IMPROVED FIELDBUS CONTROL VIA
MIDDLEWARE TECHNOLOGY

W. Kastner, C. Kriigel

Technische Universitit Wien
Institut fiir Rechnergestitzte Automation
Treitlstraffe 1, A-1040 Vienna, Austria
Email: kQauto.tuwien.ac.at

Abstract: After having launched Java back in 1995, Sun keeps up the hype by
presenting Jini, a Java based middleware solution, a couple of months ago. Since then
a lot of theoretical work has been published, which describes scenarios where Jini
enabled devices provide virtually miraculous self-configuration abilities. This paper
goes one step further by showing how a real Jini application cannot only be thought
of, but also be designed and implemented. Since Jini is intended to be used in portable
and household devices, it seems natural to combine its power with a fieldbus system
for home automation. This paper presents how Jini and a home and building network
can be linked together to benefit from each other. Copyright 2000 IFAC

Keywords: fieldbus, home and building network, spontaneous network

1. INTRODUCTION

To gain a better understanding of the motiva-
tion and the design of an integrated environment
between Jini and a home and building network,
the article starts with a short description of both
technologies.

1.1 Jing

Jini, developed by Sun Microsystems, is a dis-
tributed system environment that simplifies the
access to services in a network (Edwards 1999).
The outstanding advantages of a network include
resource sharing and the possibility to use remote
data and services from different points. It is a clas-
sical challenge for network management to provide
lookup services for clients to establish the cor-
responding connections to a server dynamically.
However, in most cases such connections have to
be made by means of manual configuration.

The task of Jini is to simplify this configura-
tion job by using refined protocols for lookup

and other services. Thus, the easy usage of net-
worked devices and services is one of Jini’s pri-
mary goal. Simple devices are able to sponta-
neously form communities, called Jini federations,
where they utilize each other’s services. An archi-
tectural overview is presented in Figure 1, where
the cooperation between the application, Jini and
the underlying Java layer is shown.

Application Service Protocol

Application

Jini Lookup Jini

Java RMI

Java Java

Java Virtual Machine Java Virtual Machine

Operating System Operating System

Network

Fig. 1. Jini Architecture

Jini is an extension of Java, so all Jini-based de-
vices must feature a Java Virtual Machine (JVM),
as indicated above. The advantages of using Java
as programming model are high reliability due to
its strong typing system and automatic garbage

604

Main Menu



collection. Furthermore Java supports the devel-
opment of distributed applications by offering Re-
mote Method Invocation (RMI) and a comfortable
way of automatic class loading on demand.

1.2 Home and Building Networks — the FIB

Fieldbus and installation bus systems can be used
in a wide area of different applications. While
they were mainly used in technical control and
process automation settings for computer aided
manufacturing and for the automotive branch,
they get more common in home and building
automation to control simple actuators like lights
or sensors like switches.

The European Installation Bus system (EIB) for
home and building electronics was designed to
answer the last mentioned challenge (EIBA 2000).
In contrast to the island solutions of conventional
electrical installation, EIB unifies all aspects of
building exploitation on a shared communication
medium. An EIB control network is marked by
a clear structure aimed for home and building
automation, permitting a line, tree or star topol-
ogy. In this way, EIB components (or devices)
are grouped into lines, up to 15 of which may
be connected to a main line through line cou-
plers (with routing functionality) thus forming an
area. In turn, a backbone line may link up to
15 areas. As each line accommodates maximally
256 devices, a fully equipped EIB system may
link roughly 60000 devices. This topology (or a
subset) may be realized on twisted pair cabling,
or alternatively using power-line or wireless radio-
frequency transmission.

Each EIB device contains a microprocessor. It
implements the stack for decentralized EIB com-
munication and provides processor, memory and
communication facilities to the local applica-
tion. Certain standard building blocks (Bus Cou-
pling Units) offer a well-defined interface to the
application-specific hardware such as sensors or
actuators. Devices may be managed individually
across the network through physical addressing.
For their runtime operation, applications typically
communicate via multicast-enabled process vari-
ables, meaning they may be logically grouped and
considered as a single shared variable. These links
themselves may also be assigned or modified over
the EIB network.

The EIB allows a user to perform simple tasks
like lighting and heating control, but also makes it
easy to control air-conditioning or power manage-
ment processes and joins them into an integrated
system (“Intelligent House”). Although the EIB
calls itself an installation bus, it is actually more
an instance of a fieldbus system, capable of solving
challenging control applications.

