PRDv2: LogMeln Team

Contents

Project and Team INfo.... ... s enas 2
1 o TP 3
System Architecture OVervIieW..........cciiiiiiiiii e e e e eaes 5
L= o [T = 0 1= o1 8
System ModelS. ..o aaa 13
N o 1= 4 e [o =Y 3 19

Project and Team Info

Project Info

Team Name Stage Presence

Project Title Stage Presence

Team Members

Name Email
Isaiah Egan ije@umail.ucsb.edu
Zachary Feinn (team lead) zpfeinn@umail.ucsb.edu
Ryan Allen rmallensb@gmail.com
Ryan Kemper ryankemper@umail.ucsb.edu
Josue Montenegro josuemy@gmail.com

Intro

Problem

Giving presentations is an essential skill in life, but high quality training is not available for
everyone. The solution requires a shift in the way presentation skills are taught, as well as
feedback for those who are preparing presentations. Therefore, the solution is to provide
accessible and effective presentation training, as well as a feedback system for practitioners.

Innovation
We combine video, audio, and text analytics to give the user feedback on their presentation.
This requires feature engineering--determining the important markers of a ‘good’ presentation.

We accomplish this by examining powerful historical presentations (e.g. Steve Jobs’ launch
announcements) and understanding what makes these presentations effective. We then
translate this understanding into a set of measurable features which can be applied to any
presentation. In this way we innovate both in data science and psychology/performance by
understanding from chosen data what makes a presentation ‘good’ and translating those factors
into digital terms.

We also innovate by constructing software which can measure these features from a video of a
presentation. As these features are not yet determined, such software necessarily does not
exist, so ours will be the first.

Finally, we innovate by taking presentation training out of the analog world. Currently, one can
receive training only from communications classes, Toast Masters’ meetings, and similar live or
hybrid live/digital options. We innovate by creating a purely digital option that is accessible by
the web. Therefore, anyone with access to the internet can learn to be an effective presenter.

Team Goals/Objectives

Our goal is a web based platform where users can practice presentations and receive
actionable feedback. Our system should be a tool for users to systematically practice their
presentation skills.

Stretch goals include persistent user data that allows users to track their performance and
improvements over time. Additionally, we would like to include training modules where users are
asked to perform a historical presentation, and their performance is then compared with that of
the original presenter.

Soft goals include effective modularization of our software requirements, such that sub-groups
within our team can work independently. We accomplish this by considering four main areas of
development: web services, text analytics, audio analytics, and video analytics.

Background

LogMeln is a subsidiary of Citrix, a company which seeks to improve collaboration through web
based software. Webcam presentations are essential in an increasingly online business
environment. Therefore, our webcam training method fits nicely with LogMeln’s mission and
vision for the future.

Assumptions

Our product will be targeted toward American English speakers, due to constraints on what
speech-to-text libraries can accomplish. Additionally, we assume that certain factors of a
presentation are universally considered ‘good’ in this market. For example, we assume that a
consistent rate of speech is better than a highly varied rate of speech.

System Architecture Overview

High Level Diagram

Our system architecture reflects our goal of modularization. There are several main
components, web services, A/V decoupling, audio processing, text processing, and video

processing.

Frontend < » User
Database
It's possible that we can decouple directly to dataframes
.| Backend video! | AudioVideo ' Data preprocessing
*| Sarvices a:.!ldlo - Decoupling A#i?f (file to data frames)
ile
Video
File
Data preprocessing
(file to data frames)
Presentatian \ /
Script as xt
h 4
Video Processing ——— Results - M}'IE': —_—
Heatmap as dataframe
A 4

Text Processing

» Audio Processing

Results - MVP:
Sentiment,

Results - MVP:
Pauses,
Frequency changes,
Amplitude changes

h 4 h 4

Other analysis (commaon words,
synonym recommendations, etc.)

> Data Unification

Results - JSON obiect

User Interaction And Design

There are two main pages for this web app: the index and the results page. Samples of the Ul
for each are included below. The index uses animations to present an overview of our product
works and the results page uses a card style to present our analysis to the user.

