quuik S

Design Specification
Prepared by The Constructors

Version 1.0
March 7, 2013

Alex Hamstra
Ben McCurdy
Brittany Berin
Jared Roesch
Kyle Jorgensen
Mentor: Colin Kelley

Table of Contents

1 High-Level Architecture Overview
1.1 Model-View-Controller Architecture

1.2 Ruby on Rails
1.3 EventMachine
1.4 Browser

2 Models
2.1 User
2.2 Email
2.3 Promoter
2.4 Venue
2.5 Event
2.6 Section
2.7 Seat

2.7.1 “Best Seat” Algorithm

2.8 EventSection
2.9 EventSeat
2.10 Artist

2.11 Appearance
2.12 Billing_Info
2.13 Order
2.14 Promoter Membership
2.15 Venue Membership
3 Controllers
3.1 Application Controller
3.2 Users Controller
3.3 Sessions Controller
3.4 Venues Controller
3.5 Events Controller
3.6 Orders Controller
4 Views
4.1 Ul

4.1.1 QwikStubs Homepage
4.1.2 QwikStubs Event Page
4.1.3 QwikStubs Venue Page
4.1.4 QwikStubs Promoter Page
4.1.5 QwikStubs Settings Page
5 Testing

5.1 Unit Testing

5.2 Integration Testing

5.3 Acceptance Testing

5.4 Continuous Integration

1 High-Level Architecture Overview

QwikStubs is a real-time ticketing web service. The product is intended to make finding
events and purchasing tickets effortless and fast, by leveraging the power of modern web
technologies. The service is designed to link fans, promoters, and venues, so that we can
provide each with an optimal experience. We looked out into the current space of ticket sale
services and found them lacking in many ways. We want Qwikstubs to be about the fans,
making it the most enjoyable process we can for them to purchase tickets to events.

We built our system in a few modular components, user interaction happens completely in the
browser, where all views (composed of HTML, and CSS) are rendered, and dynamically
updated and re-rendered by JavaScript. All the views are served by Rails, and all events in the
browser are passed to, and sent from EventMachine, allowing async communication, and
updates like live counters, and seat maps. All of our data is persisted to MongoDB, which is
abstracted away completely by Rails.

1.1 Model-View-Controller Architecture

The three components for which this architecture is named are the model, the view, and
the controller. The architecture’s focus is on separating presentation of information from the
representation, providing a layer of abstraction between them. This encourages software
development practices such as code reuse and separation of concerns. As code is heavily
factored into modules that each have their own responsibilities and behavior, they are then
glued together with a set of common plumbing logic. The three components of the architecture
are intended to generalize typical moving parts in a wide set of applications. This allows the
general abstractions of model, view, and controller to encode the domain specific portions
without needing to micromanage all the plumbing. This is usually accomplished through use of a
framework which provides these general abstractions as well the connections between them.

In this pattern we divide the components like so:
e A model consists of data, and business logic.
e A view is any representation of the data encapsulated by models.
e A controller is the intermediate component that takes user input, consumes and
produces models, and properly serves the user views.

The QwikStubs architecture centers around the MVC pattern. We use models to store all
the site’s data and logic(in the form of methods). Views are the visual representations of our
data, and serve as the interface for the user. The controllers serve as mediators between the
user and the site -- properly routing a user’s actions in the views to the correct code to modify
objects in the backend (database), and then update the views with new data.

1.2 Ruby on Rails_

The MVC framework we are using to build our project is Rails. It is a framework built on
the Ruby ideal of DRY (Don't repeat yourself), and extended with the Rails’ principle of

convention over configuration, which is the idea that everything should “just work” by default.
Even though these are the basic Rails conventions, one should still be able to configure and
modify the framework to suit any need.

When a user visits a URL of a Rails application, that specific URL corresponds to a
single “route”, which then corresponds to a specific controller action. For instance, in
QwikStubs, if you were to go to http://localhost:3000/venue then the “list” action of the
venues_controller would be invoked. This would then gather information from the Venue model
and send the information back to the browser through the “list” view for Venues. These
components are shown in Figure 1.

Our Application Stack

Routing

Views

Controllers

Models

Figure 1. Rails application stack

1.3 EventMachine

QwikStubs will rely on the Ruby Gem EventMachine in order to implement our event handling in
the backend, which is important for facilitating the real time updating of data for ticket sales.
With a web service like this, one of the biggest issues is the scalability of the web service. In
other words, our server must be able to handle an extreme amount of load in order to offer
features such as realtime seating maps, and ticket counts. EventMachine is known in the Ruby
community for its event-driven 1/O, high scalability, and for reducing the cognitive overhead of
threaded programming for the developer, allowing them to focus on the application logic instead
of the plumbing logic. EventMachine’s C++ core also means it provides extra performance that
one can't find in Ruby.