The rest of this paper is structured as follows. Af-
ter a short motivation why an integration of home
and building appliances with Jini seems useful, the
system design for such a connection is presented.
Section 4 summarizes the most important topics
of the implementation. Some conclusions of the
work done so far and an outlook on future research
regarding this area finish the article.

2. MOTIVATION

When considering to merge the EIB with Jini, it
is interesting to compare the different motivations
behind each system and to find out, whether these
motivations or architectures can be connected to
gain an increased benefit.

Jini is a new concept, that provides the funda-
ment for spontaneous connection of devices to
form temporary networks. Devices are gathered
to solve a common task and eventually leave the
federation (while forming a new connection to
reach a different goal). In contrast to that, the
EIB is a long lasting and static installation. EIB
devices are connected to a common bus, that is
likely to be wired inside the walls of a building.
They get programmed once and then fulfill their
tasks by sending telegrams to interested partners
when state changes occur or receive a telegram
when they should perform their outputs. At a first
glance, there seems no need for EIB gadgets to
form changing subnetworks.

Looking closer reveals, that, if federations includ-
ing bus devices are opened, Jini can suddenly
become useful. The EIB devices are mapped onto
services in a Jini federation, that are not only used
by other bus installations but raised to an open
environment, where other devices may make use
of the fieldbus. One one hand, it now becomes
possible for other Jini enabled devices to use
fieldbus gadgets and control actuators, as well as
receive information from sensors to improve their
knowledge of the surrounding. On the other hand,
it becomes possible for EIB devices to extend their
functionality by using other installations outside
the regular bus installation. Kastner et al. (1999)
lists some examples for possible functionality en-
hancements like

e The remote control of the TV set can be
used to regulate the heating or control the
venetian blinds. The user interface is shown
via video text and responses of the EIB
devices are visualized on the screen.

e When the TV set is turned on, the lights of
the appropriate room are dimmed or turned
off, depending on user’s settings.

e When a person enters the building (or parts
of it, depending on the size of the house)

60<

Main Menu



the heating or air conditioning automatically
turns on (depending on temperature values,
EIB devices have recorded).

The increases in functionality mainly result from
a connection between consumer electronics and
home automation devices produced for the EIB.
While it would be possible to create proprietary
links between single devices, that could perform
the same (e.g. implement an EIB heat sensor into
the oven and connect it with EIB lights), the
solution that uses Jini has the advantage of being
vendor independent and allows the manufacturer
of a special device to equip it with functionality,
that works in an open environment.

Additionally, a couple of other benefits immedi-
ately arise when using Jini compared to a pro-
prietary fieldbus-to-consumer-electronics connec-
tion. These are

a gateway from the fieldbus to the Internet,
the possibility to provide facility manage-
ment,

a form of ubiquitous computing and

a cheap gateway between different fieldbus
variants (like EIB, LON or CAN).

3. SYSTEM DESIGN

Jini assumes a complete Java environment to run
properly. This is no problem, when a standard
PC, that runs a fully-fledged JVM, is used as a
platform. Nevertheless, these demandings become
much more restrictive, when we think about small
devices. When a simple actuator (e.g. a light)
or sensor (e.g. heat sensor) should act as a Jini
service, the scarce resources become a problem.
It seems evident, that it is not useful to pro-
vide each component with enough computational
power and memory to run Java on its own. In
Sun (2000) three different solutions have been pro-
posed, which reduce the flexibility by decreasing
the needed resources.

(1) Use a proxy with a complete JVM to act
on behalf of the simple devices. This variant
needs a shared virtual machine, that runs
Jini protocols and performs communication
on behalf of its clients.

(2) Implement a reduced JVM in every device,
that is just able to announce and provide
its service. This is mainly an option for
service providers, as clients need to deal with
unknown code.

(3) Implement a complete JVM with a re-
duced need of resources by utilizing tech-
niques like dynamic compilation, special pur-
pose Java processors or automatic library
down-loading. These techniques mainly com-
bat Java’s deficiencies like indeterministic

garbage collection or weak run-time perfor-
mance, issues especially severe in real-time
applications.

Our architecture uses the first variant, a gateway
solution with a shared virtual machine running
on a workstation (PC), that hosts service proxies
on behalf of their simple clients (Kastner and
Kriigel 2000). The shared JVM acts as a pool
for software modules, that correspond to a set
of devices on the EIB and offer the devices’
functionality. These software modules are called
agents (or EIBAgents) and act as proxies for EIB
devices in the Jini federation, which they have to
represent.