Stage
Presence

Good presentations are all alike. Music, comedy. polisics,
business... the language of charisma is universal.

We belicve charisma can be learned, cspecially for
delivering presentarions. Below you will find some of the

elements of charisma that Stage Presence reaches.

Voicing

A good presentation will maintain

up whe g o a poine, and
speakeing a bit slower 1o emphasize
several words.

Pitch
aud;

variation helps ma

¢ interest, and it belps you
make your poinc. However, 00 much
variaion may lull your sudience to
skecp.

Great presentations use content o
effectively communicare emotian. The

The vocabulary of
should be understa
audience, and a gr
will vary irs word choi

building several themes

Consider y

the space. You shou
scage ta build
your marks to make a poin.

tto
When
‘you feel something, so will they. Try o
wse strong expressions to make points,

b your audie

and smile chroughoue

Index example (post animation)

[Pitch

Start End

Great presentations use content to
effectively communicate emation. The
word choice should be appropriate to
the event, and have an emotional
impacr.

1 Emoticnal Tone

s

0.8

|

Dingunt

Pitch variation hclps maintain your
audience's interest, and it helps you
make your point. However, too much
variation may lull your audience ro

\
\ / slcep.
sov s
[| Frequency of Speech Rate

A good presentation will maintain

110 - 120 wpm a steady rate of speech. An

120 - 130 wom :I excellent presentation will include
some variation, such as speeding

130 - 140 wpm up when driving to a point, and
speaking a bit slower to emphasize

140 - 150 wpm ‘ several words.

Results Page Example (text and data not indicative of final product)

Requirements

User Stories

Below we include a sample of ten user stories. Some of these relate to larger features in our
noted modules which will be included in our MVP. Those user stories are annotated with
relevant Github commits and information. As with our previous work, user stories are divided up
by the relevant module.

Audio:
e As auser, | would like to see how much | fluctuate in pitch while | speak, so | can see if |
change pitch too much or too little.
Deliverable: Show a univariate, 2-D graph of their pitch during the speech.

e As auser, | would like to practice my rate of speech during a presentation so | can see if
| am talking too fast.
Deliverable: A game-ified portion of our app that allows you to practice your
presentation, possibly against existing speeches from different orators.

e As auser, | would like to see my average wpm for the entirety of my speech so that | can
know if | am speaking too quickly or too slowly
Deliverable: A visible metric (their average WPM) for the entire speech.

e As auser, | would like to see how loudly | speak during a presentation so that | am well
understood.
Deliverable: Show a univariate, 2-D graph of their volume during the speech.

e As auser, | would like to see my rate of speech during different parts of the presentation
Deliverable: Show the positions of each word in their speech, and show the WPM rate
within each phrase

Commit Name Description

Simple onset time detection

Explored Librosa’s onset detection as an
initial attempt for speech rates

Added some JSON exports, calculates

the wpm for the entire audiofile

Calculates WPM for audio file. Allows for
exportability of data to web interface in
JSON format

Simple plot of KDE

Began working on one half of 1-D
clustering algorithms using SciKit-Learn
KDE modules. Plot output of module

https://github.com/ije896/logmein-capstone_2017-18/commit/e773a2c9a4eb6d19311187a9f4eefeeb0249b1b8
https://github.com/ije896/logmein-capstone_2017-18/commit/1caa61411e501dd6ab4807f6fec54e8f294a8853
https://github.com/ije896/logmein-capstone_2017-18/commit/1caa61411e501dd6ab4807f6fec54e8f294a8853
https://github.com/ije896/logmein-capstone_2017-18/commit/f86317241fa5be852e1cb3a97d012cc44887e937

Video:

using matplotlib to ensure module is
working as desired

Implemented watson stt, recalculated
wpm for new data source

Pivoted to using Watson STT to retrieve
script and timestamps to calculate wpm

Gathered wpm's for individual phrases

Exploited structure of Watson STT to
calculate the wpm during specific phrases
in order to evaluate how a user’s word
rate changes of the course of a
presentation

Waveform plots properly. Working on
extracting temporal pitch data

Displays a simple waveform plot of the
user’s presentation, essentially displaying
their volume

Pitch from autocorrelation is working

(but slow)

Utilized the autocorrelation method to
extract periodic data, in this case, pitch
information

pitch detect and word detect are upright.

