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ABSTRACT

Today’s mobile applications increasingly rely on communication
with a remote backend service to perform many critical functions,
including handling user-specific information. This implies that
some form of authentication should be used to associate a user
with their actions and data. Since schemes involving tedious
account creation procedures can represent “friction” for users,
many applications are moving toward alternative solutions, some
of which, while increasing usability, sacrifice security.

This paper focuses on a new trend of authentication schemes
based on what we call “device-public” information, which consists
of properties and data that any application running on a device can
obtain. While these schemes are convenient to users, since they
require little to no interaction, they are vulnerable by design, since
all the needed information to authenticate a user is available to any
app installed on the device. An attacker with a malicious app on
a user’s device could easily hijack the user’s account, steal private
information, send (and receive) messages on behalf of the user, or
steal valuable virtual goods.

To demonstrate how easily these vulnerabilities can be
weaponized, we developed a generic exploitation technique that first
mines all relevant data from a victim’s phone, and then transfers and
injects them into an attacker’s phone to fool apps into granting ac-
cess to the victim’s account. Moreover, we developed a dynamic anal-
ysis detection system to automatically highlight problematic apps.

Using our tool, we analyzed 1,000 popular applications and found
that 41 of them, including the popular messaging apps WhatsApp
and Viber, were vulnerable. Finally, our work proposes solutions
to this issue, based on modifications to the Android APIL
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1 INTRODUCTION

Mobile applications (“apps”) have evolved from being simple con-
veniences, into complex systems, aimed at powering the latest gen-
eration of Internet-connected, distributed, massively multi-user ser-
vices. This implies that these apps depend to some extent on backend
services to function. For example, many apps function as frontends
for existing online services, where their entire behavior is tightly
coupled to the remote service. To handle multiple users securely on
these backends, some sort of authentication needs to occur.

Traditionally, this procedure relies on a combination of “user-
private” credentials, such as username and password. However,
given the incredibly crowded market in which these apps compete
and the fickle nature of users, there is a significant pressure to
lower the “friction” new users encounter when using an app. For
this reason, applications are moving away from authentication
schemes based on user-private credentials, toward those schemes
that are more automatic. An existing solution that is often used to
accomplish this is OAuth, an authorization mechanism that can en-
able users to leverage accounts on identity services, such as Google
and Facebook, without creating new, ad-hoc, ones. Nonetheless,
developers constantly strive to create novel, custom authentication
mechanisms to increase the ease-of-use of their applications.

In this paper, we study and characterize a new broad class
of vulnerable authentication schemes, which fully rely on what
we call device-public information. With this term, we refer to all
information, properties, and data that can be accessed by any
application (with proper permissions, as explained in Section 3.2)
installed on the same device.

As an example, consider a messaging app that, after users identify
themselves, stores a token in the device’s external storage, which
any app can access. The app then sends this token to the app’s
backend server each time it is used, as a form of authentication.
This technique has the advantage that if the user uninstalls the app
and later wants to use it again, the token will persist on the external
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storage, and no re-authentication will be required. Unfortunately,
this versatility comes at a price: a malicious app running on the
same device can obtain and leak this token to a remote attacker, who
can now easily hijack the user’s account. Even if an app is leveraging
a technology such as OAuth, poor handling of the resulting tokens
could render them device-public as well. This is just one possible
scenario for the mis-use of device-public information; apps can and
do use such schemes as the only form of authentication, without
requiring private data from the user such as a password, rendering
their associated accounts wide-open to malicious apps on the device.

In this paper, we perform the first comprehensive analysis
and characterization of vulnerable authentication schemes
based on device-public information. We start by describing the
identity-transfer attack, a generic exploitation technique, composed
by two steps. First, a malicious app, termed the “ID Leaker,” steals
all device-public information from a victim’s device without any
user interaction. Then, this app transfers this data to “ID Injector,”
an app installed on the attacker’s device that collects the received
information and injects them into the device. Once this step is
completed, the attacker can simply install the vulnerable target app,
which will automatically log the attacker in the victim’s account.

We also take the first step toward understanding how widespread
this class of vulnerabilities is, by developing a dynamic analysis
system that aims at uncovering potentially-vulnerable apps among
a much larger set. While “authentication” is a difficult behavior
to characterize, we can leverage interesting behavioral patterns
to locate authentication with enough accuracy to help a human
analyst determine if a vulnerability is present. In particular, the
system we developed records the app’s user interface behavior
during its first execution on a device, when authentication and
registration is likely to appear. Then, as a second step, the system
wipes the app’s private data (by uninstalling and then re-installing
the app), and it runs the app once again. The key intuition is
that if the behavior of an app changes after the re-installation, it
means the app somehow relies on device-public information for
authentication, and is very likely to be vulnerable to our attack. As
a final step, our system attempts to confirm the vulnerability by
using the generic exploitation technique described above to transfer
the identity used in the previous steps to an entirely new device.

Although some of the ideas and intuitions behind this work can
be applied to any mobile operating system (and the corresponding
apps), in this paper we focus on Android. This choice has been
motivated by two main reasons: the fact that Android is currently
the most widespread mobile operating system [36] and the ease
of performing automatic analyses on Android apps.

We used this analysis system to vet 1,000 of the most popular
applications from the Google Play Store, and 41 of them were
correctly identified as vulnerable. Two of these vulnerable apps
were WhatsApp and Viber, two of the most popular messaging apps,
which are used by hundreds of millions of users. For both these
apps, we discovered that it was sufficient to steal the content of a
single file (and spoof the value of some device’s identifiers) to fully
hijack a user account. We reported our findings to the respective
security teams, which quickly acknowledged the vulnerabilities.
Among the apps flagged as vulnerable, our system also identified
several popular games that allow a user to purchase virtual objects
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or currency: our automatically generated exploit was able to hijack

these accounts as well. We conclude this work by proposing and

implementing solutions for the identified class of vulnerabilities.
In summary, the contributions of this paper are as follows:

o We identify and study a new class of insecure authentication
schemes that rely on device-public information.

e We demonstrate how it is possible to automatically exploit
these vulnerable schemes by developing a generic “identity-
transfer” attack, which is capable of stealing and replaying
device-public information to hijack accounts.

e We explore the scope of the vulnerability in 1,000 popular
apps from the Google Play Store using an automated
dynamic analysis system, and identified 41 vulnerable apps,
including Viber and WhatsApp.

e We propose and implement solutions to the identified
problems.