An agent is more a representative of a certain
fieldbus functionality rather than an avatar for
a special device. An example could be an alarm
agent, that periodically turns on and off the
outdoor lights and rings a bell. In that case, a
single software module has to handle a set of EIB
lights and a bell actuator. As a result for our
design decisions, it is important to notice, that
there is no one-to-one mapping between fieldbus
devices and software modules.

Obviously, it should also possible to have a single
fieldbus component controlled by more than one
agent. This might be useful when a certain device
offers different functionality (e.g. a switch, that
also features a LCD to display short strings) or is
needed for different tasks (e.g. a light that can
be turned on and off by a simple light agent
and by an alarm agent). The system presented
here is capable of an unrestricted n-to-m mapping
between agents and EIB devices. Since the agent
concept is the centerpiece of the whole design, the
structure of a single agent is described below in
more detail.

3.1 Agent Design

An agent needs to provide the EIB device func-
tionality as a service in the Jini federation. Service
requests from other Jini participants have to be
forwarded to the fieldbus, demands of fieldbus
gadgets have to cause service calls in appropriate
Jini servers. Next, it is necessary to inform the
agent of state changes of devices located at field-
bus level. To allow an agent to manage its tasks,
it must be able to communicate with the Jini
federation as well as with the fieldbus. Because
telegrams can be sent in both directions, an agent
needs the ability to read from and write to the
fieldbus and to communicate bi-directional with
other Jini services. As a last piece, a part of the
agent has to realize the demanded functionality.
This can be as simple as just forwarding a request
to turn on a light to the corresponding light de-

60¢

Main Menu



vice, but become as complex as the control and
monitoring of an air conditioning system.

Following object-oriented design principles, an
agent is splitted into three parts (Figure 2):

(1) Djinn Communication Module (DCM) — re-
sponsible for communication with the Jini
federation.

(2) EIB Communication Module (ECM) — re-
sponsible for communication with the field-
bus (EIB).

(3) Jini Control Module (JCM) — responsible for
bootstrapping and agent functionality.

EIB Djinn
To Communication Communication To
EIB 171 Module (ECM) Module (DCM) Djinn

Jini Control Module (JCM)

Fig. 2. Agent Structure

Our gateway uses a serial connection to a twisted-
pair bus, which demands special considerations
when providing an implementation for the ECM.
Agents are Jini proxies, that may move around in
the network. It is therefore not possible to guaran-
tee, that the ECM will be located at the host with
the fieldbus directly connected to its serial inter-
face. While this seems to be an implementation
detail at first, this is not true. The design must
add an additional layer of indirection between the
actual fieldbus connection (via the local interface
device driver) and the ECMs, that can be located
anywhere around the network. Therefore, it is
necessary to provide a server process, which is
frankly called EIBServer.

The EIBServer runs locally on the machine, which
provides the connection to the fieldbus. The ECM
gets relieved from the need of implementing differ-
ent communication patterns for different fieldbus
media types, because these differences are hidden
behind the EIBServer. The duty of the ECM
is reduced to the need of providing a location-
transparent connection between the EIBServer
and the EIBAgent, namely the JCM.

3.2 Agent Properties

An agent is registered at the Jini federation by
the JCM. The JCM uses a special protocol (called
join) to register a service object at the lookup
service (LS). The lookup service itself is a Jini
entity, comparable to a name service, that can
store a mapping between object descriptions and
the objects themselves. It is evident, that the func-
tionality and the interoperability of the system de-
pends on the ease, other Jini services can find and
use EIBAgents. To allow users to look up services

quickly, they are equipped with certain properties
(called entries in Jini). This section deals with the
properties of agents and mechanisms to provide a
safe and fast way for clients to utilize the LS and
get the desired service proxies.

It is obvious, that a service user, who needs an
agent to fulfill his task, has a clear idea of what the
device needs to do. Jini uses two different ways for
service users to specify a proxy object. One way is
to specify the type of the service class or interface,
the other way is to provide entries (i.e., additional
classes), that act as service descriptions.

The functionality of an agent is defined by all
procedures, that a client may call. Thus, it seems a
natural approach to code the agent’s functionality
by the class or interface types, it has to implement.
This approach allows to make use of Java’s inher-
itance mechanism by creating generic classes or
interfaces with a basic functionality (e.g. a light
interface, that only has procedures to turn on and
off the light) and sub-classing them by proxies,
which provide additional services.

Starting from an abstract interface called EIBOb-
ject, that represents an arbitrary EIB device, a
tree can be formed. Interfaces, that are near the
root, only offer some high-level functions for a
certain home automation area (like heating or
lighting) and have sub-nodes, that augment these
basic services with special, possibly vendor spe-
cific extensions. As an example, a small object tree
with some lighting interfaces is shown in Figure 3.

