. The initial instance is of private static type and a
public static getter function is instantiated for public access to this singleton class instance.

SRS - Software Requirement Specification

UCSB - University of California at Santa Barbara

UML - See Universal Modeling Language

Unity 3D - the rendering engine and IDE where the panoramic scene is generated and visualized. See IDE

Universal Modeling Language - standardized visual modeling language used for representing object-oriented
programming.

Visual Studio - An IDE created by Microsoft used for developing Windows applications

Workspace — The area in which the user stands

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

24

Appendix B. Index

Attribute, 10 Method, 10

Design Overview, 5 Product Overview, 4
Global Class Diagram (UML), 5 References, 4

Document Overview, 4 SDK, 10

Kinect SDK Code, 6 Singleton Class, 10
Class Data Members and Methods Descriptions, 6 SRS, 10

Last Revision: March 7, 2013
Based on github code branch: jerrypeng/capstone/with_calibration_code
and kdsheridan/unitycapstone/master

