BareBox: Efficient Malware Analysis on Bare-Metal

Dhilung Kirat
University of California, Santa
) Barbara
dhilung@cs.ucsb.edu

ABSTRACT

Present-day malware analysis techniques use both virtual-
ized and emulated environments to analyze malware. The
reason is that such environments provide isolation and sys-
tem restoring capabilities, which facilitate automated anal-
ysis of malware samples. However, there exists a class of
malware, called VM-aware malware, which is capable of de-
tecting such environments and then hide its malicious behav-
ior to foil the analysis. Because of the artifacts introduced
by virtualization or emulation layers, it has always been and
will always be possible for malware to detect virtual envi-
ronments.

The definitive way to observe the actual behavior of VM-
aware malware is to execute them in a system running on
real hardware, which is called a “bare-metal” system. How-
ever, after each analysis, the system must be restored back
to the previous clean state. This is because running a mal-
ware program can leave the system in an instable/insecure
state and/or interfere with the results of a subsequent analy-
sis run. Most of the available state-of-the-art system restore
solutions are based on disk restoring and require a system
reboot. This results in a significant downtime between each
analysis. Because of this limitation, efficient automation of
malware analysis in bare-metal systems has been a challenge.

This paper presents the design, implementation, and eval-
uation of a malware analysis framework for bare-metal sys-
tems that is based on a fast and rebootless system restore
technique. Live system restore is accomplished by restoring
the entire physical memory of the analysis operating sys-
tem from another, small operating system that runs outside
of the target OS. By using this technique, we were able to
perform a rebootless restore of a live Windows system, run-
ning on commodity hardware, within four seconds. We also
analyzed 42 malware samples from seven different malware
families, that are known to be “silent” in a virtualized or
emulated environments, and all of them showed their true
malicious behavior within our bare-metal analysis environ-
ment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA

Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

Giovanni Vigna
University of California, Santa
. Barbara
vigna@cs.ucsb.edu

Christopher Kruegel
University of California, Santa
. _Barbara
chris@cs.ucsb.edu

Keywords: bare metal, dynamic malware analysis, system
restore, VM-aware

1. INTRODUCTION

The use of virtualized environments is ubiquitous in mal-
ware analysis. The ability to isolate and quickly restore the
system to a known configuration after an analysis run are
two key features of virtualized environments that facilitate
malware analysis. Furthermore, during the first quarter of
2011 alone, McAfee Labs have identified more than six mil-
lion unique malware samples [1]. This ever-increasing flood
of new malware demands high performance analysis frame-
works that can inspect as many malware samples as possible
within a given period of time. Virtualization-based solu-
tions have been an obvious choice. Unfortunately, malware
authors have developed a new class of malware, called VM-
aware malware, which can detect virtualized or emulated
environments and subsequently change its behavior to foil
the analysis.

The environment detection techniques used by virtual ma-
chine (VM) and emulation-aware malware are well-known
and well-described in the literature [2,3]. These techniques
exploit some of the software or hardware artifacts intro-
duced by the virtualization or emulation layer between the
running operating system and the hardware. For example,
some of the detection techniques identify in-guest, system-
specific configurations or specific I/O ports, while others
rely on inaccurate system emulation or sophisticated time-
based detection attacks [2,4]. For instance, a system running
inside a VMware guest OS can simply inspect the names
of the available virtual devices, read the magic I/O port
(0x5658, ’VX’), or simply read the value of LDTR or IDTR
registers (using unprivileged SIDT or SLDT instructions),
which will be different from the known values found on a
bare-metal system [5]. All of these detection techniques can
be executed in usermode.

More transparent, hardware-assisted, virtualization-based
malware analyzers, such as Ether [6] and Azure [7] have been
proposed. Although these systems reside outside of the guest
OS, they share the underlying hardware CPU with the vir-
tualized guest OSes. As a result, all privileged instructions
must be properly intercepted and virtualized by the virtual
machine monitor (VMMSs). This consumes more CPU cycles
per each instruction, allowing the detection of the analysis
system. For example, certain detection techniques can mea-
sure the difference of execution times of privileged instruc-
tions between real and virtualized machines [3,4] or the ratio
of the execution times between privileged and unprivileged

instructions in a single virtualized machine [2]. It was pro-
posed that timing attacks can be thwarted by intercepting
timing instructions and providing disguised timing informa-
tion. However, Garfinkel et al. [8] have argued that this is
not always possible, and indeed nEther [4] has demonstrated
in-guest detection of the Ether platform using local timing
attack.

Another approach to transparent malware analysis is based
on the whole-system emulators, such as QEMU [9]. In the-
ory, one should be able to correct all CPU emulation bugs
in the emulators to avoid detection based on inaccurate sys-
tem emulation. For instance, Anubis [10], which is based
on an instrumented QEMU, randomizes hardware IDs and
keeps patching known CPU emulation bugs. However, it is
always possible that new bugs will be found, resulting in an
arms race. In fact, Paleari et al. [11] have demonstrated an
automated technique to produce thousands of such attacks
to detect CPU emulation inconsistencies.

There has been a considerable amount of research focused
on the detection of environment-sensitive malware by iden-
tifying differences in their execution behavior within a virtu-
alized system and a reference system [12-14]. The reference
system is ideally an OS running on real hardware, inside
which VM-aware malware samples show their true malicious
behavior. However, all previous systems have used either
virtualized or emulated systems as the reference systems to
evaluate their techniques. A sophisticated malware can de-
tect all such incomplete realizations of the reference systems
and hide its malicious behavior, showing no difference in
their execution behavior [12].

The definitive way to observe the actual behavior of any
unknown malware is to execute the sample in a real-hardware-
based system, also called a bare-metal system. This ap-
proach entirely eliminates the possibility of modified behav-
ior based on the detection of a virtual environment. How-
ever, this approach poses several practical challenges. One of
the critical challenges is the ability to efficiently restore the
analysis environment into the initial clean state after each
malware infection. Although there exist both hardware and
software-based solutions that restore the hard disk state,
these solutions require a system reboot [15,16]. System re-
boots are inherently slow as they are heavily I/O bound.
Starting from the initial execution of the Power-On Self-
Test (POST), several devices need to be initialized by the
BIOS, and the corresponding drivers initialized by the op-
erating system. Also, other OS components, including the
malware analysis parts, have to be reinitialized after every
reboot. In our experience, a typical system on a commod-
ity hardware takes more than 15 seconds to reboot. We
believe that the downtime required for a reboot is a major
impediment towards the deployment of automated malware
analysis frameworks on bare-metal.