Concurrency is baked in, for example a concurrent echo server is as easy as:

require 'eventmachine’

module EchoServer

http://localhost:3000/create
http://localhost:3000/create
http://localhost:3000/create
http://localhost:3000/create
http://localhost:3000/create

def post_init
puts "-- someone connected to the echo server!"
end

def receive_data data
send_data ">>>you sent: #{data}"
close_connection if data =~ /quit/i

end
def unbind
puts "-- someone disconnected from the echo server!"
end
end
1.4 Browser

The browser will be our method for serving up the Ul. We will support modern browsers to the
best of our ability. Ul in the browser is created from a combination of HTML, CSS, and
JavaScript; the latter being our way of dynamically manipulating the design and layout of our
pages. There are various challenges in getting each of those to play nicely in all browsers
without a few hacks and custom solutions. We have sidestepped this development issue on the
merit of using Bootstrap -- a CSS and Javascript framework that provides helpful defaults and
built-in functionality. By using this framework, we can focus on general functionality instead of
having to wrestle with the browsers. It also has the added benefit of bringing some great design
to the project for free. We are also using another MVC framework, Backbone.js which enables
us to mirror some our design from Rails in the browser to provide features like the auto-updating
of listings, dynamic view rendering, super responsive Ul elements, and more.

2 Models

The architecture for this project is comprised of 15 different models, as shown in Figure 2. In
the sections below, we will discuss each of these models in detail. Each model possesses a set
of properties, which include both attributes (indicated with black text) and methods (indicated
with green text) for interacting with these objects.

Figure 2 (below). QwikStubs UML Class Diagram

N0 WeT|eyo]

(wopuey anbun) Jagunu™lepdo

T'0

13pI0

(3231L) J12pdo oid

(plos paniesey plosun) sniels

1EBSIUEAT
R
+0) 0
T
T
AQWNK UWnen
801ld
SLUWEN MOY
1504% 34
(41ed Bnbiun)
jusn3 o (11ed anbiupn)
uoRaEs M4
soueleaddy e
— weng 4
UORIBS i
0 uonoasiueny
* 1ess

—

(381d1L enbjun)

3|0

s1eq

diysJeq s 1810 wold

anusA M4

EJUEN|
As LeD 211s5qaM
ssaUppy
(znbiun) ssaippe W3 (anbun) s wep

plED 31palD

(peppequsa) |ew3 sy
oju1 Buing

#' T
0
T 1

pJomssed payseH
(Wwopues) jes

awen [|nd

1351

o

Swep

(ned snbiuy

jusAg

UONEIYLIBA

SWeN

J830 Wold

(ned snbiun)
uoResaT

Swen

B|0Y NUBA M4
diysiaqusiy anuap B UWeN
uonaasg

2.1 User

Properties:
e full_name
emails
e galt
e password_digest
[J
[]
[J
[J

The user model has a “many” relationship with emails, meaning that the Email model
contains a foreign key, user_id, that references the User to which the email belongs. It was
designed this way in order to support each user’s account having more than one email, allowing
for all their online identities to be mapped to a single account. The User model is sparse, and
only contains user metadata and password information.

There are many ways to store passwords, with some common ones being plaintext,
encryption, and hashing. The first two are insecure in the presence of many advanced attacks.
Allowing attackers to recover the original passwords and possibly exploit users using similar
passwords on other services. This makes both of them a poor choice for a modern web
application that might be susceptible to security threats. Instead, we are using hashed
passwords. There are a few variations when hashing passwords, but by far the most secure
option is to

o use asalt
o use a unique salt for each user

A salt is a set of random bits that the service combines with your password before
hashing to protect against things like rainbow table attacks. By storing a unique salt for each
user, we increase security and add even more overall entropy to the system.

We then store both the hashed version of the password+salt, and the salt itself to
confirm the correctness of user passwords.

The User model has a few helper methods such as is_auth? which confirms the
correctness of their password, full_name, and last_name to query their information, and
password=, a password setter that regenerates the salt every time the password is changed.

2.2 Email

Properties:
e user
e emall
e oauth_token

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRainbow_table&sa=D&sntz=1&usg=AFQjCNEbvX1adONu_SpdlNVO8dDRtWcwOA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRainbow_table&sa=D&sntz=1&usg=AFQjCNEbvX1adONu_SpdlNVO8dDRtWcwOA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRainbow_table&sa=D&sntz=1&usg=AFQjCNEbvX1adONu_SpdlNVO8dDRtWcwOA
http://en.wikipedia.org/wiki/Salt_(cryptography)

The email is a simple model that encapsulates the idea of an email or identity, and is
always linked to a user. The email model simply has an email field, where the specific emalil
address is stored. Since an Email belongs to a User, it has a user_id foreign key that contains
the MongoDB Obijectld of the the User it belongs to. Finally it has an oauth_token, which will
allow us to link email’'s with OAuth identity, allowing login capability via Facebook or Google.