2 AUTHENTICATION SCHEMES

Authentication in mobile applications can take on a variety of
distinct forms, with differing security properties. The first, and most
obvious, authentication scheme is the traditional username and
password, in which the user is asked directly by the authenticating
app for credentials. The app then sends these credentials to its
backend server, which verifies their correctness. After this step, the
server sends to the app a token, which is a shared secret string that
can be used for authenticating all following interactions between
the client and the server.

Another way to authenticate is to use third-party authentication
services. This method removes the need to handle tedious per-app
registrations. In Android, the AccountManager [14] offers a generic
API that can be used to obtain an OAuth-like authentication token
from third-party identity providers, such as Google or Facebook.
The obtained token is presented with the app’s requests to its
backend, and can then be used by the backend to ask the third-party
service for more information about the user.

Another popular scheme uses text messages (SMS) and the user’s
phone number as a form of authentication. In this scenario, the
user would need to prove that they own a given phone number. As
a part of the verification process, the user would typically enter the
phone number manually. A code is then sent via SMS to the user,
and is typically parsed automatically from the user’s SMS inbox
and verified. After this step, the phone number is used as the user’s
primary identity.

Lastly, some Android apps employ schemes in which distin-
guishing information about the device itself is used to bind a device
to an account. This works under the implicit assumption that
these identifiers are static and unique per device. To authenticate,
the required identifiers are sent to the app’s backend server, an
authentication token is obtained, and such token is then sent along
with future requests.

To reach the widest possible audience, many apps offer multiple
authentication schemes, such as Facebook, Google, or regular user
name and password authentication. While some of these methods
may be securely implemented, the app may still be vulnerable if
it allows users to use unsafe login-less methods that rely only on
device-public information.
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At their core, all these authentication schemes aim to obtain
some sort of token that can be used to authenticate a user to the
app’s remote backend. However, if the authentication token can
be obtained using information that another application on the same
device can obtain, the authorization scheme is not safe. We also
note that, even when apps employ schemes that are thought to
be secure, they can still be vulnerable to account hijacking if they
store authentication tokens in publicly accessible locations.

3 IDENTITY-TRANSFER ATTACK

Our key observation is that if an app only relies on device-public
information to authenticate the user to its backend, it is possible for
a malicious app to mine and leak all relevant information. If such
a scheme is in use, an attacker can perform an identity-transfer
attack, transferring information from the victim’s device to the
attacker’s, so that the user’s identity associated to a given app is
effectively transferred.

3.1 Threat Model

In this paper, we assume that an attacker is able to lure the user
into installing an attacker-controlled malicious application. This
application requests all the needed permissions to acquire the
device-public information being stolen, as outlined in Section 3.2.
Moreover, we assume the operating system of the device to be
uncompromised, and it thus constitutes a trusted computing base.
Furthermore, we assume that the victim’s device is not rooted (if
it is, our attack does not take advantage of it), which means that
an attacker cannot get root privileges. Therefore, the malicious app
does not have access to app-private data, as the separation of the
apps’ private storage is strictly enforced by the OS.

3.2 Device-Public Information Sources

In this paper, we refer to device-public information as information
that can be accessed from any app on the device that requests the
permissions needed to obtain it. We will focus primarily on Android
versions ranging from Android 4.4 to Android 7. When necessary,
we will describe differences among different versions.

Here we will discuss the different sources of device-public infor-
mation we have considered in our study, which are used by apps to
identify users (also summarized in Table 1). Some of these identifiers
are related to a specific hardware device, and cannot be changed by
the user, whereas others can be changed after a “factory reset” of the
device, or are linked to a Google Account. Google has recently at-
tempted to hide some identifiers from apps to thwart tracking. That
said, as of Android 7.1.1, we found that we are still able to access ev-
ery identifier mentioned here, save for the Bluetooth MAC address.

Apps may need specific permissions to access some of these
sources of device-public information, therefore a careful user may
be able to notice that a malicious application is accessing some
device-public information. However, while Android 6 introduced
a feature alerting the user at the time some permissions are used,
a malicious app can bypass this alert by lowering its own “Target
SDK Version.” By doing this, the old permission model, in which the
user is not informed the moment an app uses a permission, is used.
ANDROID_ID. This is a device’s unique ID number, set by Android
upon a device’s first boot or factory reset.
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IMEL The IMEI is a hardware identifier given to each piece of
cellular equipment, including the baseband radios of mobile phones.
WiFi MAC address. Similar to the IMEI, MAC addresses are
uniquely assigned to most conventional network hardware. The
WiFi MAC address can be obtained by any app requesting the
ACCESS_WIFI_STATE, using the APIWifiInfo.getMacAddress().
In Android 6 (and later versions), the behavior of this API has been
changed, so that it always returns the value 02:00:00:00:00: 00.
However, we found that it is still possible to access this identifier
using the NetworkInterface.getHardwareAddress() APL
Bluetooth MAC Address. The device’s Bluetooth MAC address
is a persistent hardware identifier that can be queried by using
the API BluetoothAdapter.getAddress(). This API requires
the BLUETOOTH permission. Starting from Android 6, the behavior
of this API has been changed, so that it always returns the value
02:00:00:00:00:00.

ADB serial number. The device’s ADB Serial Number, which
is used to identify devices on the Android Debug Bridge, is an
identifier that persists across factory resets. It can be accessed by
querying the android.os.SystemProperties object using the
key ro.serialno.

Google account email. Many Android devices use Google account
emails as a form of Single Sign-On, and the email address used can
be easily obtained using the AccountManager APL

Google Service Framework ID. This ID is used to identify a user
when accessing Google Service Framework applications.

Google Advertising ID. In an attempt to allow users to opt-out of
mobile ad tracking campaigns, Google created a specific persistent
identifier [15] to be used with advertising. It can be queried by
any app (through the AdvertisingIdClient class in the Google
Play Services), but, unlike the other identifiers, also freely reset by
the user. Google’s policy [18] states that all advertising must use
exclusively this identifier for tracking (“in place of any other device
identifiers for any advertising purposes”), although in practice it
is often not used [35].

Phone number. We consider the phone number associated with
the SIM card inserted in a device as device-public information. A
specific API (getLinelNumber, requiring the READ_PHONE_STATE
permission) exists to retrieve this value, however the returned value
is not always reliable, depending on the SIM Card manufacturer.
Various workarounds do exist, including reading the call log, which
requires the READ_CALL_LOG permission.