In this paper, we propose a bare-metal analysis frame-
work based on a novel technique that allows reboot-less sys-
tem restoring. This framework, called BareBox, executes
and monitors malware run in a native environment. After
an analysis run has been completed, the running OS is re-
stored back to the previously-saved clean state on-the-fly,
within a few seconds. This restoration process recovers not
only the underlying disk state but also the volatile state
of the entire operating system (running processes, memory
cache, filesystem cache, etc). Our restoration system con-
sists of a overlay-based volatile mirror disk, a symmetric

physical memory partition, and a small custom-written op-
erating system, which we call Meta-OS. Meta-OS restores
the entire physical memory of the running operating system
once a malware analysis run completes. Because of the circu-
lar dependencies between the physical memory and the CPU
context, it is practically impossible to perform a complete
OS restore from within the OS that is being restored. To re-
solve this problem, Meta-OS provides out-of-OS execution
control. The operation of other devices and peripherals also
closely depend upon the state of the main physical memory.
Careful handling of the device states is required to safely
restore the state of the OS.

As the majority of malware targets Windows systems, we
have chosen an x86-based Windows XP system as the target
for implementing our prototype. However, the concept can
be easily extended to other operating systems.

This work makes following main contributions:

e BareBox can efficiently profile the true behavior of
malware by actually executing it in a native hardware
environment.

e BareBox can restore a running operating system on
commodity hardware back to its previously-saved state
faster than any existing solution (within four seconds
on average). The reason is that no reboot is required.

e Restoring the volatile state of the operating system
(running programs, memory cache, filesystem cache,
etc) makes it possible to quickly reproduce identical
system states for repeated security experiments in a
bare-metal environment. This is trivial for a virtual-
ized system, but required the development of a small,
custom OS to perform this on bare metal.

2. GOALS AND CHALLENGES

In this section, we describe the main goals and challenges
of the proposed system.

2.1 Goals

No virtualization.

Our primary goal is to develop a bare-metal framework
for analyzing malware that does not rely on virtualization
or emulation techniques, such that all of the VM detection
techniques used by malware are rendered ineffective. This
excludes the possibility of utilizing hardware assisted virtu-
alization such as the Intel VT and AMD-V technologies.

Efficient environment restore.

The environment has to be restored after each malware
analysis run. Speed and efficiency of the restoration tech-
nique largely affects the effectiveness and throughput of the
entire analysis framework. We want to restore the environ-
ment as fast as possible to the point where the next analysis
can be initiated.

Malware profiling.

The system should be able to monitor a malware execu-
tion in the bare-metal environment. In particular, moni-
toring should include the interactions between the malware
program and the operating system.

2.2 Challenges

In this section we describe some of the major challenges
when trying to analyze malware on a bare-metal system.

Isolation.

Although the whole purpose of the bare-metal analysis
system is to create an environment that closely resembles
a “real” system, there are unavoidable risks when execut-
ing unknown malicious code on real hardware. With direct
access, there is the possibility for serious system-level cor-
ruption, for instance, by malicious updates to the BIOS.
Complete isolation of BIOS and peripheral devices, such as
the hard disk, is not as trivial as it is in a virtualized system.

Stealthiness.

Bare-metal based analysis systems are definitely stealth-
ier than any VM /emulation-based analysis systems with re-
spect to VM-aware malware. However, the analysis com-
ponent must reside inside or next to the operating system
running on bare metal to extract analysis information. The-
oretically, complete transparent analysis is impossible if the
malware runs at the same privilege level as the analyzer [6].
One practical approach is to be undetectable from user-mode
malware by implementing stealth rootkit techniques or by
employing security by obscurity (for instance, randomizing
the signature and/or the location of the analysis compo-
nents). Another approach can be a black box approach where
a malware sample is executed on bare metal without the
presence of any in-guest analysis component. In this case,
the analysis focuses on inspecting network traffic from out-
side and later checks for changes in the system state and
configuration. Although this approach is stealthy, a lot of
the contextual and dynamic information about the behavior
of a malware sample is lost.

System Restore.

Without virtualization, options available for fast and effi-
cient system restore solutions are limited. Most of the avail-
able solutions only restore the operating system’s persistent
state by restoring the hard disk, which then requires a sys-
tem reboot to complete the restoration process. System re-
boot is heavily I/O bound, which causes long downtimes
between subsequent analysis runs. Restoration of BIOS and
other device firmwares are yet another challenge.

3. SYSTEM OVERVIEW
3.1 Threat Model

Without any in-guest presence, it is very difficult to per-
form detailed dynamic malware analysis in a non-virtualized,
bare-metal environment (unless some specialized external
hardware instrumentation is devised to directly monitor the
memory and CPU). As our goal is to analyze malware in
a bare-metal system on commodity hardware, we consider
this inevitable trade-off of in-guest-presence as acceptable.

Malware running at ring0 can always detect the presence
of BareBox analysis component using a memory scan. By
forcefully mapping the reserved extended area of the physi-
cal memory, such malware can even corrupt the Meta-Os or
the saved snapshot. However, mapping of reserved physical
memory area is unusual and can be considered suspicious.
To this end, the BareBox framework focuses only on the

analysis of user-mode malware by disabling new kernel mod-
ule loading, and preventing usermode access to kernel mem-
ory. The framework hides its presence from the user-mode
malware using rootkit-like techniques. As effective restric-
tions for loading arbitrary kernel modules became operative
in recent operating systems, such as Windows 7, an over-
whelming portion of the present-day malware is user mode
malware.

Attacks using return-oriented techniques [17] or kernel-
exploits can potentially bypass the restrictions. In such
cases, the most effective recovery would be an off-line disk-
restore based recovery. As of now, an internal timeout for
each analysis run is enforced, whose expiration forces a trap
into the Meta-OS to perform a physical memory clean up.