2.3 Promoter

Properties:
® nName
e promoter_memberships
e events
e venue_memberships

The promoter model is used to organize the data of those who wish to sell tickets
through the QwikStubs website. The promoter model “has many” events because they are
capable of selling tickets to more than one event. A promoter also “has many”
promoter_memberships and “has many” venue_memberships. On the QwikStubs website, a
promoter is considered to be an organization. We modeled this after Github, where users can
be part of an organization, and an organization can have its own repositories. Thus in
QwikStubs, many users can potentially be verified as part of a promoter organization to create
events and venues on the website for future ticket sales. A promoter organization, in turn, can
be linked with several Venues -- an example being a sports organization wishing to sell tickets
to games that take place in more than one arena.

To become a promoter, one must have a name that reflects the group which they are
representing. Verification of a promoter will be performed manually using an inspection of a
user’s ID or credentials. We would like the approval process to be streamlined as possible with
a simple Ul for approving new promoters, and venues. A mockup of how a promoter will be
verified on the QwikStubs website is shown below in Figure 3.

-l

QwikStubs

o x Q { http://qwik-stubs.com]

Verify Promoters

HAWAI s

1-47-87441
Wma/zgg_ 8
o

Promoter Name: Jared Roesch

Organization: QwikStubs

Organization Contact Info:
Phone Number: 8056044353
Email: org@org.com

Identifying Docs

3

Figure 3. Verification Mockup

2.4 Venue

Properties:

name

city

state

events

sections
add_event(event_details, layout)

The Venue model “has many" events and sections. A Venue can host countless events

over time, and each Venue has a basic layout that is given by its sections.

Every venue must have a unique combination of a name, city and state in order to be

added to the database, this will prevent duplication, or ambiguous references to Venues.

Venue will have some built in logic for adding an Event, through the add_event

message. It will move the logic of setting up an event and all its constituent parts in one place.
We will pass the necessary event details such as name, time, artists, and so on. Followed by
the Venue layout we wish to select, and provide a way to save common layouts for Venues.

2.5 Event

Properties:

® nName
date
venue
promoter
event_sections
appearances

First, an Event must have both a name and date, with the pair being unique. Every Event
model also belongs to a venue and a promoter, meaning that it has foreign keys: venue_id, and
promoter_id contained in the model. A promoter is capable of creating events at venues with
which they have a verified membership.

Each event can have its own seating chart comprised of different EventSections. For
example, the Santa Barbara Bowl often has the pit as “General Admissions”, but also puts down
seats sometimes with precise ticket numbers, so the EventSection model will handle this
flexibility. Finally, each event can have appearances by more than one artist.

2.6 Section

Properties:

® nName
XpOos
ypos
seats
venue

A Section has a hame, and a venue to which it belongs. The xpos and ypos attributes of
Section are used to draw it correctly on the Canvas element in the browser. A Section also has
many Seats associated with it.

2.7 Seat

Properties:

e name
row
column
XpOoSs
ypos
section

A Seat belongs to a specific Section, and it has a name which the user can see. The row
and column attributes will be used to store the location, within a Section, of the Seat in the
database. This will allow for promoters to create Seat hames such as “15B”, which make sense
to the fans in a venue, while still being able to keep track of the actual location of the Seat with
its row and column. We will use this information to be able to write an algorithm for the auto seat

10

selection. This way a fan can choose a “Best Seats” button with x number of seats and be able
to find the best available seats for x number of people. The details of this are described in more
detail in Section 2.7.1.

The xpos and ypos attributes are similar to those in the Section class; however, in this
case, they represent the relative coordinates with respect to the Section. Our relative positioning
system allows for flexibility in moving, and redrawing Sections because the layout of Seats
within a Section is independent from the laying out of the Sections.

2.7.1 “Best Seat” Algorithm

The naive algorithm is obviously a linear scan looking for n number of seats within a
section, but we feel that a smatrt, yet efficient algorithm is important for our real time
requirements. We have a few potential algorithms, but have a few challenges along the way. On
top of finding, or devising an algorithm, we must translate the algorithm to work on the database
collections in place, as we can'’t afford to construct objects in memory and traverse them on
every request. On top of devising the algorithm the translation will be a very critical part to being
performant and intelligent with seat allocation. There is one algorithm that we would like to
present here as an initial way of solving the adjacent, open seat problem, and will do better than
linear seat runs, as it can find seats that are adjacent but in two rows, and similar situations.

