Living Requirements Document: Sniffit
RFID locator system

Andrew Pang
Braulio Fonseca
Enrique Gutierrez

Nader Khalil

Sohan Shah

Victor Porter

Product Requirements Document Revision History

Date Version Revision Class Comment

10/12/15 1.0 Major Started PRD by
adding Introduction
and Glossary

10/26/15 1.1 Major Added 5 use
cases/user stories as
well as the
Appendices

11/03/15 1.3 Medium Added 5 more use

cases (total of 10)

11/10/15 1.5 Major Added a description
for the System
Architecture along
with a link to the Test
Code (GitHub)

11/20/15 1.8 Medium Added a high-level
view of the System
Architecture

11/23/15 2.0 Major Updated Test Code,
updated System
Architecture, added
Revision History of
PRD

11/24/15 2.1 Medium Added and updated
use cases

Introduction

Sniffit is a handy tracking application that helps its user locate lost belongings within a
specified location. Users put an inexpensive RFID sticker on their item and register the sticker’s
ID in the application, along with the layout of the room the item is located in. From from there on
out, anytime the user misplaces that item in that room, the app can use RFID sniffers to ping
that item’s sticker along with nearby stickers and use the various signal strengths to accurately

determine where the user’s item is located. This app will be extremely useful for locating small
items like a set of keys or a wallet, without using technology that is unaffordable.

Glossary

e RFID (Radio-frequency identification) - wireless use of electromagnetic fields to transfer
data, for the purposes of automatically identifying and tracking tags attached to objects
Web server - an information technology that processes requests via HTTP
Representational State Transfer (REST) - software architectural style of the World Wide
Web. RESTful systems typically communicate with simple HTTP calls (GET, POST,

PUT, DELETE)

e Application Program Interface (API) - set of routines, protocols, and tools for building

software applications

Requirements (Use Cases and User Stories)

Use Cases

Test

User

As a user | can create an account via
username and password.

Ensure user authentication is satisfied,
disallow invalid users to view other people’s
data. Also check for duplicates in database
and return error if the username entered is
already taken.

As a user, | have the option to create data
entries for my belongings.

Make sure that each item creation is attached
to a valid ID and avoid duplications.

As a user, | can view a summary of data
about all my items that | have created in table
format.

Make sure that data displays correctly,
whether the database entry being accessed
is valid or not.

As a user, | have the option of modifying the
data entries for my belongings

Make sure that the modified data is updated
in the database and duplication is avoided.

As a user, | have the option to create data
entries about my rooms that | want to search.

Make sure that a room entry has all the
necessary information required to be a valid
room.

As a user, | have the option to modify data
entries about the rooms.

Make sure that the modified room information
has been updated on the database. There is
also detection of duplicate information and
duplication is to be avoided.

As a user, | have the option to create data
entries about reference tags, which are used
to determine the position of tags on
belongings.

Make sure that the reference tag information
is complete and that duplication is avoided.

As a user, | have the option to modify the
room ID of a specific reference tag to indicate
that the tag is used in another room.

Make sure that the only information about the
reference tag that is modified is the room ID.

As a user, | have the option to delete any of
my lost item entries.

Make sure when an item is deleted, it cannot
be accessed from the application or database
from that point on.

As a user, | can request a live estimation of
the location of one of my lost items by the
click of a button, and the selection of a room
to search.

Assure that the GUI is attached to a
sequence of calls and guarantees an
estimate; or a proper error message
indicating the failure that has occurred.

As a user, | have the option to create data
entries about the computers connected to the
RFID sensors.

Make sure that the data entry has all the
necessary information necessary to allow
interaction between the server and the
Sensors.

Mobile Application

As an mobile application, | need to be able to
communicate with a cloud server and
database to request the data that the user
has selected from me.

Make sure GUI events trigger sequence of
HTTP calls to the server.

As a mobile application, | need to be able to
perform asynchronous tasks that allow me to
provide an active Ul while performing
requests and computations behind the
scenes.

Make sure that Ul events can be triggered
while sensors are fired by the Dragonboard
410c, computations are performed on the
server, and relevant information is sent to the
mobile application.