3.2 General approach

Our approach to quick system restore is based on the sym-
metric partition of mutable resources such as disk and mem-
ory. In this scheme, one of the partitions is used to preserve
a snapshot of the system’s state. A snapshot-save operation
creates a restorable state of the running operating system.
This state can be restored back to a previous snapshot by a
snapshot-restore operation. The target OS is installed on the
main disk, and a disk identical to the main disk is attached
to operate as mirror. Access to the disk is controlled by a
software-based overlay mechanism that selectively redirects
sector read and write operations to either the main disk or
the mirror disk.

Target OS

User mode

Kemel mode

“’”7

Meta-OS

Hardware

Figure 1: Architecture Overview

The physical memory is partitioned in such a way that one
of the partitions can be used as a snapshot area. The other
partition stores the target OS, where the actual malware
is executed. During a snapshot-save operation, the entire
physical memory corresponding to the target OS is copied
over to the snapshot area. Live state of the running oper-
ating system is restored by restoring the physical memory
of the operating system from the previously-saved snapshot.
With this approach, only one snapshot point can be saved at
a time, but the system can be restored back to this snapshot
as many times as needed.

Complete restore of the running operating system involves
the overwriting of critical OS structures residing in physical
memory (e.g., the page table, interrupt handlers, etc.) and
the restoring of the CPU context, including system-critical
registers (e.g., IDTR, GDTR and other control registers).
These registers are highly coupled with the content of the
physical memory. We explain in detail in Section 4 why
this restoration process can only be done from an out-of-
OS execution. We implemented a small operating system,
called Meta-OS, that resides outside the physical memory of
the target operating system. Meta-OS creates the physical
memory snapshot of the target OS and later restores it.

4. IMPLEMENTATION DETAILS
4.1 Disk Restore

A disk restore simply requires canceling all changes made
to the disk by write operations. When we cancel only those
changes that are made after a certain point in time, called
the snapshot point, we effectively restore the state of the
disk to that particular snapshot point. We achieve this by
proper redirections of read and write operations to the main
and the mirror disks. A snapshot-save operation simply im-
plies that all further write operations to the main disk are
redirected to the mirror disk. With this redirection in place,
we effectively freeze the contents of the main disk. However,
all read operations are still forwarded to the main disk, ex-
cept those read operations to particular sectors that were
previously redirected and written to the mirror disk. Such
reads to “dirty sectors” are served from the mirror disk to
reflect the changes made to the main disk after a snapshot-
save operation.

We implemented two methods for the storage of the mirror
disk; a RAM disk and a physical hard disk.

RAM disk.

In this technique, the mirror disk is implemented as a
RAM disk so that no external hardware is required. The
maximum amount of changes to the main disk is limited by
the size of the RAM disk, which in turn, depends on the
size of the available system memory. Although not suitable
for lengthy analysis sessions that generate large amounts
of disk write operations, this technique is very effective for
analyzing malware that is executed for short periods of time.

Hard disk.

For this implementation, two identical disks are required
to be installed in the machine, similar to a RAID1 configu-
ration. One disk contains the OS, while the other disk (the
mirror disk) is used as a temporary storage. As the disks are
identical, they can have a sector-level one-to-one mapping,
allowing us to redirect any number of write operations from
the main disk to the mirror disk.

An overlay map for the book-keeping of the disk write
operations is required to selectively redirect read operations
for dirty sectors on the main disk to the mirror disk. This
overlay map needs to be in the memory for efficient disk
1/0. However, the size of the map gets quite large even if
we use a single bit per sector mapping (e.g., a 256 GB drive
with 512-byte sector size, requires 64 MB overlay map). To
reduce the size of the map, we aggregate consecutive sectors
into chunks. The granularity of the dirty-sector-write is a
chunk, instead of individual sectors. We found that the av-
erage number of sectors accessed at once during a normal
usage is 80 sectors or 40 KB. We chose a chunk size of 32KB
for efficient bit-shift calculations of chunk locations. For a
256 GB drive with a 32KB chunk size, our mechanism only
requires 1MB for the overlay map.

To keep the consistency of the underlying filesystem, the
OS is forced to flush its file-system-cache before taking a
snapshot. We perform this by sending appropriate device
control codes to all logical volume devices. Disk operation
redirection is implemented by intercepting the low-level disk
driver major functions. Every access to the disk from higher-
level drivers, such as the file system driver, volume and parti-
tion manager, page-fault memory manager, etc., are directed

through this disk driver.

4.2 Memory Restore

The disk restore component can restore the disk image
on-the-fly by simply resetting the overlay map. Unfortu-
nately, this is not enough. The modified state of the disk
is still cached within several data structures of the operat-
ing system in memory, file system structures being the most
prominent. Also, there can be several open file handles or
memory-mapped files related to new files created after a
snapshot point. Therefore, an on-the-fly restore of the un-
derlying disk will induce serious inconsistencies between the
in-memory filesystem structure and the actual in-disk struc-
tures, resulting in data corruption. This means that one
cannot simply restore the disk on-the-fly. Instead, a system
reboot is required for a clean restore. As a result, volatile
state of the running processes is lost after the reboot. How-
ever, our approach to physical memory restoration makes
the rebootless restore of a bare-metal system possible.

4.2.1 Physical memory partitions

The available physical memory is partitioned into three
parts. The operating system is loaded into the first part,
which starts from the absolute hardware address zero. The
second part of the physical memory is used to take a snap-
shot of the first part. Finally, the small operating system
Meta-OS resides in the third part of the physical memory.
We implemented this component as a kernel module that is

0GB Physical Memory

loaded into the target OS.
4GB§
Tgée‘ I Targe[os N(I)es'a . '

Figure 2: Physical memory allocation

Top of the Available

Snapshot Memory

In the x86 architecture, the usable physical memory ad-
dress space is not entirely contiguous. Two types of devices
are mapped into the processor address space - actual physi-
cal memory devices (RAM) and other memory-mapped I/O
(MMIO) devices such as AGP and PCI cards. For 32-bit
compatibility, the BIOS has to map such devices within the
4GB addressable range of the processor address space. In
a machine with 4GB of RAM memory, the MMIO device
mapping creates an unusable region of the physical memory
usually known as the “PCI hole”. Meta-OS needs to resolve
such resource conflicts by carefully relocating and resizing
the memory partition. This leads to effectively four types
of memory sections: The target OS memory, the Meta-OS
memory, the snapshot memory, and the hardware-reserved
memory section (shown in Figure 2).