One approach that has been imagined is to begin by constructing a graph where each
seat is a node, and adjacency is represented by an edge between nodes. Then take a single
node that denotes being sold, and attach it to every node. This solves the case when a node
becomes disconnected from the graph, by making all seats available without an adjacency
relationship to another seat. When a ticket is sold remove all edges. When looking for a set of
seats, we do a greedy search for the correct number of seats. There are many graph techniques
for quickly finding clusters or paths, which can apply here. When we buy a set of seats we
remove all edges from a node. This problem is generally NP-Complete to our knowledge, but
the search space is small, and we are willing to take a greedy algorithm that produce a good
solution with performance, over an optimal solution. Using a graph based algorithm is beneficial
because we can represent them as adjacency lists in the database. This allows us to create an
event collection when a sale begins, and modify them in place, inside of MongoDB. This is one
of the major reasons why we are using MongoDB. It allows us to utilize indexing for speed of
access, and avoid the cost of reconstructing the graph in memory on each request.

2.8 EventSection

Properties:
e price
section
e event

event_seats

11

An EventSection is the class that connects an EventSeat to an Event. This class is
necessary because it separates the logic of the Venue-Section-Seat hierarchy from the Event
logic. It allows for the flexibility to have multiple Events at Venues, when each one of those
Events might have different prices and/or sections for seats. Thus, it contains a foreign key to
Event because it must represent a unique event, and it contains a foreign key to Section
because that is where it gets the information regarding the layout of the Venue. It also has many
EventSeats, which are to be sold at the price specified. Finally, we have a function to validate
whether the foreign keys to Event and Section are a unique pair.

2.9 EventSeat

Properties:
e status
e event_section
e order
e sSeat

An EventSeat is basically a “ticket” in our class model. It contains the relevant
information connecting an Order to an Event (via EventSection). The EventSeat model “belongs
to” an EventSection and “has many” orders. Therefore, the EventSeat will contain a foreign key
for the EventSection to which it belongs. An EventSeat will also contain “ticket” information by
having one of three statuses -- unsold, reserved, or sold. These statuses will be used to
determine and update the availability of seats within a venue in real-time. In the EventSeat
model, we have created a module, Stat, that acts as an enum and assigns a numerical value to
each of the three statuses. The module increases the level of abstraction when determining
and establishing a seat’s status. The EventSeat is also connected to Seat via a “belongs to”
relationship. This allows an EventSeat to access the relevant Seat information such as row and
column number.

2.10 Artist

Properties:
e performance meta data
e members
e internal information related to events

In the Artist model, an artist “has many” appearances. An artist is capable of making an
“appearance” at a single event and these appearances are not limited. Our architecture
accommodates this. An artist must have a unique name in order to be stored into our database.
An artist must also have a website for the benefit of QwikStubs’ users.

2.11 Appearance

Properties:
e event
e artist

12

The Appearance model “belongs to” an event and “belongs to” an artist. As a result, an
Appearance will contain a foreign key from its specific event and another from its artist.

2.12 Billing Info

We have the basic data fields such as credit card #, billing address, and name of cardholder as
placeholders in our model, but we do not want to actually handle credit card information in our
system. To remove this burden, and to avoid the Payment Card Industry (PCI) requirements
compliance, we are instead moving the billing process to a third party service like Stripe, or
possibly something similar like PayPal, Amazon Payments, or Google Wallet.

2.13 Order

Properties:
e Order_Number
e event_seats
e Billing_Info

The Order model “belongs to” Billing Information and “has many” EventSeats. An order

needs a user’s billing information in order to be fulfilled and an order can contain many tickets.
Every order will be assigned a unique and random order number

2.14 Promoter Membership

Properties:
e role
e user
e promoter

The Promoter Membership model is utilized in the verification of promoters on the
QwikStubs website. This model “belongs to” a User and “belongs to” a Promoter. A Promoter
Membership can only be associated with one user, and likewise, one organization of promoter
users.

Every Promoter Membership has a role that reflects a user’s position within a promoter
organization. These roles can range from titles like “Administrator” to “General Manager,” and
are determined by the group or venue that the promoters represent.

2.15 Venue Membership

Properties:
e role
e promoter

13

https://stripe.com/

® venue

Similar to Promoter Membership is the Venue Membership model. A Venue
Membership “belongs to” a promoter and “belongs to” a venue. This model serves to link an
organization of promoter users to many venues. A Venue Membership also allows promoters to
be given administrative roles within a Venue.

3 Controllers

From Ruby on Rails’ guide to controllers:

“A controller can thus be thought of as a middleman between models and views. It
makes the model data available to the view so it can display that data to the user, and it saves
or updates data from the user to the model.”