Received SMS Messages. Any app (with proper permissions) can
request to be notified of the origin and content of new SMS messages.
Incoming Phone Calls. Apps can request to be notified about the
basic data of incoming calls, including the caller’s number. Addition-
ally, Apps can also read the call history. Interestingly, phone calls
can be used for authentication, by using part of the sender’s phone
number (which remote services can control) as a verification code.
SIM Card Serial Number. In devices where a SIM Card is present,
apps can access this identifier, which is tied to the used SIM Card,
by using the getSimSerialNumber APL

External Storage. Many Android devices today come with, or have
the ability to add, some form of external storage, usually in the form
of a larger Flash-based storage device or SD card. The precise behav-
ior of external storage differs among Android versions and devices,
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Table 1: Considered sources of device-public information.

Source Required Permission Survives Linked to a Linked to a
factory reset Google Account SIM Card

ANDROID_ID - - - -
IMEIL READ_PHONE_STATE v - -
WiFi MAC address ACCESS_WIFI_STATE v - -
Bluetooth MAC address BLUETOOTH v - -
Google account email GET_ACCOUNTS - v -
Google Service Framework ID READ_GSERVICES v -
Google Advertising ID - v -
Phone Number READ_PHONE_STATE or READ_CALL_LOG - v
Incoming Phone Calls READ_CALL_LOG - - v
SIM Card Serial Number READ_PHONE_STATE - Vv
Received SMS Messages RECEIVE_SMS or READ SMS - v

External Storage READ_EXTERNAL_STORAGE

but, typically, any app can request the READ_EXTERNAL_STORAGE
permission to access its contents. This gives the app access to the
public areas of the external storage, shared by all apps.

Files stored in here are publicly accessible and some of them are
not deleted upon app’s uninstallation [23]. Therefore, as a usability
feature for the users, some apps store authentication cookies in
this location, so that the credentials survive app’s re-installation.
Unfortunately, while this may sound a reasonable practice, it is not
secure. In fact, in this scenario, an attacker would be able to easily
hijack the user’s account by reading the files containing these
authentication cookies and using their content to authenticate with
the victim apps’ remote backends.

3.3 Proof-of-Concept Attack Implementation

In simple terms, the attack consists of an app on the victim’s device,
which steals a set of device- and user-specific information, and exfil-
trates it to the attacker. The attacker can then inject this information
into their own device, so that apps behave seamlessly as if they are
still on the victim’s device. In particular, the attacker can use vul-
nerable apps as if authenticated as the victim on the victim’s phone.
We implemented the “identity transfer” attack in two different
components: the “ID Leaker,” and the “ID Injector” The “ID Leaker”
app, which could be thought of as a prototypical third-party
malicious application, requires the Android permissions to access
the SMS, device call notifications, external storage contents, and
static device identifiers (refer to Table 1). The app then uses the well-
documented Android APIs to access and leak the device-public data
that constitutes the user’s identity, and it sends it to the attacker’s
device. We note that the app’s functionality could be easily hidden
inside a seemingly legitimate app, and that it can run on completely
unmodified devices without requiring any admin privileges (there-
fore on un-rooted devices). We also note that if an attacker aims at
hijacking the account of a specific victim app, the “ID Leaker” only
requires the permissions needed to access the specific device-public
information used by the victim app for authentication purposes.

For the attacker’s device, we created the “ID Injector,” which
takes data from the “ID Leaker” and injects them into an attacker-
controlled device. We use the Xposed framework [1] (a tool for
performing run-time patching of the Android framework) to
easily hook the Android API methods used to query device-public
information, and spoof their results to return the data leaked from
the victim. The external storage’s content is also transferred from
the victim and copied into place. Without external information,
there is no way for the app under analysis to tell that the data has
been spoofed. Because of our usage of the Xposed framework, the
attacker-controlled device (but not the victim’s one) must be rooted
to properly spoof the received identity.

4 VULNERABILITY DETECTION

In order to understand how widespread device-public authenti-
cation schemes are on Android, we created an automated system
to locate vulnerable apps in the wild. This system could also be
used by security researchers, software developers, and app market
operators to automatically spot weakness in the authentication
mechanisms used by the analyzed apps.

While the attack described in Section 3.3 is very effective against
vulnerable apps, we cannot simply use it against all apps to build a de-
tection system, for two main reasons. First, it is difficult to differenti-
ate success of the attack from other application behaviors, as we have
no baseline of the app’s normal behavior to compare it to, and cannot
link changes in this behavior to device-public information. Second,
as we discuss in Section 2, “authentication” can be implemented in
a variety of ways, making it difficult, if not impossible, to concretely
define and locate authentication behaviors in a generalized way. We
therefore cannot rely on any direct knowledge of the authentication
itself to help understand when our exploit is having an effect.

To address these challenges, we developed an approach that
aims at identifying authentication behaviors indirectly. We build
our approach on the observation that an app behaves differently
depending on whether or not it has already authenticated its user
to a previously created account, and that this difference will be
reflected in the app’s user interface.
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Thus, as a first step, the system executes the app, provides any
requested device-public information to the app, and records the
app’s behaviors. These behaviors are in the form of a trace of
different UI states (as detailed in Section 4.4). The aim of this initial
execution is both to trigger the app’s authentication or registration
mechanism, as well as to get the server’s backend to store some
sort of state for the user, which can be observed in future traces.

Next, all app-private information for the app is deleted. We
achieve this by uninstalling and re-installing the app. This operation
deletes all app’s files in private locations.

At this point, the app is executed again and, if the behavior is
different from the one observed during the first run, it is possible
that the app may be using device-public information (which could
be both device’s identifiers or publicly accessible files in the external
storage) to authenticate the user. Typically, a difference may be
observable because of the absence of a “login” screen due to already
being authenticated, or the absence of an introductory “welcome”
screen due to restoring the previously-saved user state, but more
subtle UI modifications are possible.

As a last step, the system confirms the vulnerability, by
transferring the device-public information to a different device,
executing the app again, and comparing these behaviors with the
previous ones. This transfer operation encompasses copying both
publicly accessible files and device’s identifiers.

In the remainder of this section, we will first discuss in detail
the three steps of our analysis, as shown in Figure 1. We will then
provide several technical details about the underlying dynamic
analysis and the comparison of states and traces.

4.1 Step 1: Capturing Initial Behavior

First, we need to characterize the behavior of a given application
when installed for the first time on an Android device. Our system
functions primarily by collecting and comparing traces, consisting
of an ordered list of UI states encountered during a given execution
of the app. Details of how states and traces are collected and
compared can be found in Section 4.4.