4.2.2 Need of out-of-OS execution control

When the operating system is fully initialized, the CPU is
in protected mode with paging enabled. Memory restoration
needs to be performed when the CPU is in this state. Before
we explain the details about the memory restore mechanism,
we briefly review the basics of the protected mode CPU
execution.

When the processor is in protected mode with paging en-
abled, every single memory reference made by the executing
instruction is treated as a virtual address, which must be

translated into a physical address using the Global Descrip-
tor Table (GDT) and the page table. These tables reside in
memory, and the processor knows their locations from two
registers, the GDTR and CR3, respectively. For example, if
the memory reference is made for the code segment to exe-
cute an instruction, the CPU needs to first find the offset of
that segment. Unlike in real mode, during protected mode
execution, finding the segment offset is a two-step process.
The CS segment register only provides an index into the
GDT table, and the actual segment offset is retrieved from
the corresponding entry in the GDT. Once the effective vir-
tual address is computed by adding the segment offset, it
is translated into the physical address using the page table.
The appropriate page table is retrieved from the page direc-
tory, whose physical address location is stored in the CR3
register. Note that the location of the GDT stored in the
GDTR resister is actually a virtual address, which must first
be translated into a physical address to access contents of
the GDT table for the initial segment offset calculation.

To copy and restore the physical memory, it must be first
mapped into virtual memory using page tables, as this is
the only way of accessing memory while the CPU is in pro-
tected mode. In the x86 architecture, restoring the physical
memory becomes challenging because it involves overwrit-
ing both the GDT table and the page table, which, in turn,
are used to translate virtual addresses into physical memory
locations. This includes the current location (virtual ad-
dress) of the code (EIP) that performs the memory restor-
ing. That is, the memory restore code would change memory
mappings that interfere with its own execution. Because of
these circular dependencies, it is impossible to restore physi-
cal memory of a live operating system from within the same
operating system (with arbitrary physical memory content).
For this reason, we have implemented a small operating sys-
tem, called Meta-OS, as a memory restore component that
resides outside of the physical memory of the target OS.

4.2.3 Meta-OS

Meta-OS is loaded into the extended area of the physical
memory. This area of the memory is marked as unavailable
(reserved) to the target OS during the boot time. Thus, the
Meta-OS loader has to directly modify the page tables to
forcefully map this area of the physical memory. A specific
software interrupt or a device I/O control request triggers
the snapshot-save and snapshot-restore operations. These
operations involve operating system context switches from
the target OS to the Meta-OS and back to the target OS. In-
terrupts are disabled during this process, and non-maskable-
interrupts (NMI) are simply passed while the CPU is execut-
ing in the context of the Meta-OS. During any other time,
Meta-OS remains dormant.

4.2.4 OS context switch

An OS context switch involves switching the Segment De-
scriptor Table (SDT), the Interrupt Descriptor Table (IDT),
the page table, and other CPU register contexts. The final
execution control transfer is implemented using the x86 in-
terrupt handling mechanism. As both operating systems
are running in the same privilege level (ring0) with separate
Interrupt Dispatch Tables (IDTs), once the execution con-
trol is transfer from one OS to the another, the previous OS
will have no way to force the control transfer back to itself.
Thus, all OS context switches are voluntary.

SDT and IDT pointers are stored in the GDTR and IDTR
registers, which can be modified simply using LGDT (Load
GDT) and LIDT (Load IDT) instructions, respectively. A
page table switch is achieved by modifying the CR3 control
register, which holds the physical address of the page direc-
tory [18]. The page table switch operation forces the CPU
to flush the TLB and the instruction pipeline cache. At
this point, the new page table must contain a correct map-
ping for the virtual addresses of at least the GDT and the
instruction pointer (EIP). A similar situation occurs when
switching the CPU from physical to virtual address mode
and during process context switches. Physical to virtual
address mode-switch is typically handled by a one-to-one
mapping between physical to virtual addresses. In case of
the process context switches, OS maintains an identical ker-
nel page map for each process. We follow the strategy of
process context switch and copy the current page table to
the Meta-OS page table before switching to it.

Switching back from Meta-OS is trivial after a snapshot-
save operation because both page tables are identical. How-
ever, this is not the case while switching back after a snapshot-
restore operation. Since page tables are not identical, simply
switching back to previous table will cause the CPU to ref-
erence an invalid GDT structure, resulting in a hard reset
of the CPU. Meta-OS handles this situation using a combi-
nation of the following techniques.

GDT relocation.

Before switching to the target OS page table from the
Meta-OS page table (after a snapshot-restore operation),
we have to make sure that the page table transition will be
successful. Since the page table of the target OS is the re-
stored version of the previous snapshot, we are not allowed
to modify them in a way such that current GDTR will even-
tually point to a valid structure. Instead, one has to relo-
cate the current GDT of Meta-OS to the previously-saved
GDTR address of the target OS. We do this by first mapping
the physical address of the Meta-OS GDT to the previously-
saved target OS GDTR address (a virtual address), and then
switching the GDTR to that address. By doing this, we
guarantee that even after switching to a previously-saved
page table with arbitrary mappings, the GDTR will still
point to the proper descriptor table.

Segmented Address Space.

Although, GDT relocation technique maintains the proper
descriptor table after the page table switch, the instruction
pointer will still hold the address of the Meta-OS address
space. In this case, the next instruction execution depends
on where the restored page table of the target OS map this
address to. Since there is no atomic instruction to simulta-
neously update both CR3 and EIP registers, this transition
has to be handled incrementally. Note that the restored de-
scriptor table and the page tables are in fact the same tables
that were copied to Meta-OS page tables during the previous
snapshot-save operation. However, the Meta-OS code seg-
ment might be mapped to different virtual address at each
OS context switch. Meta-OS uses segmented memory ad-
dress model for its code segment, such that the instruction
pointer becomes an offset address, rather than the actual
virtual address. By this approach, even after switching to
an old page table having different base address for Meta-OS,
the instruction pointer (EIP) address is still translated into

correct Meta-OS instructions. These instructions complete
the proper execution control transfer to the restored target
OS.