In modern web development, there are many references to REST, which is an acronym for
REpresentational State Transfer. What this means in a Rails context is that most application
components are modeled as “resources” that can be created, read, updated, and deleted.
These operations correspond to the CRUD operations of relational databases, as well as the
four basic HTTP request methods: POST, GET, PUT, and DELETE.

As a Rails developer, we then have to consider our resources and determine which
actions are necessary to put in their respective controllers. Not all of our models in the system
need a controller, but the ones that represent objects that are stored in the database definitely
need controllers. Below is a table that shows how a resource is typically mapped from routes to
controller actions, using “users” as an example from QwikStubs

HTTP Verb Path action used for

GET lusers index display a list of all
users

GET /users/new new return an HTML
form for creating a
new user

POST lusers create create a new photo

GET /users/:id show display a specific
user

GET /users/:id/edit edit return an HTML
form for editing a
user

PUT /users/:id update update a specific
user

DELETE /users/:id destroy delete a specific

14

http://www.google.com/url?q=http%3A%2F%2Fguides.rubyonrails.org%2Faction_controller_overview.html&sa=D&sntz=1&usg=AFQjCNHLW7LUrizRNkQGfKA8L3oC207_ow
http://www.google.com/url?q=http%3A%2F%2Fguides.rubyonrails.org%2Faction_controller_overview.html&sa=D&sntz=1&usg=AFQjCNHLW7LUrizRNkQGfKA8L3oC207_ow
http://www.google.com/url?q=http%3A%2F%2Fguides.rubyonrails.org%2Faction_controller_overview.html&sa=D&sntz=1&usg=AFQjCNHLW7LUrizRNkQGfKA8L3oC207_ow
http://www.google.com/url?q=http%3A%2F%2Fguides.rubyonrails.org%2Faction_controller_overview.html&sa=D&sntz=1&usg=AFQjCNHLW7LUrizRNkQGfKA8L3oC207_ow
http://www.google.com/url?q=http%3A%2F%2Fguides.rubyonrails.org%2Faction_controller_overview.html&sa=D&sntz=1&usg=AFQjCNHLW7LUrizRNkQGfKA8L3oC207_ow
http://www.google.com/url?q=http%3A%2F%2Fguides.rubyonrails.org%2Faction_controller_overview.html&sa=D&sntz=1&usg=AFQjCNHLW7LUrizRNkQGfKA8L3oC207_ow
http://www.google.com/url?q=http%3A%2F%2Fguides.rubyonrails.org%2Faction_controller_overview.html&sa=D&sntz=1&usg=AFQjCNHLW7LUrizRNkQGfKA8L3oC207_ow

user
based on http://guides.rubyonrails.org/routing.html.

3.1 Application Controller

The Application Controller is the root object of the controller hierarchy. It is a Rails
convention to use the application controller as a location for common logic shared between all
controllers. In our application controller we will have common logic for querying the current user,
checking if some is logged in, setting redirect urls, etc. All of which is functionality that is
common to all controllers, not just one.

3.2 Users Controller

Actions:

e new =>GET /users/new
create => POST /users
show => GET /users/:id
edit => GET /users/:id/edit
update => PUT /users/:id

The Users controller conforms to a subset Rail's resource routes. That means each of its
actions have an implied meaning. We have left out three of the standard actions (index, list,
destroy), as they do not make sense in the context of the model. Following the traditional
resource model: ‘new’ serves the Ul to register a new user, ‘create’ takes the HTTP POST in
order to generate a new User record in the DB, ‘show’ takes an :id and displays their user page,
‘edit’ serves the Ul to update a user’s attributes, and ‘update’ takes the HTTP PUT request for
updating a record.

3.3 Sessions Controller

The Sessions Controller is responsible for managing user sessions, or the concept of
being logged in or logged out. This controller in particular is stripped down and only uses a
small subset of Rails’ resource routes.

Actions:
e new =>GET
e create =>POST (a.k.a. “login”)
e destroy => DELETE (a.k.a. “logout”)

All three are part of Rail's standard set of resource routes. The 'new' route renders the
login view, where a User enters their credentials to begin a new session. The ‘create' route is
the route that processes the post request, generated by the submit action in new, and generates
a new session, effectively logging the user in. Finally the 'destroy’ route disassembles the User’s
session, effectively logging the user out.

15

http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html

3.4 Venues Controller

Actions:

e new => GET /venues/new
create => POST /venues
list => GET /venues
show => GET /venues/:id/show
edit => GET /venues/:id/edit
update => PUT /venues/:id
destroy => DELETE /venues/:id

The Venue controller also conforms to the resource pattern. Meaning that the 'new'
route maps to the Ul for creating a new Venue, ‘create’ receives an HTTP POST, and generates
a new Venue record in the database. 'List' shows a listing of all venues, show/:id takes a
venue_id and shows a specific venue. 'Edit' serves the Ul for updating a venue’s information,
and 'update' takes the HTTP PUT that updates the Venue record. Finally, we have destroy
which allows for a promoter to remove a venue if they so choose.