Interface works non-statically

Configured module with working interface
that separately instantiates the two audio
features and returns json formatted data

As a user, | want to know how well | use space during my presentation, so that | can
verify I'm not standing in one place for too long.
o Deliverable: A list of the user’s position coordinates and timestamps throughout

the video.

As a user, | want to know how well my facial expressions match the sentiment of my
speech, so that | can deliver a sentiment-coherent presentation.
o Deliverable: Feedback on how the overall facial sentiment contrasted with the

written speech sentiment.

As a developer, | want to reduce the number of frames I’'m analyzing, so that | can

reduce computing time.

o Deliverable: A more compact list of coordinates and sentiment results.
As a developer, | want to be able to analyze the user’s sentiment per second and not
only their position, so that | can have more information about the overall presentation.

o Deliverable: A list of the user’s facial sentiment analysis for every second of the

video.

Github commits:

https://github.com/ije896/logmein-capstone_2017-18/pull/3/commits/68beaf9962dcef2a0d0ee72d1039e3381b0c397a
https://github.com/ije896/logmein-capstone_2017-18/pull/3/commits/68beaf9962dcef2a0d0ee72d1039e3381b0c397a
https://github.com/ije896/logmein-capstone_2017-18/pull/3/commits/f47ded9f9056f8509b6ef3674ed20dc2b47d308a
https://github.com/ije896/logmein-capstone_2017-18/pull/10/commits/620bdc931514495160e03712f798e70164a1e42e
https://github.com/ije896/logmein-capstone_2017-18/pull/10/commits/620bdc931514495160e03712f798e70164a1e42e
https://github.com/ije896/logmein-capstone_2017-18/pull/10/commits/6ef3f4824fe640578b7122a486fc1b5f19070ad1
https://github.com/ije896/logmein-capstone_2017-18/pull/10/commits/6ef3f4824fe640578b7122a486fc1b5f19070ad1
https://github.com/ije896/logmein-capstone_2017-18/pull/10/commits/75eb95fb7218a52c1e69f41574df46b317730dfc
https://github.com/ije896/logmein-capstone_2017-18/pull/10/commits/75eb95fb7218a52c1e69f41574df46b317730dfc

Commit name

Description

Add openCV samples I've played with

Explored OpenCV to learn how to track
user in video

Recognize face expression and get
coordinates

Record an x coord stamp of the user’s face,
every 4 sec.

Divide video window in three sections

Split the video frame in 3 areas so that | can
sort my x coords. by area.

Succesfully combined openCV and
GoogleAPI to grab x coords

Use openCV to track faces, and if that fails use
Google’s APlIs to recover face coords. This will
minimize API latency and costs.

Plot graph of movement distr.

After sorting coordinates per area, | plot a graph that
shows the user’s space usage throughout the whole
presentation.

Add interface and enable sentiment
analysis

Adds an easy to use interface that allows the web
module to obtain json objects of sentiments and
coord tracking analysis.

Improve running time by being more
exact about frame extraction

Reduce number of API requests by extracting only
one frame per second without having to analyze all

the ones before that.