Since we disable interrupts during snapshot operations,
we cannot use the interrupt-based DMA controller for copy-
ing physical memory. Instead, we achieve fast memory copy
by enabling the cache attributes in the hardware page ta-
bles that are used to map the physical memory into a lin-
ear virtual address. Even if the TLB miss rate is high as
Meta-OS swipes across the address space, this type of cache-
enabled page mapping helps to fully utilize the L1 and L2
CPU caches during memory copy operations. In our case,
this technique improved the performance by more than ten
times. We achieve additional performance improvement by
deploying the pre-unrolled execution of the memory copy
instructions [19]. The main idea of this technique is trying
to fill the CPU instruction pipeline with multiple memory
move instructions.

4.3 Device Restore

Beside disk and memory restore, a complete restore of a
live running system requires that all its devices are restored
to the previous snapshot state as well. This is also necessary
because the state of some devices depends on the contents of
the physical memory. This requirement is difficult to satisfy,
as the exact definition of “device state” is device-specific. To
deal with this problem, we manipulated the device power
state, which in turn forces a reset to the internal device state.
A device is set to Sleep Power State (or Off Power State if
the device does not support the sleep state) before snapshot-
save operation is started. Its power state is restored back
after the snapshot process completes. Similar power state
manipulations are performed before and after the snapshot-
restore operation. This way, instead of saving and restoring
the internal states of the devices, which is in fact challenging,
we forcefully reset/restart those devices.

Manipulation of the device power state is a time-consuming
process, while one of our goals is to achieve the fastest pos-
sible system restore. By assuming that certain devices do
not change their state during the analysis, we could exclude
such devices from power state manipulation and consider-
ably speed up the restore process. However, this assumption
does not hold for all PCI devices, such as network adapters.
In our selective device restore experiments, we could safely
exclude several PCI devices, such as the hard disk controller,
PCI bridge, memory controller, SMBus controller, graphics
controller etc. Although we skipped the power state ma-
nipulation of the graphics controller, each snapshot-restore
operation forces a video memory refresh operation, if the
video-memory is mapped to the physical memory. However,
to this end, we do not restore the internal memory of the
GPU.

4.4 Execution Monitoring

We also implemented a prototype malware monitoring
component. This component hooks the System Service De-
scriptor Table (SSDT) to record the interactions of malware
with the operating system by tracing system calls. Sys-
tem call arguments of important calls are automatically ex-
tracted along with their semantic information.

We disabled new driver loading during the analysis to pro-
tect the integrity of the monitoring component, even though
driver load could be reverted by the physical memory re-

store. As malware can potentially scan the physical memory
using \device\PhysicalMemory or using the undocumented
API NtSystemDebugControl to detect kernel level hooks, we
disabled both scanning techniques by instrumenting related
system calls.

The monitoring component of BareBox receives new mal-
ware samples from an external controller through the net-
work. The recorded analysis data is streamed back to the
controller, where it is recorded in a database.

5. EVALUATION

In this section, we present the evaluation of our system.
All experiments were conducted on a freshly-installed Win-
dows XP (Service Pack 3), running on bare-metal commod-
ity hardware (3.60GHz Intel Pentium 4 processor with 1GB
Memory). Two 256GB hard drives were installed as a main
and a mirror disk.

5.1 Restore Verification

We first verify that the disk operation redirections con-
sistently reflect the possible changes made to the system.
This is important, as we need to allow the malware to ex-
ecute properly during analysis. In the second part of the
experiment, we verified that all such changes are success-
fully restored by our system.

5.1.1 Disk restore verification

To verify disk restoration, we calculated the MD5 hash
of all files in the Windows\System32 directory in the clean
state of the system. A snapshot of the system was taken us-
ing the snapshot-save operation. After that, we made a copy
of the Windows\System32 directory and again calculated
the MD5 hash of all files. We compared the file hashes and
found them to be identical. Therefore, we verified that the
redirected read/write operations work properly. To verify
that new/changed files can be properly mapped as memory
mapped files, we executed some of the applications from the
copied version of the Windows\ System32 directory. The ap-
plications were executed without any issue. Note that, while
executing an .ezxe file, the Windows subsystem first maps the
executable as a memory mapped file before executing it.

In the next step, we resized the existing partition of the
disk and created a new partition to effectively modify the
Master Boot Record (MBR) of the disk. We also deleted
all existing system files from the system root C:\directory
(except locked paging and hibernation files). This action
will cause the system to fail to boot after a restart.

We executed the snapshot-restore operation, and the disk
was restored to the previous clean state with a single par-
tition that contains all the deleted system files intact but
without the copy of the Windows\System32 directory. To
ensure that the restore is permanent, we performed a cold
reboot of the system. The disk was verified to be in the
previous, clean state.

5.1.2 Volatile state restore verification

In this experiment, we wanted to verify that the volatile
state of the running system, including running processes,
open file handles, etc., are properly restored.

Before executing a snapshot-save operation, we started
multiple applications from the Windows\System32 direc-
tory and then saved the list of running process and loaded
drivers. After taking the snapshot we installed a DKOM-

based FU.rootkit malware driver. We logged off from the
current user session, effectively terminating all the running
applications, and logged in as a different user. We initiated
the snapshot-restore operation from that user session, and
within seconds, the system was restored back to the previous
user’s active session. All the running processes were intact
but without the rootkit driver loaded in the system.

5.2 Performance

We compared the performance of our system with different
system restore options available for bare-metal and virtual
machines systems. We did not test a hardware-based disk
restore option (such as Juzt-reboot [15]), but since all of
them require a system reboot, we simply measure the system
reboot time of the bare-metal system and use this as a lower
bound. To measure a fast reboot with commodity hardware,
we installed a Windows XP system on an Intel quad-core
CPU with 4GB RAM and a 48GB solid-state drive (SSD)
with average throughput of 450MB/s. We ignored the initial
BIOS initialization of the machine, as it is largely depended
on its hardware configuration (e.g., for the above mentioned
configuration, the BIOS initialization time was more than 7
seconds because of the custom configuration prompt of the
SSD drive). We only measured the time of the soft-reboot
of the operating system. That is, the time duration from
the operating system boot menu to a completely logged on
session. This will typically underestimate the actual time
that a system requires to perform a soft-boot.