When creating a Venue, the following sequence of actions occurs:

Venue Creation

User ' Web Browser | [Senver

. createV/enue

Cnew

Venue

Yenue

s saveChanges

. Save

Wenue

Yenue

Figure 4. Venue Creation Sequence Diagram

16

When editing a venue to update its information, the following sequence occurs:

Venue Management

| User | | WebBrowser | | Server
1 H H
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
! TselectVenue ! !
| e i
1 1
H s edit H
1 1
1
1
1
1
H Venue
:
H
3 Venue
<4
1
H
! czaveChanges
! s save
1
1
1
H Venue
1
i Venue
b
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5. Venue Management Sequence Diagram

3.5 Events Controller

Actions:

e new => GET /events/new
create => POST /events
list => GET /events
show => GET /events/:id/show
edit => GET /events/:id/edit
update => PUT /events/:id
destroy => DELETE /events/:id

The Events controller has the same basic functionality as the Venues controller. ‘New’

leads to the Ul for creating a new event. ‘Create’ receives the HTTP POST and adds the event
to the database. ‘List’ shows all of the existing events in the database. ‘Show’ routes to a page
with details for a specific event. ‘Edit’ leads to the Ul for editing an event’s information. ‘Update’
receives an HTTP PUT and updates the record of the edited event in the database. And lastly,

‘destroy’ deletes a specific event from the database.

Event Creation

User ' Web Browser | ' Server
. selectEvent
» edit 1
Event
Event

I

1 :saveChanges

—_—

1 . save

; —_—

: Event

Event

—

Figure 6. Event Creation Sequence Diagram

18

Event Management

| User | | Web Browser | | Server
i H H
1 1 1
1 1 1
1 1 1
1 L] L]
1 1
1 1
1 1
1 1
: selectEvent 1 H
msBams 1
1 :
- edit i
=Zd
H Event
Event
s saveChanges
[Csave
Event
1 Event
1
1
1

Figure 7. Event Management Sequence Diagram

Search Events

User | I Web Browser I | Server
i i i
1 1 1
1 1 1
1 1 1
1 1 1
i X i i
1 - enterdrtist ! i
: B |
! : searchByArtist ol
1
1
i Events\WithArtist
! Events
)

i s enterVenus

: : searchByVenue
1

1

i EventsWithVenue
i Events

1

1 . enterEvents

i : gearchByEvent
1

1

i EventsWithEvent
Events

Figure 8. Event Search Sequence Diagram

3.6 Orders Controller

Actions:
e new => GET /orders/new
create => POST /orders
list => GET /orders
show => GET /orders/.order_number/show
destroy => DELETE /orders/:order_number

The orders controller is used for managing orders placed by QwikStubs’ users. This

controller allows a user to view, print, reserve, and purchase tickets to an event. ‘New’ routes to

the page where a new order is created. ‘Create’ adds the order to the database. ‘List’ shows a
list of all orders placed by a user. ‘Destroy’ deletes an order when appropriate.

Below is what occurs when a user wishes to view and print tickets.

View/Print Tickets

=
{7
el
=

Web Browser . . Server

cviewTickets
- getAllTickets

All Tickets
All Tickets

s selectTicket
: getTicket

Ticket

Printable Ticket

Figure 9. View/Print Tickets Sequence Diagram
Below is what occurs when a user wishes to reserve or purchase tickets.

20

Reserve/Purchase Tickets

User | Web Browser | [Server

: selectSeats
colorSeats
:resenveSeats
reserve
reserved?

FPurchasePage

.

. purchase
: creditCheck

confirmed?
ConfirmationPage

Figure 10. ReservelPurchase Tickets Sequence Diagram

4 Views

Coffeescript is another tool we've decided to use in implementing the frontend. It provides some
advantages over traditional JavaScript, as well as only being a thin compilation layer, meaning
the compiled JavaScript sources are very readable. Its biggest advantage, is it prevents the use
of “bad” JavaScript idioms, and features, by disallowing them completely. It is also syntactically
very similar to Ruby, reducing the cognitive overhead of context switching between languages,
by providing a more uniform syntax, and semantics. Coffeescript also is very readable further
reducing developer effort when reading code, a must for maintainability. Finally Rails comes
standard with Coffeescript, so it works seamlessly.