EIBObject
Light Switch
Light_on Press
Light_off Release
Dimmer Winker oo
Dimm_up Blink
Dimm_down Stop

Fig. 3. Agent Functionality — Class Hierarchy

Compared to a variant where the functionality
is coded into additional entries, our mechanism
offers two advantages. First, the polymorphism of
the Java object model can take effect, when clients
issue their search. A service user, that is looking
only for basic services, also receives proxies with
an increased amount of functionality, if they ex-
tend the class offering the basic functions. The sec-
ond advantage is the increase in safety when mak-

Main Menu



ing a function call. A proxy object, that is received
by the lookup service, has to be down-casted to
the needed object in order to call its procedures.
When functionality is represented by entries, it is
possible, that a service object pretends to offer
certain procedures, which its class actually does
not. In that case, the downcast would result in a
Java exception and needs special error treatment
at the agents. This problem cannot occur when
service functionality is directly mirrored by the
callable functions and the object type.

Another important aspect of a device, that has
to be reflected in an agent, is its location. It is
important for many applications to select certain
devices according to their functionality and their
location. The information of the place is kept
where the device is installed as an entry (storing
them in a hierarchical manner, too).

3.3 Agent Proxy

Whenever a service registers itself with the lookup
service, a service proxy object has to be sent to
the LS. This service proxy is eventually transfered
to clients, which in turn can use it to perform
service calls. In case of an fieldbus agent, it is pos-
sible that multiple clients throughout the network
simultaneously hold a reference to the agent’s
proxy object. Whenever an event on the fieldbus
takes place, all agents have to be informed about
the state change consistently, regardless of their
current location within the Jini network. Never-
theless, it is not desirable that a pressed switch on
the EIB causes all agents to react. These telegrams
would contain redundant information and simply
overload the bus. An ideal situation would be an
agent, which runs as a single instance, when bus
traffic is received, but can run as many copies of
itself as needed, when other Jini services want to
access the fieldbus via the agent. Although this
dual role seems to be unachievable, the use of RMI
makes it possible.

Remote objects, which are passed as parameters
in RMI function calls, do not copy the objects
itself but only a remote reference (called stub).
These stubs may be passed around the network to
clients, while only a single instance of the agent
is actually running on the host, where the agent
has been started. Defining an agent proxy as an
RMI server object has the additional benefit of
allowing the proxy object to act as a remote
event listener as well. Jini supports a remote event
mechanism, a way to inform applications about
the occurrence of asynchronous events. As agents
are already build as remote server objects, it only
needs minimal additional effort to allow them
to directly receive events, which indicate state
changes at EIB devices.

4. IMPLEMENTATION

The notion of an agent has been described as the
centerpiece of the system design. Agents act au-
tonomously in the Jini federation and the system
can easily be extended by integrating new agents
into the community. It is interesting to notice,
that large parts of the code are similar between all
agents. The routines to contact the lookup service
and publish its service there as well as the fieldbus
communication are the same for all agents. Only
the small amount, that defines the actual abilities
of the agent, needs to be rewritten for different
fieldbus devices.

However, agents are not sufficient to build up the
whole system. It has been shown, that it is neces-
sary to insert an EIBServer, a layer that manages
the connection to the fieldbus via the local device
driver on the gateway host. Another challenge is
the communication between the agents and the
EIBServer, which is handled by the ECM on the
agent’s side. The server side is more complex to
implement, as it is necessary to allow a single
packet from the fieldbus to be forwarded to more
than one agent and cause an asynchronous no-
tification there. The information of the mapping
between a single EIB device and the set of agents
has to be stored at the EIBServer and is imple-
mented as a database.

Figure 4 shows the whole system architecture
with the EIBServer divided into the two modules,
called JiniDatabase and EIBController.

-

ElBServer

JiniDataB

Lookup Service

EIBAgent

ElIBController

Service User

Fig. 4. System Architecture Overview

The connection between the JiniDatabase and
agents is shown as a lightning, that represents
the asynchronous notification by remote events.
The dashed lines represent Jini communication
with the lookup service and solid lines show reg-
ular function calls over the network (via RMI or
sockets). This diagram presents an overview of the
design and highlights the position of agents in the
whole system.