However, our system truly needs to characterize the “normal”
behavior, not just merely record one execution. This is far from
trivial, mainly due to the fact that dynamic analysis is hindered by
non-deterministic behaviors present in apps, the OS, and network
communications. To address this challenge, we first execute the
analyzed application on multiple devices, collecting multiple traces.
Recent work has shown that running the same app multiple times
is, in Android, effective in reducing the effects of non-deterministic
behaviors during dynamic analysis [9]. The collected app behaviors
are then used to compute a so-called Invariant, representing the most
common set of behaviors. Specifically, the Invariant set is computed
as the set of all states that appear in all the collected traces.

4.2 Step 2: Vulnerability Detection

In this step, we delete all app-private data from the devices used in
Step 1, collect new traces, and compare them with the Invariant. We
accomplish clearing the app-private data by re-installing the app,
which is known to remove all app-private information, including
authentication tokens, cookies, databases and other private files.
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After re-installation, the app is dynamically stimulated, and
traces are collected in the same way as in Step 1. Then, we compare
the new traces against the Invariant, looking for behavioral
differences in the traces. These discrepancies are typically due to
setup, registration, or login interfaces. Therefore, they are a strong
signal the app was able to authenticate with the remote backend,
only using information that survived the app’s re-installation,
which must therefore be device-public.

More precisely, if we determine that, during the execution of the
analyzed app in this step, at least one state present in the Invariant
has been skipped in all the collected traces, the app is flagged as
potentially vulnerable.

4.3 Step 3: Exploit Verification

In Step 3, we verify if an app uses an insecure authentication
scheme by actually attempting an identity-transfer attack against it.

To perform the attack, we transfer the device-public information
stored in the devices used during Step 1 and Step 2 to new devices
(which have not been used in the analysis of this app before), as
explained in Section 3.3. Then, the same procedure used in Step 1 is
used to obtain execution traces from the previously-unused devices.

These traces are then compared against the Invariant, as in
Step 2. If we detect that at least one of the states skipped during
Step 2 is also always skipped during Step 3, we conclude that the
attack succeeded, and we flag the app as vulnerable.

4.4 Dynamic Analysis

In order to accomplish the above steps, we need to deterministically
execute an application to trigger the authentication behavior,
while minimizing behavioral divergences due to non-deterministic
operating system or network behaviors. To this end, our system
stimulates apps through their Uls, including buttons, text fields, and
other interactive elements, as well as taking note of any incoming
SMS and phone calls the used device may receive.

We rely on uiautomator[21], both to control the device and to ob-
tain state information about the device itself. We control uiautoma-
tor from a normal PC by connecting it to the device using the An-
droid Debug Bridge (ADB) and the uiautomator Python wrapper [8].

Possible actions are derived from the UI's content (button
labels, text field descriptions, ...), and inserted into a priority
queue. The priorities are arranged such that the most specific
actions are performed first. The developed system also keeps
track of previously touched Ul elements, removing them from the
priority list, so that every element is touched at most once. This
is done to prevent the stimulation from entering an infinite-loop
by continuously interacting with the same element.

The following is a list of the actions that our detection system
can perform, in order of priority:

Fill text fields. Our system automatically fills some text fields. In
particular, it first determines the type of information a text field
is suppose to contain by (similar to [33]) checking labels and IDs
associated to each text field against a pre-determined list of strings.
Then, if a text field is determined as asking for a phone number, our
system fills it with the device’s phone number. Likewise, if a text
field is determined as asking for a username, our system inserts a
randomly generated one. It is important to note that no user-private
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Figure 1: Overview of the developed dynamic analysis system.

information (e.g., a password) is inserted during this (or any other)
step of the dynamic stimulation of an app.
Touch button. Our system interacts with UI elements that are
“clickable”” All clickable objects found are prioritized based on their
type (e.g., buttons have higher priority than text fields) and their
content; this allows us to, for example, touch an “OK” button before
a “Cancel” button.
Pseudo-random touch events. If none of the previously men-
tioned actions can be performed on a state, our system will try to ex-
plore the app’s behavior by simply randomly clicking on its UL This
situation usually happens, when the application uses custom Ul ele-
ments, which do not export standard layout information to the OS.
In addition, if the analyzed app loses its focus (e.g., a window
is opened in the system browser), we perform appropriate actions
to make the analyzed app regain focus.

4.5 App States Extraction and Comparison

In order to make meaningful comparisons of different executions,
we need a way to collect the current state of an app (e.g., which con-
tent it is showing to the user) at different times during our analysis
and compare those states. The way in which states are encoded and
compared needs to be sufficiently informative to capture significant
behavioral changes, but also flexible enough to help ignore minor
changes unrelated to the app’s functionality. Specifically, the behav-
ior of an app is encoded as a trace of states, which are then compared,
looking for evidence of vulnerable authentication schemes.

State Extraction. Every five seconds, the system checks if the
current device’s Ul is in a steady state. By this, we mean a situation
in which the Ul is likely not to change if no action is performed.
If so, we record the current app’s state (as better defined below)
and we perform an action. Otherwise, the system waits up to a
maximum threshold of 30 seconds. We employ this approach to
perform actions and capturing states only when the effects of
previous actions on the app’s UI are completed. This also allows

the sample rate of our system to be dynamic, and it helps to ensure
that the captured states make the most sense when compared
later. We use information provided by the Android video and input
subsystems to know when an animation is being rendered (and
therefore the current state is not steady). However, if we are unable
to reach a steady state (e.g., the app uses OpenGL, or is otherwise
constantly animating), we resort to an image-comparison approach.

Once the Ul is steady, the system records a state, consisting of
the following:

e The activity name (in Android, an Activity is a specific UI
window)

o A hash of the simplified Ul layout data

o A perceptual hash of the device’s screen-shot

Hash of simplified UI layout data. To hash the information
about the Ul elements, we make important simplifications to the
Ul data, so that it is more easily comparable. In particular, from
the layout tree describing the Ul state, we remove the information
about the location of the different layout’s components and the text
shown. These positioning or text differences are oftentimes due
to intrinsically non-deterministic or rapidly changing UI elements,
which are not relevant to our analysis.

Additionally, we take steps to avoid comparing deliberately
dynamic content, especially advertising and web content. Ad-
vertising on Android is difficult to locate through explicit UI
information. However, most mobile advertising is standardized by
the International Advertising Bureau [6], which dictates specific
pixel dimensions for ads, therefore we filter out elements from the
simplified layout that have these sizes. Furthermore, we also filter
out all WebView objects, since dynamic web content is typically
a significant source of non-determinism. Lastly, we use the MD5
algorithm to condense the state information.