Text:
e As a user | would like to see the frequency of the words used in my speech so that | can
easily see if | am being too repetitive.
Deliverable: A word cloud of the top 10 most used words and their word count
(disregarding words such as ‘the’ ‘and’ ‘is’ etc).
e As auser | would like to see the semantics of my speech so that | can make sure my
tone is correct for my intended audience.
Deliverable: A radio graph representing the social and emotional tones of the text
e As auser, | would like to see potential synonyms that | can use for my most frequently
used words to make my speech less repetitive.
Deliverable: A list of synonyms corresponding to each ‘overused’ word
e As auser | would like to see the “readability” (flesch-kincaid) of my script so that | can
make sure the audience can understand me without difficulty.
Deliverable: A readability grade level and raw score
Github Commits:

10

https://github.com/ije896/logmein-capstone_2017-18/commit/86856e9953eaea62e8b4085510418917ea5b8be0
https://github.com/ije896/logmein-capstone_2017-18/commit/6fe7d6d8da27ae8cd93630a98df100cbf44691b1
https://github.com/ije896/logmein-capstone_2017-18/commit/6fe7d6d8da27ae8cd93630a98df100cbf44691b1
https://github.com/ije896/logmein-capstone_2017-18/commit/34c298ec56b47475390419dfae3cee889e6e2b43
https://github.com/ije896/logmein-capstone_2017-18/commit/0f135d5d2d0b113c605dee558fce254bfd8c35c8
https://github.com/ije896/logmein-capstone_2017-18/commit/0f135d5d2d0b113c605dee558fce254bfd8c35c8
https://github.com/ije896/logmein-capstone_2017-18/commit/e6fc7277f82539184720da81447c2f2bd496fc74
https://github.com/ije896/logmein-capstone_2017-18/pull/7/commits/25564ade4982ac7bbd61248770e4610f377c692b
https://github.com/ije896/logmein-capstone_2017-18/pull/7/commits/25564ade4982ac7bbd61248770e4610f377c692b
https://github.com/ije896/logmein-capstone_2017-18/commit/e91f22212a9958501a026724d9f3d0a54aca5328
https://github.com/ije896/logmein-capstone_2017-18/commit/e91f22212a9958501a026724d9f3d0a54aca5328

Commit name

Description

Basic NLTK Sentiment Analysis

Explored the possibility of using NLTK for
our sentiment analysis

Added a Frequency Analyzer to Present
Commonly Used Words

This is going to be used to show the user
which words he/she is over using and provide
the backbone for providing synonyms

Updated watson and included more test
files

We decided to not use NLTK and to use IBM
Watson’s tone analyzer to perform sentiment
analysis

Incorporated watson analysis and word
frequency into classes

The initial backbone for the text analysis class has
been made and it includes methods to create a tone
analysis as well as getter methods to get desired
outputs (json files, dictionaries)

Process brown corpus and extract word
freqs

Python scripts that process brown corpus
(downloaded from nltk) to extract net frequency of
each word within corpus

Extract idf values

Extend script to also calculate (and store in csv) the
inverse-document-frequency of each word within
corpus

Implement tf-idf

Term Frequency, Inverse Document frequency has
been implemented. It is used to find the most
“interesting” or “unique” words based on both the
frequency of the term in the source text and the
likelihood of the term appearing in the corpus

Add f-k readability

The user can now see a general flesch-kincaid
readability score of their speech, either as a grade
level (e.g. “5th grade”) or a raw score (e.g. 92.11).
Also implemented basic unit tests for readability

Stage 1 of refactoring

All of the classes (except the interface class which
the front end interacts with) are now static and only
return a dictionary of their output values.

Finished Refactoring

The text interface now returns a json of all values
that were requested. Also updated the Watson
Credentials (Using a free trial so need to reset every
30 days)

Web Services:

e As auser, | would like to be able to upload my presentation to a web interface so that |
can get feedback on my performance.
Deliverable: an upload webpage.

e As auser, | would like to be able to view results on a single page so that | can easily
make decisions about how | can improve.
Deliverable: a results webpage.