The JiniDatabase has been introduced to insert
an additional level of indirection between agents
and fieldbus devices, latter being represented by
their group addresses. An agent is given a unique
identifier, which is used to index a database, where
all corresponding group addresses are stored. This

60¢

Main Menu



database is used for input from the fieldbus as
well as output to it. Different connections for both
data-flow directions can be established.

The concept of introducing an additional layer
to connect agents and their managed devices has
two advantages compared to a model, where every
agent stores its own group addresses. First, a
performance advantage is gained, when a proxy
object has to manage a big set of devices. Instead
of transmitting all group addresses from agents
to the database for every access, only a single
identifier must be sent. Second, the database al-
lows tools to change the connection between de-
vices and agents without the need of informing or
restarting all proxy objects on the network. It is
possible to reconfigure or add/delete new devices
with their addresses remotely, without interfer-
ing with running agents. Additionally, the Jini
Database provides a convenient way of remember-
ing, which agents need to be informed, when a bus
telegram is received by the EIBController. With-
out the database, the connection between group
addresses and agents, that need to be informed
about state changes, would have to be managed
somehow by the EIBController itself. This could
be done by hard-coding links or reading configu-
ration files — both variants, which cannot keep up
in flexibility with a database solution.

Our test environment consists of various EIB
devices (binary inputs/outputs, dimmer outputs,
switches equipped with LC displays), light bulbs
and regular switches. Since no Jini-enabled physi-
cal devices, which could be used to test the shown
software solution, were at our disposal, it was
necessary to write a simulation environment, that
implements some functionality offered by such de-
vices. Hence, a graphical interface was designed,
which allows access to a number of virtual devices,
that provide some Jini functionality.

The machine, that is hosting the shared JVM
and providing the connection to the EIB via a
serial port, is a standard desktop PC (Pentium
11-450, 256 MB RAM). The EIBController needs
a Microsoft Java virtual machine, so MS SDK 3.2
is used together with the standard Java Develop-
ment Kit (JDK) 1.2 by Sun, that is utilized to
compile and run all other classes. The JVM used
has a common garbage collector working in the so-
called stop-the-world mode. That means, that the
collector is only called, when the available memory
is exhausted and an allocation fails. Notice, that
it is no problem in our application area (i.e., since
the execution of the application is suspended for
a couple of seconds, a command forwarded to the
EIB could last longer), but this could be disas-
trous for real-time systems, which have to meet
hard deadlines.

The whole project (i.e., design and implementa-
tion) was done in approximately 4 months. To
extend the existing software to a real EIB installa-
tion should not be a problem, since the additional
programming effort to be done is to integrate new
agents into our well defined class hierarchy.

5. CONCLUSION AND FUTURE WORK

This paper described the implementation of a
home automation system using the EIB fieldbus
as a fundament for controlling actuators as well as
sensors and extending its functionality by means
of a middleware layer.

The presented system itself is designed for larger
installations, where a dedicated personal com-
puter is used to realize the additional tasks and
serves as a Jini platform. But it might be too
expensive to purchase an extra PC for every
simple EIB facility in private homes. Here, our
work offers a starting-point for further research.
It might be desirable to implement an embedded
Jini Controller, that allows to keep the needed Jini
functionality at every device, simply by having
every fieldbus gadget equipped with a JVM, that
hosts the Jini classes itself.

In comparison to the proxy solution, where the
fieldbus is simply accessed by a network driver and
every device needs a certain representative, called
agent, that is distributed in a separate network
(local or even the Internet), the implementation of
a Jini Controller changes the fieldbus installation
itself. The agents are inherently distributed, by
having exactly one running at each device. It may
still be possible to combine certain gadgets to
groups and having them controlled by a master
fieldbus device, but the general idea is to have
each device represent itself as a Jini service. In-
stead of having a fieldbus and a local network (e.g.
Ethernet), that run different protocols, both net-
works can be integrated into a single installation.

REFERENCES

Edwards, K. (1999). Core Jini. Prentice Hall.

EIBA (2000). European installation bus system
introduction. http://www.eiba.com.

Kastner, W. and C. Kriigel (2000). Eib and
Jini — from concept to implemenation. FIB-
Proceedings 3, pp. 41-55.

Kastner, W., C. Kriigel and H. Reiter (1999).
Jini: ein guter Geist flir die Gebdude-
systemtechnik. Proceedings JIT’99 pp. 213—
223.

Sun (2000). Jini: Java intelligent network inter-
face. hitp://www.sun.com/jini.

Main Menu



	rod: 
	home: 
	pg1: 604
	pg2: 605
	pg3: 606
	pg4: 607
	pg5: 608
	pg6: 609