By profiling the time required for different stages of Bare-
Box’ restore process, we found that a significant amount
of time was required for device power state manipulation.
Thus, we performed experiments by manipulating the power
state of only a subset of attached hardware devices. In par-
ticular, we performed three sets of experiments:

e All Devices: All devices that are suspended by the sys-
tem during a suspend-to-RAM operation are included.

e Minimum Devices: Only those devices that are re-
quired for the malware analysis framework were in-
cluded.

e Memory Only: No device related operations were per-
formed. The purpose of this experiment was to mea-
sure the memory copy performance because not all de-
vices supported this type of memory restore.

18 166
= Save Restore 15.7

10
84 88

8
58
6 5
.3 4.1
4 34
2 1.6 1kl I
. | -

BareBox BareBox BareBox Soft-boot (SSD Soft-boot VitualBox VMWare
(All Devices) (Minimum (MemoryOnly) ~ Drive) (Commodity) ~snapshot snapshot
Devices) restore restore

(sec)

Time required to save/restore

Figure 3: Evaluation of different system restore
techniques.

Figure 3 shows the times that it takes to save and re-
store snapshots for different configurations. This includes

BareBox, performing a soft-boot on bare metal, and virtual-
machine-based system restore solution. Looking at the re-
sults, we can see that the performance of BareBox is compa-
rable to fast, virtual-machine-based solutions. For example,
in the required “minimum device” configuration, BareBox is
as fast as VirtualBox. The difference, of course, is that Bare-
Box restores the system on bare metal. Alternative mecha-
nisms to restore the system on bare metal take significantly
longer (at least three to four times as long).

——Save (Memory Only)
Restore (Memory Only)

—Save (Minimum
Devices)
—+—Restore (Minimum

Devices) X
—Save (All Devices)

Restore (All Devices)

Time required to save/restore

512 1024 2048
Total Physical Memory (MB)

Figure 4: BareBox restore compared with different
device restore options.

We also measured the system restore performance of Bare-
Box with different physical memory sizes. As shown in the
Figure 4, with a minimum device configuration, the time re-
quired for a restore is about four seconds on average. This
is about three times faster than booting the system from an
SSD-based hard disk.

5.3 Dynamic Malware Analysis

A malware analysis system can be evaluated based on
three main factors - quality, efficiency, and stealthiness. Qual-
ity refers to the richness and completeness of the analysis
results produced. Efficiency measures the number of sam-
ples that can be processed per unit time. Stealthiness refers
to the undetectability of the presence of the analysis envi-
ronment.

Quality

Stealthiness Efficiency

Figure 5: Malware analysis framework evaluation

There is a constant tension between these factors, which
is represented as a triangular surface in Figure 5. That is,
while trying to achieve better results for one factor, the anal-
ysis technique has to make compromises in remain two other
factors. For example, an analysis system with an in-guest
agent tends to produce high quality analysis results but it is
less stealthy and prone to subversion. VMM and emulator-
based out-of-OS analysis systems are stealthier against in-
guest agent detection, but because of the semantic gap, some
level of introspection is required, using the domain knowl-
edge of the target OS [10,20]. This makes analysis less effi-
cient and limits the quality of the produced results. Qual-

ity and efficiency trade-offs between the fine-grained and
the coarse-grained analyses are well described in the litera-
ture. BareBox aims to achieve high efficiency while produc-
ing results of good quality, which, however, is against the
constraints discussed above. A particular focus is on being
stealthy when facing VM-aware malware.

5.3.1 Stealthiness

Dinaburg et al. [6] have proposed five theoretical require-
ments, for building dynamic, transparent malware analysis
system, with absolute stealthiness. By executing malware
on bare-metal, BareBox immediately satisfies three out of
five of these requirements, namely Identical Basic Instruc-
tion FEzecution Semantics, Transparent Exception Handling,
and Identical Measurement of Time. We maintain the re-
quirement of Higher Privilege by disabling the loading of
new kernel modules. As an in-guest analysis system, it is
hard to satisfy the requirement of No non-privileged side ef-
fects. We hide the presence of our analysis component from
user mode applications by instrumenting file and memory-
related system calls.

For the evaluation of the BareBox with VM /emulation-
aware malware, we collected 200 malware samples from the
Anubis [10] database that are known to detect virtualization
and emulation environments. To maintain the diversity of
the sample set, we included six samples per malware family
in our actual experiments. Seven different malware fami-
lies were included, as identified by several major anti-virus
vendors such as Kaspersky, McAfee, and ESET. For each
family, we tried to include different versions of the malware,
if available. We executed them inside a virtualized environ-
ment (VMware), an emulated environment (QEMU), and
in our bare-metal system and compared their system call
traces. The same system call monitoring component was
used for all analysis environments.

Malware execution is bound to be slower within virtual-
ized or emulated environment, which might result in smaller
number of observed system calls per unit time. However, we
assume that one minute, the execution time allowed per mal-
ware sample, is enough for the above-selected malware fami-
lies to show malicious behavior through network interaction
and/or new-process creation, regardless of the slowed exe-
cution. In fact, we executed some benign programs on these
analysis environments, and we observed almost exactly the
same number of network and process-creation related system
calls within the one minute of execution.

Table 1: Interactions with the Network
Malware Family BareBox VMware QEMU

Rebhip 346 10 55
Telock 205 107 34
Conficker 24 20 16
Zlob/Zeus 408 406 176
Sdbot 152 45 30
Agobot 50 48 3
Armadillo-4 172 82 58

We first wanted to see how much more network activity
can be observed in BareBox compared to virtual environ-
ments. There are no network-specific system calls for Win-
dows XP. Instead, the network communication is handled
by IOCTL calls to the network-endpoint-related file objects.

Thus, we monitored calls to these endpoints to assess the
network activity of our malware samples. The results in Ta-
ble 1 clearly show the increased number of network related
system calls in our BareBox environment. In addition, we
checked how many new processes were created by the mal-
ware samples, depending on their environment. As can be
seen in Table 2, BareBox was able to elicit more process-
creation activities across the board.