Relevant Github commits for above user story

11

https://github.com/ije896/logmein-capstone_2017-18/commit/633af9159e4b7a6f11863aa78d0c320c07c56ca7
https://github.com/ije896/logmein-capstone_2017-18/commit/8ca5524e7c1e1772739f6eef8cafbd7866b55431
https://github.com/ije896/logmein-capstone_2017-18/commit/8ca5524e7c1e1772739f6eef8cafbd7866b55431
https://github.com/ije896/logmein-capstone_2017-18/commit/af50d8973b1ec8207ebe854e54872a4caaa94c21
https://github.com/ije896/logmein-capstone_2017-18/commit/af50d8973b1ec8207ebe854e54872a4caaa94c21
https://github.com/ije896/logmein-capstone_2017-18/commit/99d9c409b3cf0dfc0e2233e06422085bbfc7754b
https://github.com/ije896/logmein-capstone_2017-18/commit/99d9c409b3cf0dfc0e2233e06422085bbfc7754b
https://github.com/ije896/logmein-capstone_2017-18/commit/e371a3b81c11ef52c352b1d39d3441b41a1456b4
https://github.com/ije896/logmein-capstone_2017-18/commit/e371a3b81c11ef52c352b1d39d3441b41a1456b4
https://github.com/ije896/logmein-capstone_2017-18/commit/a402da7fded19f79bbe9243a2137ff9615c98989
https://github.com/ije896/logmein-capstone_2017-18/commit/eaf560180a4462a585d2e273276de2e5dcee18aa
https://github.com/ije896/logmein-capstone_2017-18/commit/4470f46a6822729a1796c607329fae15e8ff5d96
https://github.com/ije896/logmein-capstone_2017-18/commit/42ac06e52754d3f15e1f60828a12b594683be120
https://github.comlogmein-capstone_2017-18/ije896//commit/5696771afc32d02accec02039ae89daa475a8a2a

Commit name Description

Index page with animations Serverside interactions, html/css/js files,
etc.

12

https://github.com/ije896/logmein-capstone_2017-18/commit/00edb56ee560b7c58b1b920b8cd8c52637ef51e6

System Models

This system is comprised of a web services package that utilizes three other packages: one for
video analysis, one for audio analysis, and one for text analysis. Below are class and sequence
diagrams for each package.

Web Services (Class Diagram)

[1

[]

Router.py

Flask

Index
(index.html,
index.js,
index.css,

img/,
ete.)

+app : Flask app

+ index)
+ results()
+ runi)

\

Index.py

+ pagel) : renderad html

[1

[1

Chart.min.js

jquery.min.js

Results.py

- audio_interface : Audio.Interface
- video_interface : Video.Interface
- text_interface : Text.Interface

- processFilepathi
filepath : String,
options : Dict

)

+ page(request : Request) : rendered html

1]

Results
(results.html,
results.|s,
results.css,

img/,

ete.)

Audio.Interface

Text.Interface

(see other UML)

(See other UML)

13

Video.Interface

(See other UML)

Web Services (Sequence Diagram)

[User / Brcwser] [: Router] [: Index] [: Results]

Access website

L

page() >

render_template(index.html

retunn html

submit request |

L

page({reduest)

_____________l

14

>
H process_filepath(fp, optiens) H
i > i
1 - results : JSON 1
process_filepath{fp, options) -
>
_ results.: JSON U
: process_filepath(fp, options) | o
T >
- restits : JSON
render_template(results.html)
return html

Audio Analysis (Class Diagram)

Word Detector

results: dict = run_word_detection(file: string)
franscript: string

— | word_count: string

[length_of_spaech: int

wpm: int

phrase_wpm: dict

calc_watson_STT(file: string): json
scrub_jsonijson): list, list

Interface cale_word_count(list): int

cale wpmi(list): int

calc_lengthilist): int
calc_phrase_time(list): int
calc_transcript(list): string
run_word_detection(file: string): dict

word_detector: word_detector
pitch_detector: pitch_detector

process_filepath{audio_file: string,
options: dict)
get_speech_length{} : int

get_word_count(} : int

get_transcript() : string Pitch Detector

gz;‘ gﬁr”;é:;:izém - pitches: list = run_pitch_detection(file: string)

get_pitches() : dict

run_pitch_detection(file: string): list
calc_onset_values(ndarray, int, int}: list, list, list
estimate_pitch(list, ndarray, list, int, int): int
reject_outliers(list, list, float): list, list
set_and_estimate_segment{ndarray, list, int, int}: int
autocorrelate_detect_pitchindarray, int, list, list): list
combine_pitches_and_times(list, list): list