Hash of device’s screen-shot. To hash the image acquired during
the screen-shot, we use the algorithm called average hash provided
by the ImageHash Python library [5]. This algorithm was chosen
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to provide meaningful fuzziness for images, abstracting away small,
unimportant differences, such as constantly-animating UI elements.
Specifically, this algorithm compresses every image in a 64-bit
locality-sensitive fuzzy hash. The algorithm is designed so that
images “appearing” as similar for humans are hashed to the same
value, regardless of small graphical differences they may have.
State Comparison. We consider two states as equal if all the 3
components described above are equal. Moreover, when comparing
states in traces collected during Step 2 against the Invariant, we
also consider two states as equal if their image hashes only differ
slightly (less than 10% of the bits composing the image hash). This
threshold was determined empirically, by taking a subset of the
apps from our dataset, and manually determining the optimal value.

Additionally, if during the dynamic stimulation of an app the
device receives an SMS or a phone call, we add special states to the
trace.

5 EXPERIMENTAL RESULTS
5.1 Datasets

We used the vulnerability detection system to probe apps from two
different datasets:
“Top Free” dataset. A dataset of 606 apps containing all the most
popular available free Android apps. To generate this dataset, we
first downloaded all the 539 available apps listed in the “Top Free”
category on the Google Play market. Then we supplemented this
set with other 67 applications starting from the ones that have the
highest cumulative number of installations.
“Top Grossing” dataset. A dataset containing the 394 most
popular free apps in the “Top Grossing” category on the Google
Play market (excluding the ones already present in the “Top Free”
dataset). We chose this specific category because experimental
results on the “Top Free” dataset and previous executions of our
experiment revealed that apps from this category often allow users
to authenticate using non-secure methods to ease their adoption.
Apps from both datasets were downloaded in January 2016.
These datasets constitute a heterogeneous corpus of very popular
applications both in terms of installations and developers’ revenue.
In total, we analyzed 1,000 distinct apps.

5.2 Experimental Setup

Our system is implemented using a series of Nexus 5 handsets
tethered to a controlling PC. Specifically, we used 3 phones during
the Invariant Generation and Vulnerability Detection phases (Step 1
and Step 2) and 3 additional phones during Step 3. All handsets run
Google’s official Android 4.4.4 images (the most adopted Android
version at the time the apps were downloaded [20]).

During the collection of every trace of our analysis, we dynam-
ically stimulated an app for two minutes. To ease the deployment
of our infrastructure, devices’ identifiers and phone numbers were
modified during different runs of the experiment, effectively simu-
lating the usage of a new device every time the experiment was run.

Averagely, the experiment needed 458 seconds per app to run
Step 1 and Step 2 (including time necessary to reboot a device and
install an application). For apps flagged as potentially vulnerable
after these two steps, the analysis required, in average, additional

ACSAC 2017, December 4-8, 2017, San Juan, PR, USA

223 seconds per app to run Step 3 (including the time necessary
to transfer the device’s identity).

5.3 Results

Our system flagged 50 apps as vulnerable in our corpus of 1,000
distinct apps. Using manual analysis, we verified that 41 out of the
50 detected apps were actually vulnerable to the identity-transfer
attack. Among these, two apps are Viber and WhatsApp, two very
popular messaging apps with hundreds of millions of installations.
We postpone the discussion of the vulnerabilities identified
in these two apps to Section 6.1. Another group of 38 apps is
composed by popular games, in which an attacker can perform
an identity-transfer attack to steal the victim’s virtual currency or
objects. We will provide more details about them in Section 6.2.

Another detected app authenticates users by using standard
SMS authentication. Specifically, this app identifies users with their
phone number, by sending an authentication code to their phone
number using an SMS, which is then automatically read by the app.
If this code is stolen, an attacker can login and control all aspects
of the user’s account.

This security issue is different from the one found in the
messaging apps described in Section 6.1, as it needs the attacker to
steal the content of an SMS received by the victim. However, it still
falls into our threat model, since the SMS content is device-public
information.

In other 7 detected apps, we were able to transfer an identity
with the exploit, but the identity was not protecting anything
sensitive. Our system cannot, of course, detect which content is
truly sensitive (e.g., related to a user’s account) to a particular app,
but the differences in the Ul were present.

For example, in one app, the device-public information was used
to track whether a user had accepted the application’s End-User
License Agreement (EULA), and, in another one, whether the user
configured application preferences. In the other 4 apps, the backend
uses this information to track whether a user has viewed certain full-
screen “special offers” or advertisement from the app’s developer.

In addition, we found an app that, on first usage, shows a sign-in
interface, since it assumes that the user does not already have an
account. However, on subsequent re-installations, this app shows
a username and password login interface, because it infers, using
device-public information, that a returning user would already have
an account. While not allowing any sort of account compromise,
this information can still be leveraged by any other app to infer
valuable information about the user, as explored in [10].

Finally, 2 additional apps were detected because of problems of
our testing infrastructure, such as connectivity issues of the apps
that caused the appearance of different graphical elements between
the first installation and the subsequent ones. Subsequent runs of
our experiment on these samples confirmed that these apps were
detected for temporary problems. We consider these two apps as
false positives.

6 CASE STUDIES
6.1 Messaging Applications

Two of the detected applications are the very popular messaging
apps, WhatsApp and Viber, which allow users to send and receive
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\

We will be verifying the phone number:

\
) Welcome, Alicia! To our
sweet Jelly Lan

+1(818) 275-5643

Is this OK, or would you like to edit the
number?

EDIT

Figure 2: Examples of states recorded during the Invariant
Generation phase (Step 1). Since these states were not present
during Step 2 and Step 3 of our analysis, our system correctly
classified these apps as vulnerable. In the left example, the
skipped state shows to the user an introductory tutorial of
the game. In the right one, the skipped state asks the user to
confirm the entered phone number before validating it.

text messages, VOIP calls, and media. While the statistics on the
Google Play market are not precise, WhatsApp is estimated to have
more than 1 billion installations and Viber has more than 500 million.

Our vulnerability detection system flagged WhatsApp as
vulnerable, since it detected, in the Vulnerability Detection and
Exploit Verification phases, the absence of the “confirm your phone
number” interface (shown in Figure 2), and the missing reception
of an incoming SMS, used for authentication. Similarly, while
analyzing Viber, the system detected this app as vulnerable because
of the missing “Enter Your Name” dialog (shown only to new users)
and the missing reception of a phone call whose part of the caller
number is used as an authentication token.