Table 2: Number of new process creation
Malware Family BareBox VMware QEMU

Rebhip 9 0 3
Telock 2 1 1
Conficker 0 0 0
Zlob/Zeus 10 10 4
Sdbot 4 1 1
Agobot 50 3 1
Armadillo-4 1 0 0

5.3.2 Efficiency

For a given hardware configuration, usually a program is
executed most efficiently when run on bare metal, which is
true for the execution of malware programs as well. In addi-
tion, while using available disk-restoration-based solutions,
the system has to not only reboot but it also requires to
load the analysis framework after each reboot. Our system
does not have this limitation as the restore operation also
restores the state of the analysis component that is ready to
analyze the next malware.

To compare the overall efficiency, we measured the overall
throughput of each analysis system. We allowed each sam-
ple to load and execute for an arbitrary time, 15 seconds,
and then the system was automatically restored back for
the next run. Virtualized and emulated environments were
restored using corresponding snapshot restore mechanisms.
To compare with the disk-restore based system, we used
the disk mirror component of the BareBox for preserving
the disk-state. The system was rebooted after each analysis
run to restored the system. We performed an automated
analysis of 100 samples in each system to assess the average

throughput.
3.74
35
: 269 257
25
2
15
1 085
o B
0

BarcBox Disk-restore VirtualBox QEMU
(Commodity)

Average number of samples
analyzed per minute

Figure 6: Malware analysis throughput

Figure 6 presents the average number of malware sam-
ples analyzed per minute. Compared to the disk-restore
based system on commodity hardware, BareBox improved
the throughput threefold. Slightly better performance of

the BareBox compared to the VirtualBox-based system can
be attributed to the expedited initialization of the network
device. We observed a slightly longer delay in network de-
vice initialization in case of VirtualBox, after a snapshot
restoration. Fully working network interface is essential to
initiate a next run of the malware analysis.

5.3.3 Quality

BareBox analysis is limited to system calls only. How-
ever, without executing direct or indirect system calls, it is
almost impossible to comprehend malicious activities. Since
malware is executed on bare-metal, we expect the behav-
ior observed by BareBox to be more close to the actual
behavior of the malware exhibited in the wild. Being an
in-guest analyzer, our monitoring component can access op-
erating system internals and potentially extract all semantic
information of the malware execution. For example, it can
initiate additional system calls in the context of executing
malware to extract more contextual information. BareBox
does not provide fine-grained analysis. Although, it is possi-
ble to implement capabilities like user-mode API monitoring
and debugger-like fine-grained analysis to improve the qual-
ity of the analysis, it compromises BareBox’s efficiency and
stealthiness.

6. LIMITATIONS

The efficiency of BareBox’s rebootless restore largely de-
pends on the actual hardware configuration of the system.
For instance, a system with many hardware devices will take
longer to restore because BareBox has to force a change in
the power state of all of these devices. Currently, Bare-
Box does not restore the entire internal state of attached
devices (such as base address registers (BARs)). Instead, it
assumes that they are not changed during the short anal-
ysis period. This assumption is reasonable, as such states
are rarely changed once adjusted by theOS during the ini-
tial boot process. For obvious reasons, the restore system
cannot restore the changes made to the external resources
such as network communication.

Chen et al. have developed a detailed taxonomy of eva-
sion techniques used by malware against dynamic analysis
systems [21]. Based on their taxonomy, although BareBox
is not detectable through Hardware, Application, and Be-
havior (timing) based evasion attacks, not all Environment-
based attacks are defeated. For example, attackers could
perform network resource fingerprinting using an external
agent (connecting to remote server to identify the host net-
work). Moreover, to prevent the detection of in-guest mem-
ory presence and to maintain privilege isolation from the ex-
ecuting malware, BareBox instruments related system calls
and disables loading of new kernel modules. Such restriction
itself, although not an unconditional indication of BareBox,
could be used as a non-privileged side effect for detection.
When automating dynamic malware analysis, even a fully
transparent analysis system typically requires some form of
in-guest agent to receive and initiate execution of a new mal-
ware sample. This problem can be mitigated by completely
relying on OS-provided RPC mechanisms or implementing a
self-destructing agent that removes itself from the system af-
ter launching the malware payload. BareBox currently does
not implement either of the mechanisms.

Our system must allocate a finite analysis time for each
inspection. Malware can potentially exploit this limitation

using a delayed infection technique. For example, during
the initial execution, a malware can choose to stay dormant
for long enough so that it passes the allocated, finite anal-
ysis time without revealing any malicious activities. Time-
triggered or condition-triggered infections (logic bombs) are
likely to bypass our dynamic analysis.

7. RELATED WORK

System restore.

AVMM [22] has implemented a physical memory parti-
tion technique to improve the efficiency of virtualized clients.
Some of the related work on fast reboot and restore are pri-
marily based on preserving system cache. Otherworld [23]
uses microreboot techniques to quickly recover applications
in case of a kernel crash. This is done by initiating another
kernel, called crash kernel, and restoring the state. Warm-
cache-reboot [24] leverages virtual machine monitor (VMM)
technology to preserve the page cache and to help restore the
operating system after a reboot. RootHammer [25] reuses
the previous VM image from memory, and Recovery Box [26]
uses non-volatile memory for fast system restore. However,
these systems are focused on fault tolerance and are not de-
signed for restoring the OS to some previous snapshot after a
number of modifications to the system’s volatile and persis-
tent states, such as hard disk contents. Also, most of these
quick restore solutions rely on VMM technology, which is
not compatible with our threat model.

Transparent analysis.

For more transparent analysis of malware, researchers have
implemented many out-of-OS analysis systems that elimi-
nate the in-guest presence of components. Some systems
are based on whole-system emulation (e.g., Anubis [10], Nor-
man Sandbox [27]), while other systems leverage hardware-
assisted virtualization technology to achieve transparency
(e.g., Ether [6], VMwatcher [20]). Although there is no in-
guest presence with these analysis system, nEther was able
detect Ether [4], while Paleari et al. were able to auto-
matically produce hundreds of detection codes for emulation
based systems [11].

Evasion detection.