We also use Backbone.js in the browser which embeds another MVC framework in JavaScript,
allowing us to build very dynamic pages. Backbone.js can be used to mirror the models we have
in Rails inside the browser and make changes that propagate back to the database in the
browser without having to reload the page. We can serve the intial data in our .erb templates so
that the initial load is fast, but then can make updates, and pull more data in, depending on User
interactions thanks to Backbone.js. Backbone.js also handles all the ajax calls and handles
injecting templates into the page seamlessly, allowing for very smooth transitions and much
faster load times. This will be really helpful when implementing the real time aspect because we

21

can use Backbone.js to update the seating view with having the user know anything is
happening.

To create uniformity throughout our pages we are using Twitter Bootstrap as are main tool for
styling and layout configuration. This has many benefits, one of which being that we don’t have
to write custom css for most of the styling. This saves tons of time and allows us to spend more
time on features. It also have layout styling so that it automatically handles the conversions from
desktop view to mobile view, giving us the flexibility to try out more ideas, rather than spending
all our time making multiple views.

4.1 Ul

4.1.1 QwikStubs Homepage

In Figure 11 below, it showcases the QwikStubs homepage. The design aims for ease of
access for all users -- both existing and new. Existing users are able to log in to the site directly
from the homepage, while new users are able to register for the site from the same page. The
site also features several events in the database that will be chosen by the user’s current
location or could be sponsored events if they exist. This way we can decide what events a users
see when they come to the homepage, by what events they are likely able to attend. The goal
being a very enjoyable and efficient user experience.

qu.uk n ddres! Pass Login

Featured Events Register

Py -
Macklemore & Ryan Lewis
W § Apr18, 2013

Shrek the Musical

Apr18, 2013

@ QwikStubs 2013

Figure 11. QwikStubs Homepage (Not Logged In)
In Figure 12 below, we can see what the homepage would look like if you were logged in. It

would contain all of the user info to the right and have events near you on the left. The search
bar would also be moved to the top bar as to unclutter the rest of the page.

22

quik SR o o

Events Near You

Ben McCurdy

bpmecurdy@qwikstubs. com

3oh3!

Macklemore & Ryan Lewis
Apr 18, 2013

Billing Info

= Address
Shrek the Musical S

;
Apr 18, 2013 Isla Vista, CA

© QwikStubs 2013

Figure 12. QwikStubs Homepage (Logged In)

4.1.2 QwikStubs Event Page

In Figure 13 below, we see the QwikStubs Event page where users can view information about
a specific event, as well as see when and where the event is going to take place. This way a
user can decide which venue and what date they want to see their favorite band playing.

qu_[ik el Aaas o s e
Rock Jam 2013

T 77

Description
Performances
this is the event description. this is the event description. this is the event
description. this is the event description. this is the event description. this Date Location
is the event description. this is the event description. this is the event
description. this is the event description. this is the event description. this
is the event description. this is the event description. this is the event B/5/13 Isla Vista Theater 1
description. this is the event description. this is the event

6/6/13 UCSB Campbell Hall
B/7/13 Isla Vista Theater 1
6/8/13 UCSB Campbell Hall
6/9/13 Isla Vista Theater 1
6/10/13 UCSB Campbell Hall
6/11/13 Isla Vista Theater 1
6/12/13 UCSB Campbell Hall

6/13/13 Isla Vista Theater 1

\
|
\
\
\
|
It
i
\
\
\
\
\
\
\
6/4113 UCSB Campbell Hall Buy Tickets | }
It
|
I
\
\
\
|
\
|
\
\
\
\
\

B il S e ANAS

Figure 13. QwikStubs Event Page

23

4.1.3 QwikStubs Venue Page

In Figure 14 below, we see the QwikStubs Venue page where users can view information about
a specific venue, as well as see what events are taking place at that venue. From the venue
page users can select an event they want to see that is at that venue and proceed to its event
page. From this page, users will also be able to see the seating arrangement for the venue and
a small google map and address so they know where the venue is.

qu.uk Email Address PASSWOrC Login =

Super Dome

Info Sealing Photos

Events

s Venue Info

Rock Jam 2013
787 road rd

\
|
\
\
|
I
It
|
\
\
\
\
Super Band Santa Barbara CA 1
about this venue about this venue about this venue about this
venue about this venue about this venue about this venue i
Rock Jam 2013 i : about this venue about this venue about this venue about this =
|
|
|
\
\
\
|
|
It
|
\
\
\
\
\

The Wiggles Sing Along Exiravaganza
Super Band venue
The Wiggles Sing Along Extravaganza
Rock Jam 2013

Super Band

The Wiggles Sing Along Extravaganza

© QwikStubs 2013

Figure 14. QwikStubs Venue Page

4.1.4 QwikStubs Promoter Page

In Figure 15 below, we see the Promoter page. This page is the hub for a user that has a
promoter membership associated with their account. From this page a promoter can select to
create Venues and Events as well as view ones they already have created.