Initially, we speculated that those apps were detected as vulner-
able because they use the user’s phone number, verified using re-
ceived SMS or incoming phone calls, as their authentication method.
This authentication method is common among popular messaging
apps, and we consider it as vulnerable in our threat model. In fact,
an attacker with a malicious application installed on the victim’s
device can pretend to own the victim’s phone number and verify
it by sending the authentication SMS received (or the caller phone
number) from the victim’s device to an attacker-controlled device.

However, further analysis surprisingly revealed that an even
simpler attack is possible against these apps. The identity-transfer
attack was successfully performed for both apps even though their
backend did not send any SMS or phone call. This was possible
because these apps used the content of a hidden file stored in the
external storage to authenticate users upon re-installation.

Therefore, in the version of the apps we have analyzed, an
attacker controlling an app on the victim’s device could authenticate
to the remote backend on behalf of the victim by:

(1) Copying the content of a specific file (stored in the external
storage of the victim’s device) to an attacker-controlled
device.

(2) In case of WhatsApp, spoof the value of the Google email
account. To achieve this, an attacker can use a malicious
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controlled app on the victim’s device to query the Account-
Manager API and exfiltrate its value to an attacker-controlled
device. Then, on the controlled device, the attacker can
spoof it by using, for instance, the Xposed framework (as we
implemented in the “ID Injector,” explained in Section 3.3).

(3) Open the app.

(4) When asked to insert a phone number, specify the victim’s
one.

After these operations, the vulnerable app running on the attacker’s
device is automatically logged in as the victim, without even having
the victim’s device receiving an authentication text message. This
exploit gives attackers full use of the victim’s account, allowing
them to send messages on the victim’s behalf, and to receive all
future messages sent to the victim.

Vendor Reaction. Upon discovery of these vulnerabilities, we
contacted both vendors in August 2015. Both vulnerabilities
were quickly acknowledged and, after working with the vendors,
mitigations were deployed.

Specifically, both WhatsApp and Viber removed reliance on
static identifiers and publicly-accessible files. However, they still
rely on the content of a received text message (or, in case of Viber,
the caller’s number of an authentication phone call) for their
primary means of authentication.

Interestingly, after our first notification, Viber was initially
changed in a way that was ineffective against our attack. In
particular, the file in the external storage remained, but just
spoofing it was not enough. We discovered that Viber was changed
to also check that other device’s identifiers matched the ones
used during a previous registration. However, as we discussed
through the paper, an attacker could just query the values of the
different device identifiers using an attacker-controlled app on
the victim’s device (see Section 3.2) and then spoof them on an
attacker-controlled device, as implemented in the “ID Injector”
(see Section 3.3). We note that this attack was working until Viber
issued another update, in September 2017, removing reliance on
the content of publicly-accessible files to perform authentication.

In addition, after our notification to the vendors (but likely inde-
pendently from our disclosure), in 2016 both apps implemented new
cryptographic measures limiting an attacker’s ability to impersonate
auser when an account is stolen (via ours or other attacks). In partic-
ular, both apps implemented an end-to-end encryption mechanism,
based on the usage of a per-user key pair. This functionality allows
users to authenticate and encrypt exchanged messages. For instance,
suppose that two users A and B communicate together. This system
encrypts the communication channel between A and B using their
keys. Moreover, a user, for instance A, can check the value of B’s pub-
lickey and, in case B’s public key changes, A would be notified (how-
ever, A and B could still communicate together). The same notifica-
tion would be shown after the aforementioned attack is performed
because the per-user key is stored in an app-private location, so it
cannot be stolen and transferred to the attacker-controlled device.

6.2 Free-to-play Games

The other 38 identified vulnerable applications are games, in which
an attacker can perform an identity-transfer attack to, steal the vic-
tim’s virtual currency or in-game objects. In these apps, the system
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detected, for instance, the fact that graphical interfaces used to enter
the user’s name, or to show game tutorials and welcome messages
were skipped during the Vulnerability Detection and Exploit Ver-
ification phases (see Figure 2). This indicated that the app authenti-
cated with the remote backend and was able to obtain the user’s state.

After an identity-transfer attack was performed, we noticed
three different kinds of behaviors on the victim’s device, when
attacked while the victim is using them. Some of the apps show
to the user a generic error message after the attack, such as
“Connection Timeout.” Others show a message informing the users
that “another device” accessed their account. Finally, some of them
do not show any information to the victim.

All these games offer in-app purchases, and the virtual currency
used is derived from real money, using the Google’s In-App billing
API (IAB). For this reason, these vulnerabilities are particularly wor-
risome, since they can represent actual financial loss to the victims
and the apps’ developers. One surprising result was that the account
transferred during the Exploit Verification phase can include virtual
currency purchased through Google’s In-App Billing API [19].

Notably, this is not an explicit attack against the In-App Billing
AP], as explored in previous work [30], but rather that its use in
conjunction with the discovered vulnerabilities makes this data
vulnerable as well. This is due to how the IAB API is implemented
and how it is typically used by developers. In particular, even
though the IAB mechanism offers to store information about a
user’s purchases (in a way which is secure under our threat model),
it cannot be easily used as a store of the user’s current account
balance, since precise accounting is not possible.

Therefore, developers need to store the virtual currency balance
differently, in the (potentially unsafe) app’s backend. In case of
applications vulnerable to identity-transfer attacks, this means the
user’s paid-for currency is as easy to steal as any other information
in the user’s account. This is particularly of concern, given the
already-established trend in malware on other platforms targeting
online game accounts [12].

7 PROPOSED DEFENSES

We propose two defenses against the attack studied in this paper:
one aimed at creating secure device identifiers, and another
aimed at safeguarding SMS-based authentication. A fully working
prototype implementation of our defenses is publicly available [4],
as an Xposed framework’s module.

7.1 Securing the SMS Channel

Design. All installed apps on a device (that request the proper
permission) can request to be notified of the content of incoming
SMS messages, even when these messages are only intended for
use by a particular app. As we shown, this behavior is particularly
problematic when received SMS messages contain authentication
codes destined for only a particular app.

Our proposed solution, similar to one discussed in [29], works
by delivering authentication SMS only to the apps intended
to receive them. Specifically, we propose a convention that
authentication-related SMS should be pre-pended with the string
AUTHCODE: app_cert_fingerprint, where app_cert_fingerprint is
the fingerprint of the certificate used to sign the destination app.
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The OS would then route the message only to the main SMS reader
app, and the app bearing the included fingerprint. This improves on
Mulliner et al’s previous solution by not requiring the OS to be noti-
fied ahead of time about how incoming messages should be routed.

