RingBase

Software Requirements Specification

Feb 11, 2014

Group Name: RingBase

Instructor

Chandra Krintz

Course

CS 189A

Lab Section

Wednesday 6PM

Teaching Assistant

Geoffrey Douglas

Date | Feb 11, 2013
Mentor | Colin Kelley
Andrew Berls 4719696 andrew.berls@gmail.com
Pete Cruz 5226196 petesta@live.com
Alex Wood 4960381 awood314@gmail.com
Shervin Shaikh 5074901 shervinater@gmail.com
Nivedh Mudaliar 4875266 nivedh.mudaliar@gmail.co
m

Table of Contents

1. Overall Description

1.1 Product Perspective

1.2 Product Functionality

1.3 Users and Characteristics

1.4 Operating Environment

1.5 Design and Implementation Constraints

2. Specific Requirements

2.1 External Interface Requirements
2.2 Hardware Interfaces

2.3 Software Interfaces

2.4 Communications Interfaces

2.4 Non-Functional Requirements

3. User Stories

1. Overall Description

1.1 Product Perspective

A

Customer

View Real
Time Queue
of Incoming
Calls

Sales Representati v

Record Notes

View Call and Sales

History and Inform ation

View a Call

Notes in Progress

Manager

http://yuml.me/edit/02f3c231

1.2 Product Functionality

The software will enable a business to set up an ad-hoc call center for its employees. It will
track basic information about each employee, such as their name, email, phone number,
and gravatar. It will contain a dashboard where a manager can see incoming calls (caller
ID, city, state, name). Agents can claim a call (either through their telephone or WebRTC)
and once accepted that agent sees a shared view for adding notes about the call & dollar
amounts. The platform will update in real-time for all viewers so there is no need to refresh
the page. Agents can pass calls around, either back into the pool or directly to another
agent. The software will keep and display a call log of calls and their notes over time.
Database Schema

Organization

name: String

Campaign

title: String
O pilot_number : String

l

User

CallSession

organization_id: Integer

full_name: String

email: String
phone_number: String
password_digest: String
auth_token: String

—

user_id: Integer
call_id: Integer
duration: Decimal

Call

quid?: String
caller_name: String
caller_id: String
arganization_id: Integer
notes: Text

arganization_id: Integer

sale: Decimal

[online diagramming & design] CFreate |y com

1.3 Users and Characteristics

RingBase targets three types of users: Agents, Managers, and Customers.

e Agent - is an employee who is overseeing the incoming calls through a dashboard
and either answers the call or forwards the call to another suitable agent.

e Manager - is an employee but also has an additional role of overseeing all agents
and has access to statistics such as individual/aggregate agent performance and
sale numbers from each call. They are able to access all of the data generated by all
employees.

e Customer - makes a call that is then displayed on the agents dashboard and
interacts with an agent over the line.

1.4 Operating Environment

Our operating environment will consist of the following:

Amazon EC2 - virtualized on-demand servers

Ubuntu 12.04 - server OS

Ruby 2.1.0 - dynamic server-side language

Rails 4.0.0 - MVC web application framework

nginx 1.2 - High-performance HTTP server / reverse proxy

Unicorn 4.6.0 - Rack application server for Rails

PostgreSQL - Relational database

Apache Cassandra - Distributed NoSQL database, for storing call data
EventMachine / Goliath - Asynchronous framework and server for socket broker
WebSockets - Protocol/API for long-lasting browser connections
AMQP/RabbitMQ - Pub/Sub messaging protocol for communication between
socket broker and external Invoca API

e AngularJS 1.2 - Javascript MVC Framework

1.5 Design and Implementation Constraints

Our platform will consist of several services running concurrently on virtualized Amazon
EC2 instances. This gives us the ability to scale infrastructure up and down on demand,
using a variety of available instance sizes.

The app requires a rich frontend experience, with real-time updates based on data from
the server, and views shared between multiple people for adding notes, etc. The frontend
will utilize the Angular MVC framework to provide unified code structure and modularity.

Our backend includes a minimal Rails application, which handles the basics of
authentication (using bcrypt for password hashing), protection against XSS/CSRF, and
page serving. Most of the platform’s functionality will be part of a separate ‘broker’ service,
which will be an independent server running EventMachine/Goliath and acting as a broker
between Invoca’s real-time telephony APl and our clients (managed over WebSockets).
The only communication layer between the Rails app and the Goliath broker is a shared
PostgreSQL database.

This architecture enables a clean separation of concerns into separate services/servers.
The majority of our backend code will be written in Ruby, while frontend functionality will be
implemented in JavaScript (CoffeeScript). The uniformity will allow for code that can be
understood by all members of the team as well as shared coding standards.

2. Specific Requirements

2.1 External Interface Requirements

The platform will consist of responsive pages that update in real-time, showing tge

manager incoming calls and agents have claimed them. There will be a common input

view with a textarea for allows agents to enter notes and annotations as well as an input to
enter in dollar amounts (positive number) for their call. This view will have buttons that allow
agents to pass their phone call back into the pool and a selector where they can choose a
specific agent to pass their call onto. There will also be a view that allows users to view the
call log and note history.