Researchers have explored different techniques to detect
evasive malware behaviors. Lau and Svajcer have employed
a dynamic-static tracing system based on an instrumented
Bochs virtual machine to identify VM detection techniques
used inside packers [14]. Kang et al. [13] uses a trace match-
ing algorithm to locate the point of execution diversion be-
tween an emulated and real environment, and dynamically
patching the program to make it behave as observed in a ref-
erence system. Balzarotti et al. [12] proposed a system for
detection of split personality malware based on the deter-
ministic replay of system call traces generated in a reference
system. All of these evasion detection techniques require an
ideal reference system. BareBox can serve as such a refer-
ence system and, hence, complements previous work.

8. CONCLUSION

In this paper, we presented BareBox, a framework for dy-
namic malware analysis in a bare-metal environment. To fa-
cilitate efficient analysis, we introduce a novel technique for

reboot-less system restore. Since the system executes mal-
ware on real hardware, it is not vulnerable to any type of
VM/emulation-based detection attacks. We evaluated the
effectiveness of the system by successfully monitoring the
true malicious behavior of VM/emulation-aware malware
samples that did not show malicious behavior in emulated
or virtualized environments. After each such analysis, our
system was able to efficiently restore the bare-metal system
so that the next analysis could be initiated.

Acknowledgments

This work was supported by the ONR under grant
N000140911042, the ARO under grant W911NF-09-1-0553,
National Science Foundation (NSF) under grants CNS-0845559
and CNS-0905537, and Secure Business Austria.

9. REFERENCES
[1] M. Labs, “Mcafee threats report: First quarter 2011,”

McAfee, Tech. Rep., 2011. [Online]. Available:
https://secure.mcafee.com/us/resources/reports/rp-
quarterly-threat-q1-2011.pdf

[2] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting
system emulators.”

[3] P. Ferrie, “Attacks on virtual machine emulators,”
Symantec Corporation, Tech. Rep., 2007.

[4] G. Pék, B. Bencsath, and L. Buttydn, “nether:
in-guest detection of out-of-the-guest malware
analyzers,” in Proceedings of the Fourth European
Workshop on System Security, ser. EUROSEC ’11.
New York, NY, USA: ACM, 2011, pp. 3:1-3:6.

[5] J. Rutkowska, “Red pill... or how to detect vimm using
(almost) one cpu instruction,” 2004. [Online].
Available:
http://invisiblethings.org/papers/redpill.html

[6] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
malware analysis via hardware virtualization
extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security,
ser. CCS ’08. New York, NY, USA: ACM, 2008, pp.
51-62.

[7] P. Royal, “Alternative medicine: The malware
analyst’s blue pill,” Aug 2008.

[8] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin,
“Compatibility is Not Transparency: VMM Detection
Myths and Realities,” in Proceedings of the 11th
Workshop on Hot Topics in Operating Systems
(HotOS-XI), May 2007.

[9] “Qwmu open source processor emulator.” [Online].
Available: http://wiki.qgemu.org/

[10] “Anubis: Analyzing unknown binaries.” [Online].
Available: http://anubis.iseclab.org/

[11] R. Paleari, L. Martignoni, G. Fresi Roglia, and
D. Bruschi, “A fistful of red-pills: How to
automatically generate procedures to detect CPU
emulators,” in Proceedings of the ¢ USENIX
Workshop on Offensive Technologies (WOOT).
Montreal, Canada: ACM.

[12] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel,
E. Kirda, and G. Vigna, “Efficient Detection of Split
Personalities in Malware,” in Proceedings of the
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2010.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

M. G. Kang, H. Yin, S. Hanna, S. McCamant, and

D. Song, “Emulating emulation-resistant malware,”
EECS Department, University of California, Berkeley,
Tech. Rep., May 2009.

B. Lau and V. Svajcer, “Measuring virtual machine
detection in malware using dsd tracer,” Journal in
Computer Virology, vol. 6, pp. 181-195, 2010,
10.1007/s11416-008-0096-y.

“Juzt-reboot.” [Online]. Available:
http://www.juzt-reboot.com/

“Partimage.” [Online]. Available:
http://www.partimage.org/

R. Hund, T. Holz, and F. C. Freiling, “Return-oriented
rootkits: bypassing kernel code integrity protection
mechanisms,” in Proceedings of the 18th conference on
USENIX security symposium, ser. SSYM’09.

Berkeley, CA, USA: USENIX Association, 2009, pp.
383-398.

“Intel®64 and ia-32 architectures software developer’s
manual.” [Online]. Available:
http://www.intel.com/Assets/PDF /manual /325384.pdf
“Fast memory copy.” [Online]. Available:
http://now.cs.berkeley.edu/Td/bcopy.html

X. Jiang, X. Wang, and D. Xu, “Stealthy malware
detection and monitoring through vmm-based
“out-of-the-box” semantic view reconstruction,” ACM
Trans. Inf. Syst. Secur., vol. 13, pp. 12:1-12:28, March
2010.

X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and

J. Nazario, “Towards an Understanding of
Anti-Virtualization and Anti-Debugging Behavior in
Modern Malware,” in Proceedings of the 38th Annual
IEEE International Conference on Dependable
Systems and Networks (DSN ’08), Anchorage, Alaska,
USA, June 2008, pp. 177-186.

N. Xiong, Y. Zhou, H. Liu, and Y. Zhang, “Avmm:
Virtualize client with a bare-metal and asymmetric
partitioning approach,” Submitted, ICC 2011, Tech.
Rep., 2011.

A. Depoutovitch and M. Stumm, “Otherworld: giving
applications a chance to survive os kernel crashes,” in
EuroSys, 2010, pp. 181-194.

K. Kourai, “Cachemind: Fast performance recovery
using a virtual machine monitor,” in Dependable
Systems and Networks Workshops (DSN-W), 2010
International Conference on, 28 2010-july 1 2010, pp.
86-92.

——, “Fast and correct performance recovery of
operating systems using a virtual machine monitor,”
in Proceedings of the Tth ACM SIGPLAN/SIGOPS
international conference on Virtual execution
environments, ser. VEE "11. New York, NY, USA:
ACM, 2011, pp. 99-110.

M. Baker and M. Sullivan, “The recovery box: Using
fast recovery to provide high availability in the unix
environment,” in In Proceedings USENIX Summer
Conference, 1992, pp. 31-43.

“Norman sandbox analyzer.” [Online]. Available:
http://www.norman.com/products/sandbox_analyzer/en