For example, consider an app named “Foo Messaging” signed
with a certificate whose fingerprint is @d5af23c. In this case, users
enter their phone number into the app, which is sent to the app’s
backend. As a response, the app’s backend sends an SMS message
with the content AUTHCODE: @d5af238c Verification Code: 34782.
When received, the OS would then only notify the user’s default
SMS reader and “Foo Messaging” about the new message.

To improve usability, we propose that the default messaging app,
by default, hides this routing information. Alternatively, the default
messaging app could replace it with an indication of the app the
message was delivered to. This functionality can be implemented
without any modification to existing apps. However, it would
require a small modification to the app’s backends to prepend the
app’s fingerprint to the outgoing SMS.

We note that the recently-released Android version 8 introduces
a new API called createAppSpecificSmsToken. This API “creates
a single use app specific incoming SMS request for the calling
package” [16]. When using this API, an app would first get a secret
token from the operating system. Then the app’s backend would
send an SMS containing that specific token to the user’s device and
the SMS will be subsequently automatically routed by the OS to
the correct app (through the token) and it will not be made readable
by any other apps (or visible by the user).

While it may seem that this new feature mitigates the weakness
of the usage of SMS to authenticate user, we argue that, on the
contrary, it eases the attack we have described in this paper. In fact,
while the usage of this API would stop an attacker from stealing
and replaying authentication codes when the user attempts to
authenticate, the attacker can just attempt their own authentication
(simulating a user re-installing the app on the same device), at
which point the SMS will be sent and routed to the attacker’s app
and it can thus be easily stolen. From the conceptual point of view,
the attack works because the app’s backend does not have enough
information to determine whether the app receiving the SMS is the
legitimate app or the attacker’s app.

There are two additional aspects that make apps using this new
API more vulnerable to the attacks presented in this paper. First,
neither the user nor the legitimate app will notice the incoming
SMS message (triggered by the attacker), since it will be routed only
to the attacker’s app. Second, the attacker’s app does not need to
require the READ_SMS permission when receiving messages using
this API, thus making this malicious app stealthier.
Implementation. There are two ways an app can access SMS in
Android: an app can ask to the operating system to be notified when
a new message is received, or an app can access the list of received
messages. Thus, to implement our defense, we modified both the
Android InboundSmsHandler component, responsible to notify apps
of incoming messages, and the SmsProvider component, mediating
apps’ accesses to received SMS. Globally, our modifications consist
of approximately 100 LOC added to the original Android code.
The added code introduces an average slowdown of 5.381ms every
time an SMS is received and a slowdown of 2.064ms every time an
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app queries the operating system for received SMS. We consider
both slowdowns as negligible, given the fact that, receiving a text
message it is not a frequent event.

7.2 Secure Device IDs

Design. The most common and easily obtained device-public
identifier is the ANDROID _ID, which is intended to be used to
allow apps and their backends to differentiate Android devices.

In our defense we modify the API used to access the AN-
DROID_ID, so that it returns a Private Device ID (PDID) different
for every app (more precisely, different for every app’s signing
certificate), instead of the original device-wide value. Specifically,
the first time a device boots (or after a factory reset) a random Secret
ID (SID) is generated. The Private Device ID is then derived from
the Secret ID using the signing certificate included with each app,
which uniquely identifies its developer. In this way, the semantics
of the ANDROID_ID are preserved, apps from different developers
cannot steal each other’s identifiers, but no convenience is lost for
a developer with multiple apps on the same device. Moreover, the
PDID does not change after app’s re-installation.

Specifically, the PDID is computed as follows:
HMAC(SID, caller_app_cert_fingerprint) where:
caller_app_cert_fingerprint is the certificate fingerprint of
the app calling the API and HMAC is a cryptographically secure keyed-
hash message authentication code (e.g., HMAC-SHA256) in which
SIDis used as “key” and caller_app_cert_fingerprint as “message.”

The security of this method is bolstered by the fact that

(1) Upon installation, Android verifies that an app has been
correctly signed.

(2) The operating system can securely identify the caller of a
framework API [17].

(3) No APl is provided to get the value of SID.

For these reasons, as long as the developer’s private key remains
uncompromised, the privacy of the PDID to an app is maintained.

We implemented this modification as complete transparent
replacement of the current APT used to get the ANDROID_ID. In this
way this defense could be deployed without requiring code changes
to existing apps. This will necessarily interfere with advertising
libraries, which seek to use the ANDROID_ID to track the usage
of multiple apps on the same device. However, as explained in
Section 3.2, the only identifier that advertisement libraries are
supposed to use to track users is the Google Advertisement ID. A
possible alternative implementation would be providing the PDID
to apps trough a separate APL

It is interesting to note that, concurrently (and independently)
to the development of this work, Google changed the behavior of
the ANDROID_ID to follow our proposed modification. Although
the implementation details differ, the functionality achieved by
this change is the same. This modification is available starting from
Android version 8 [22].
Implementation. We implemented this defense by modifying
the Android SettingsProvider, the operating system component
responsible to deliver the ANDROID_ID value to the running
apps. Our modifications consist of approximately 70 LOC added
to the original Android code. The added code introduces an average
slowdown of 1.497ms when the API to get the ANDRODID_ID is
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called. The standard Android API caches this value after the first
time an app access it, thus we consider this slowdown as negligible.

8 LIMITATIONS AND FUTURE WORK

While we were able to find a surprising number of vulnerable apps,
our system is far from perfect. There are a few conceptual ways in
which our system might miss vulnerable apps. The most important
one is the inability to influence a change in the user’s state stored by
the app’s backend server. For instance, in some games, the dynamic
analysis system would need to effectively play the game and, for
example, score points or spend virtual currency.

An important source of error in dynamic analysis is the
non-determinism inherent in today’s operating systems and
apps. Some apps explicitly perform random behaviors, which
our Invariant Generation step attempts to remove, but it is by no
means perfect. For example, if the non-deterministic behaviors
are time-dependent or influenced by network delays, they may
produce the same result during the Invariant generation, but not
during the other phases. Some previous work has been done to
try to have fully deterministic replay of actions (see Section 9.2),
but the current state-of-the-art does not handle all the source of
indeterminism that our system has to deal with.

One other source of future improvement is in the number of
identifiers spoofed and transferred by our system. We used a large
set of known identifiers for which we could locate Android APIs,
but apps could conceivably invent their own identifiers based on
collections of obscure system properties, or implement other means
of fingerprinting devices. Finding all possible ways this can happen
is an open problem.