24

-Pmmmter

Events SR EED Venues

Event Event

Rock Jam 2013 Super Dome
Super Band] Super Theater
The Wiggles Sing Aleng Extravaganza

RoCcK Jam 2013

Super Band

The Wiggles Sing Along Extravaganza

Rock Jam 2013

Super Band

The Wiggles Sing Along Extravaganza

© QuwikStubs 2013

Figure 15. QwikStubs Promoter Page

4.1.5 QwikStubs Settings Page

In Figure 16 on the following page, we see the Settings page. This page is where the user can
change all the settings associated with their account. From this page they can manage their
email addresses, manage their memberships to promoters, as well as link to their avatar image
provided by gravatar. This is also where a user can change their password.

25

quik G o I

Settings

Email Addresses

bpmeccurdy@gstubs.com 4 -
Change Photo at gravatar com
Billing Info

Address

444 road rd
Isla Vista, CA

bpm@gstubs com

Change Password

Save
© QwikStubs 2013

Figure 16. QwikStubs Settings Page

5 Testing

5.1 Unit Testing

Our goal is to have 100% test coverage for the project so we are using RSpec as a testing
framework to help us achieve that goal. This is a very common way for testing to be done with
Ruby on Rails and we believe will give us the best results. The unit testing allows us to test the
models and controllers on a method by method basis, giving us the flexibility to make sure
everything is working separately.

We are also integrating Guard: which monitors our file system, and runs the tests associated
with a file automatically whenever that particular file has been changed. To go along with Guard,
we are adding Spork. This allows us to keep the Rails framework running in the background, so
that we don’t have to waste any time waiting for it to startup every time the tests are run.

5.2 Integration Testing

Similarly to the unit testing, we will be using RSpec as the testing framework to help cover the
different interactions that happen between the methods. More specifically we will be using
Capybara for end-to-end integration testing. This will allow us to test the way that the different
component of the project connect and work together. Like the unit tests, we will have this
integrated with Guard and Spork.

26

http://robots.thoughtbot.com/post/33771089985/rspec-integration-tests-with-capybara
https://github.com/sporkrb/spork
https://github.com/guard/guard
http://rspec.info/

5.3 Acceptance Testing

For this project, we have written a series of user stories that determine exactly what features
QwikStubs intends to successfully provide in its service. As a requirement for a story to be
complete, there must be 100% test coverage. This means that the developers that choose to
tackle a particular story are responsible for making sure that there is 100% test coverage on all
the code that they wrote. These stories will develop alongside the project over time and serve
as the tests we are trying to complete in the duration of our two week sprints.

5.4 Continuous Integration

We have set up our Github repository to use Travis Cl, a continuous integration service that
runs our tests every time we push updates to Github. It is a distributed build system that runs on
Travis CI's servers. And to add to that, we have integrated a Travis build-status badge on our_
Github page that updates with the result of the tests after the latest push. If it breaks the build,
Travis will send out an email to the person responsible for the broken commit and tell them to fix
it. This allows us to quickly determine if our pushes have broken anything, and therefore quickly
address any issues in our code. This fits in really well with having it open source because
someone can fork the repo and experiment, then send a pull request with their changes and
Travis will be able to tell us whether it passes all the tests or not and if it is good to merge. This
would look something like Figure 17.

Good to merge — The Travis build passed (Details

@ This pull request can be automatically merged. | }= Merge pull request

Figure 17. The Travis Cl badge on our Github page for pull request

27

https://github.com/TheConstructors/QwikStubs
https://github.com/TheConstructors/QwikStubs
https://github.com/TheConstructors/QwikStubs
https://travis-ci.org/
https://travis-ci.org/

	1 High-Level Architecture Overview
	1.1 Model-View-Controller Architecture
	1.2 Ruby on Rails
	1.3 EventMachine
	1.4 Browser
	2 Models
	2.1 User
	2.2 Email
	2.3 Promoter
	2.4 Venue
	2.5 Event
	2.6 Section
	2.7 Seat
	2.7.1 “Best Seat” Algorithm
	2.8 EventSection
	2.9 EventSeat
	2.10 Artist
	2.11 Appearance
	2.12 Billing Info
	2.13 Order
	2.14 Promoter Membership
	2.15 Venue Membership
	3 Controllers
	3.1 Application Controller
	3.2 Users Controller
	3.3 Sessions Controller
	3.4 Venues Controller
	3.5 Events Controller
	3.6 Orders Controller
	4 Views
	4.1 UI
	4.1.1 QwikStubs Homepage
	4.1.2 QwikStubs Event Page
	4.1.3 QwikStubs Venue Page
	4.1.4 QwikStubs Promoter Page
	4.1.5 QwikStubs Settings Page
	5 Testing
	5.1 Unit Testing
	5.2 Integration Testing
	5.3 Acceptance Testing
	5.4 Continuous Integration