2.2 Hardware Interfaces

As the platform is a web application, there are no specialized hardware interfaces. Users
will interact with the app through their browsers (Chrome, Firefox, Android Browser,
Android Chrome, iOS Safari), although once a call is accepted it may be forwarded to their
physical telephone (all devices - landline, cell phone, etc).

2.3 Software Interfaces

HTML/CSS
CoffeeScript AMQP Server

WebSockets ! .

HTTP EventMachine/Goliath \

Broker

Rails

Invoca AR

[onBne diagramming & design] create .com

Web Ul (HTML/SCSS, CoffeeScript)
Ruby on Rails (MVC architecture)
JSON (data serialization)

PostgreSQL

Apache Cassandra

EventMachine / Goliath (async server)
AMQP (messaging protocol)

2.4 Communications Interfaces

Communication between client browsers and our servers will happen over HTTP, and
leverage the WebSockets API for persistent connections and information transfer in
real-time (using JSON as a serialization format). Backend services (such as our
messaging broker and Invoca’s API) will communicate using the AMQP protocol, using a
system such as RabbitMQ. JSON will also be used on the backend for serializing data.

2.5 Non-Functional Requirements

Safety & Security

Data integrity and security is of paramount importance. As our platform is a hosted
offering, our database will store valuable business data for many different clients, and any
“leakage” of data between clients or unauthorized external access would have very
negative consequences. Fortunately, Ruby on Rails provides built-in protection against
many common web security vulnerabilities such as cross site request forgery (CSRF),
cross-site scripting (XSS), and SQL injection attacks. Combined with rigorous
access-checking in our application code and a robust test suite, we can have a high
degree of confidence in the security of our application’s data and business rules.

To enable users to log in to the platform, we store password data hashed/salted with the
BCrypt library, which is also included as part of Rails. BCrypt hashing is an “expensive”
operation, making brute-force or dictionary attacks infeasible.

Performance

Most interactions on our platform are required to happen in “real-time”, and so it is crucial
that our servers be able to handle load and rapidly handle requests. Jakob Nielsen of the
Nielsen Norman user experience research group observes that 100ms is the limit for a
user to feel that an event has occurred instantaneously, and that 1 second is the limit for
noticing a delay and being interrupted. Thus, we will strive to respond to all requests within
100-300ms, with 1 second being the maximum time tolerated. To accomplish this, we will
seek to finely tune SQL queries and long-running operations, utilize caching techniques,
and so on.

Software Quality

Our platform consists of many different services and components working together, and it’s
important for us to have a shared coding standard to maximize readability and make it
easy for any developer to understand any section of code. Rails prescribes some defaults
regarding coding and naming conventions, and we will use published style guides for Ruby,
CoffeeScript, etc. as a standard when writing code.

3. User Stories

e Manager - head of the travel agency

e Agent - an employee at the travel agency
e Customer - one who calls the travel agency to arrange itinerary/flight plans

Travel Agency MVP:

As a manager/agent, | can log in and log

out (EASY)
e Acceptance: | can visit a page, enter my
credentials into a form and be taken to
the main dashboard

As a manager, | can create an
organization (EASY)
e Acceptance: | can visit a page, enter my
organization name, and be taken to the
newly-created organization dashboard

As a manager with an organization, | can
send an email to agents prompting them

to create an account (MEDIUM)
e Acceptance: | can visit a page, enter my
agents emails, and have them receive an
email with a link to join

As an manager/agent, | can see incoming
call information such as caller ID, city,

state, and name/(HARD)
e Acceptance: When a call comes in to my
organization, | see an entry added to a
list displaying the relevant call fields

As an agent, | can claim a call on the
platform and have it directed to my

telephone (HARD)
e Acceptance: | can click a button on an
incoming call and receive the call on my
physical phone

As a manager | can create an account
(EASY)
e Acceptance: | can visit a page, enter my
information into a form and be redirected
to my newly-created platform account

As an agent, | can browse a history of
completed calls and see their notes
(MEDIUM)
e Acceptance: | can see a table or list of
calls that let me drill-down to see their
notes and information

As an agent receiving an invitation from a

manager, | can create an account (EASY)
e Acceptance: | can click link from an
invitation email and enter my information
to create my platform account

As an agent, | can be notified as soon as

a call comes in (MEDIUM)
e Acceptance: | see an obvious visual
notification as soon as a call comes in

As an agent, | can see a shared view for
adding notes and payout information
when I’'m on a call (MEDIUM)

e Acceptance: After accepting a call, I'm
taken to a view where | can see relevant
information for the call as well as a form
for me to enter notes

10

As an agent, | can edit shared notes for a As an agent, | gan transfer.my_ el
call in real-time (HARD) another agent in the organization (HARD)

q []
e Acceptance: | can enter notes into a

form, which all other agents viewing the
call see update in real-time

As an agent who receives a call transfer, |
can see any notes on the call from the
previous agent (MEDIUM)

e Acceptance: After a call is transferred to

me, | can see the same shared notes
view that the other agent saw

Acceptance: When on a call, | can click a
button that will prompt me to choose an
agent and select one to transfer the
actual call

11