Audio Analysis (Sequence Diagram)

. Audio : Pitch Detection
Interface : Word Detection WatsoD API

T T 1 calc_watson_STTiaudiolilg)
' ' '
' ' '
' ' 1
0 0
i i i i
, Process_tiepain(audio_tiepatn, aptions) ; Librosa Library
L -y run_piteh_detection(audio_filgpath) e
]] il P load{audioflle) ™
[[1 onsel_detection{spectra: ndarray)
o [[| aulocorrelate(spectra:ndarray)
< O Ol i€ s
picnes list ; piches st ; plcnes_list ;
word_count ' word_count ' word_count P
wpm i wpm 1 wWom P
phrase_Wwpms 1 phrase_wpms 1 phrase_wpms P
transcript f transcripl f transcript f
speech_length f speech_length ' speach_length '

15

Text Analysis (Class Diagram)

Interface

—> WatsonAnalyzer

parse_analysis(data: string) : dict
tone_analysis(text: string) : dict
get_sentiment(text: string : dict

syn_dict: Synonyms()
script: string

process_filepath(text_file: string, options: dict) : json
get_sentiment(script: string) : dict
get_synonyms(script: string, syn: Synonyms) : dict
get_readability(script: string) : dict
output_readability_tests()

check_file(text_file: string) : string

TF-IDF

fregs.csv: frequency (of each word in corpus)
tf_idf.csv: tf-idf (of each word in corpus)

process_filepath(text_file: string, options: dict) : json
get_sentiment(script: string) : dict
get_synonyms(script: string, syn: Synonyms) : dict
get_readability(script: string) : dict
output_readability_tests()

check_file(text_file: string) : string

> Synonyms

thesaurus: dict

thesaurus.csv. list of synonyms for given word

parse_thesaurus()
get_all_syns(word: string) : list
get_syns(word: string) : list
outp_syns(word: string)
output_test_strings()

Readability

\ 4

f_k(text:string) : float
f_k_grade_level(text: string) : string
get_words(text: string) : list
get_num_sents(text: string) : int
sylls(word: string): int
get_num_sylls(text: string) : int
output_tests(): None

16

Text Analysis (Sequence Diagram)

: Text
Interface

:Sentiment

Tfldf

:Synonyms

[}
process_filepatn(text_filepath, options)

!

text analysis json

ll
5

get_sentment(script)

i
[

sentimant JSON

P

get_ti_idi(script)

top N I_idi words

A J

get_syns{word)

‘Readability

\ 4

synonym list

1_K{script)

readability scone

A

i_k_grade_|evel(script)

readability grade level

ra
-

PR Y AU R N M A R A £ ——

17

Video Analysis (Class Diagram)

VideoAnalysis

coords_and_time : array
video_sre : string
video_duration : float
total_frames : int
fps : float

width : int

height : int
current_frame : int
google_api_requests : int
open_cv_requests : int

Interface

get_coords() : array
get_sentiment() : array
get_fps() : float
get_video_height() : int
get_video_duration() : float
to_json{) : json
_google_analysis(file_path: string,
video_time: int) : void
run() : void

Video Analysis (Sequence Diagram)

pracess_filepath{file_path : string,
options: json)

:Video . . Google vision
: Video Analysis
Interface y API

T T
]]
]]
]]
]]
]]
f process_liepatn(video_filepath, optians) ni) f
L T

i v]
]]
coords_and_time_json i coords_and_time_list coords_and_time_list [
sentiment_and_time_|zon] sontiment_and_time_list sentiment_and_time_list]
]]
]]
]]
]]

18

get_sentiment{image)
get_cocrds{image)

Appendices

Technologies Employed
e Audio Processing
o Librosa
o Watson API
e Video Processing
o OpenCV
o Google Image API
e Text Processing
o Watson API
o NLTK
e Web Services
o Flask (Python)
FFMPEG
HTML/CSS/Javascript
JQuery
Chart.js

o O O O

19