We would also like to explore the use of network traffic as part
of the Invariant generation, to attempt to more precisely determine
when a backend is saving and retrieving user state. In particular, a
way to assist with the network traffic analysis, as well as other data
sources and sinks, is to use a taint-tracking-based analysis system,
such as TaintDroid [11]. Unfortunately, we have noticed that many
identifiers are sent to the app’s backend, even if they are not directly
used for authentication purposes, which represents a significant
source of noise for this kind of analysis. This is potentially done
to aid in gathering metrics about apps, or to aid in advertising.

Finally, an interesting future work would be to study if the
authentication problems we have identified in this paper also affect
applications running in other mobile operating systems.

9 RELATED WORK

9.1 Authentication-Related Vulnerabilities
in Android

Zhang et al. explore the issue of uninstallation residue, where
uninstalling an app does not properly clean up all data and
references in the system, creating an opportunity for an attacker to
elevate their privileges and steal sensitive information [41]. While
the detection system we developed uses uninstallation of apps to
trigger a removal of app-private data, the vulnerabilities targeted
in this work and ours are very different. In fact our system detects
authentication vulnerabilities that involve the usage of both device
identifiers and files in public locations.
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The paper entitled Mayhem in the Push Clouds [26] explores the
related issue of push messaging platforms, which are commonly
used by apps to communicate asynchronously with their backends.
The paper found that authentication tokens for these services are
often handled insecurely, especially when sent using Android’s
Intents. Our work focuses on what can happen when these tokens
are created using device-public information, or are in turn stored
as device-public information.

Chen et al, in OAuth Demystified for Mobile Application
Developers [7], explore the usage of OAuth-like mechanisms
for authentication. Their work included a manual study of 149
applications using OAuth, and found that 89 used it incorrectly.
Moreover, Wang et al. investigate OAuth misuse from a different
angle in their paper Explicating SDKs [39], which examines the
way applications use authentication and authorization SDKs from
companies such as Facebook and Microsoft. A related, but distinct,
vulnerability can occur in improperly implemented services using
OAuth, which implicitly trust responses from identity providers
without verification [40]. In contrast to web platforms, in mobile
apps, these responses originate from the user being authenticated,
meaning they can be tampered with, allowing an attacker to
authenticate as the victim without their private credentials.

As we do in our work, Liu et al. [27] studies how apps unsafely
use public storage. However, their work focuses on how the public
storage is used to store sensitive information (such as the user’s
contact list), whereas we focus on how the public storage is used
to store information that, together with device’s identifiers, is
used to authenticate with remote backends. Similarly, a work by
Bai et al. [2] studies how a specific class of apps (backup tools)
leaks information in publicly accessible files in the external storage.
However, the apps studied by this work require either root or shell
privileges, not obtainable by normal apps under the threat model
we considered (non-compromised OS).

Zuo et al. [42] developed a system, named AutoForge, to auto-
matically find authentication vulnerabilities revolving around user-
private information. Specifically, they focused on detecting apps’
backends vulnerable to password brute-forcing, leaked username
and password probing, and Facebook access-token hijacking. We
consider this work as complementary to ours. In fact, their work stud-
ies how apps’ backend behaves when probed with supposedly-secret
data, such as usernames, passwords, and Facebook authentication
tokens. Conversely, our work focuses on an entire class of authen-
tication schemes that do not rely on this supposedly-secret data.

A paper by Mulliner et al. [29] looks directly at the issue of
SMS-based one-time passwords. They explore various layers of the
problem, including issues of wireless interception, and smartphone
Trojans, similar to our “ID Leaker” While their work was primarily
motivated by the use of mobile Transaction Authorization Numbers
in the banking industry, this same idea has also spread to most
areas of the mobile world that require verification of a user’s phone
number, as we explore in our study. SMS authentication is further
investigated by Schrittwieser et al. [34]. In this work, authors
manually analyze a selection of messaging apps, verifying their
security properties and finding different vulnerabilities in them.

The intrinsic weakness of SMS-based authentication has been
recently pointed out. For instance, security researchers have shown
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that, by exploiting vulnerabilities of the SS7 network used by
telecom company to route phone calls and SMS, it is possible for
an attacker to intercept SMS and steal authentication codes [38].
Moreover, state-sponsored attackers could easily interfere with local
telecom companies to intercept these authentication messages [37].
For this reason, the latest security guidelines advise against the use
of SMS as a two-factor authentication method [31]. It is important
to notice that the vulnerabilities we found in popular messaging
apps (see Section 6.1) were not due to the usage of SMS content for
authentication, but a consequence of the usage of public accessible
files and device’s identifiers to authenticate their users.

9.2 Android Dynamic Analysis

Rastogi et al. proposed AppsPlayground [33], a dynamic analysis
framework aimed at maximizing code coverage of dynamic
analysis. Other works with similar goals are Brahmastra by
Bhoraskar et al. [3] and DynoDroid by Machiry et al. [28]. Our
vulnerability detection system utilizes similar techniques to
interact with apps, however, our goal is different, since we do not
aim to maximize code coverage but to trigger the authentication
mechanisms in a deterministic manner.

Different tools have been proposed to deterministically record
and playback input events on Android: RERAN [13], MOSAIC [24],
MobiPlay [32], and VALERA [25]. The usage of these tools as a
part of our dynamic-analysis based vulnerability detection system
constitutes an interesting future direction, since they could remove
non-deterministic behaviors which currently hinder our analysis.
However, in their current state, these tools do not completely solve
the problem. For instance, RERAN, MOSAIC, and MobiPlay do not
deterministically replay network traffic, whereas in our experiments
we determined that most of the non-deterministic behaviors are
due to discrepancies or delays in the network traffic between an
app and its backend. The approach of VALERA is able to deal with
network traffic, however, it cannot replay user’s interaction in
case of applications using customized rendering, like many of the
ones we detected as vulnerable (see Section 6.2). Unfortunately,
most of the apps we correctly detected as vulnerable actually use
customized interfaces and heavily interact with online backends.

10 CONCLUSION

In this paper, we explored the real-world vulnerabilities of apps
that authenticate their users using device-public information. Some
app authors appear to make the assumption that this information
is somehow hard to obtain or spoof.

To disprove this, first we developed an “identity-transfer” attack
that can be automatically applied to any apps relying on device-
public information to authenticate its users. Then, we developed a
system, based on dynamic analysis, that infers information about the
apps’ backend states to locate insecure authentication mechanisms,
and perform our attack against them. After analyzing 1,000 popular
apps from the Google Play market, we found 41 that were vulner-
able to our generic identity-transfer attack, including two major
messaging apps used with hundreds of millions of installations.

Finally we proposed and implemented solutions to the identified
problems, requiring minimal modifications to the Android
operating system and no modifications to the existing apps.
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