Web Server

As a web server, | need to be able to handle
incoming requests from the mobile app

Make sure that the controllers in the web
server are performing the appropriate
functions as indicated by the mobile
application

As a web server, | need to forward requests
out to the Dragonboards needed to fulfill a
mobile application initiated request.

Make sure that the controllers that are
activated can communicate with the
Dragonboards registered with the user

As a web server, | need to perform the
necessary computations and algorithms to
locate the item once the information of the
Dragonboards has been received.

Make sure that the Python scripts that
perform the computations can be called on
the server and output the correct information.

As a web server, | need to forward
information to the mobile application in JSON
format so that the mobile application can
appropriately process the data.

Make sure that all the controllers that are
called by the mobile application return the
data in JSON format.

Dragonboard 410c

As a Dragonboard, | need to be able to take
the raw RFID reader data and parse it into
JSON format

Post the data onto the web server and see it
update on the web page.

As a Dragonboard, | need to be able to
always be running a Python script that is
listening for any requests from the server.

Post the response onto the web server and
see it update on the web page.

As a Dragonboard, | need to run a driver that
allows the SOC to communicate with the
RFID sensor and issue commands through
UART interface.

Make sure there is a response from the RFID
reader, antenna, and RFID tags. This
response will be visible from the terminal
window.

Authentication Sequence

]
£
:
E

Authentication Reguest

Authentication Request _

Authentication Request

Authentication Token

-
-

Checks database

Authentication Token

User is Identified

<
=i

T
i
[}
oy |
>
I
i
i
!
I
I
i
i
[}
[}
I
i
i
[}
[}
I
i
i
[}
L
-
I
i
1
[}
!

User App AP Server

e T e e e I o i i i

System Architecture:

The entire system can be described as interactions amongst six different components.
Specifically, these parts consists of an Android application on a mobile device, a Node.js web
server, a predetermined number of Qualcomm Dragonboard 410c SOCs and RFID readers, an
antenna, and specific number of RFID tags inside a room.

In the presumed setup, the RFID tags are separated into two distinct classes, reference tags
and user tags. The reference tags are RFID tags that are used to determine relative position of
the user tags. The information of each RFID tag is received by a RFID reader which is
connected to a single Dragonboard 410c. All the information received from the RFID reader will
be preprocessed on the Dragonboard 401c into a manageable format that would then be sent to
a Node.js server.

This server will receive information from multiple Dragonboards each connected to their own
RFID reader and will further process the data, running a RFID locating algorithm, to determine
the relative location of the user RFID tag requested. The result of this information will be
displayed on the Android app on a mobile device. The initial request for this information is done
through the Android app.

The purpose of the antenna in the overall scheme is to provide an interface between the RFID
tags and readers. The connection between the RFID readers and the Dragonboards is through
a USB wire.

Onboard the SOCs, preprocessing is done through the use of Python scripts that turn the RFID
reader’s raw data into JSON format. This JSON formatted information is then sent through a
port on the SOC to the web server. Depending on the request from the Dragonboard to the
server, such as adding tags to the database, editing information, or deletion of tags, the Node.js
server-side code will perform the appropriate action. This is done by an implementation of a
RESTful APl adapted for Node.js.

The same web server will also handle the requests from the Android app. The Android app send
HTTP requests to retrieve the appropriate information. A high-level view of the system
architecture can be seen in the following diagram (Figure 1).

Sr RFID readers RFID tags

/ Multiple Tags

Snapdragon e ———— RAFID readers

Mode.js server

Snapdragon le—————{ RFID readers

Snapdragon [RFID readers

Room
Android app

Figure 1 - High-level view of system architecture

Prototyping and Test Code

https://github.com/UCSBCapstoneQualcomm2015

https://drive.draw.io/#G0B6w7XcnBQ8itUmZDd0lHLUtzOWs

Appendices

e Qualcomm Dragonboard 410c - system-on-chip semiconductor used for mobile devices.
It may include multiple CPU cores, a graphics processing unit (GPU), a wireless modem,
and other software and hardware

e Node.js - runtime environment for developing server-side web applications written in
JavaScript
Python - high-level programming language
Amazon Web Services - collection of remote computing services, also called web
services, that make up a cloud-computing platform

e RFID reader - network connected device with an antenna that sends power as well as
data and commands to the tags.

