Check for
Updates

Sleak: Automating Address Space Layout Derandomization

Christophe Hauser
Information Sciences Institute
University of Southern California

Jayakrishna Menon
Information Sciences Institute
University of Southern California

Yan Shoshitaishvili

Arizona State University

/Arizona State University

Ruoyu Wang

Arizona State University

ABSTRACT

We present a novel approach to automatically recover information
about the address space layout of remote processes in the pres-
ence of Address Space Layout Randomization (ASLR). Our system,
dubbed Sleak, performs static analysis and symbolic execution of
binary executable programs, and identifies program paths and input
parameters leading to partial (i.e., only a few bits) or complete (i.e.,
the whole address) information disclosure vulnerabilities, revealing
addresses of known objects of the target service or application.
Sleak takes, as input, the binary executable program, and generates
a symbolic expression for each program output that leaks informa-
tion about the addresses of objects, such as stack variables, heap
structures, or function pointers. By comparing these expressions
with the concrete output of a remote process executing the same
binary program image, our system is able to recover from a few bits
to whole addresses of objects of the target application or service.
Discovering the address of a single object in the target application
is often enough to guess the layout of entire sections of the address
space, which can be leveraged by attackers to bypass ASLR.

CCS CONCEPTS

« Security and privacy — Logic and verification; Software reverse
engineering.

KEYWORDS

Binary program analysis, vulnerability discovery, information leak-
age

ACM Reference Format:

Christophe Hauser, Jayakrishna Menon, Yan Shoshitaishvili, Ruoyu Wang,
Giovanni Vigna, and Christopher Kruegel. 2019. Sleak: Automating Address
Space Layout Derandomization. In 2019 Annual Computer Security Applica-
tions Conference (ACSAC’19), December 9-13, 2019, San Juan, PR, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3359789.3359820

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7628-0/19/12...$15.00
https://doi.org/10.1145/3359789.3359820

Giovanni Vigna
University of California, Santa
Barbara

190

Christopher Kruegel
University of California, Santa
Barbara

1 INTRODUCTION

In recent years, mitigation techniques against memory corruption
vulnerabilities made their way into most of the major operating
systems and compilers. Apart from application-level hardening
mechanisms such as stack canaries [15], two major OS-level tech-
niques were introduced: OpenBSD’s W & X [3] (or equivalently,
Microsoft’s DEP) and ASLR from the PaX Team [4]. The former
makes the stack non-executable, while the latter loads the code of
external libraries to randomized locations (i.e., randomized base
addresses), and positions both the stack and the heap in random lo-
cations. While exploitable programming errors (in particular, buffer
overflows) remain very common in commodity software, such mit-
igation techniques raised the bar to the next level when it comes
to exploitation. Circumventing W & X or DEP requires code reuse
attacks such as return to libc [43] or Return Oriented Programming
(ROP) [35]. These attacks rely on the existence of so-called code
gadgets, which are found in the code of shared libraries, and require
knowledge of their addresses in memory. ASLR, in turn, randomizes
such addresses, and makes it difficult, from the attacker’s stand-
point, to a-priori! know the location of code gadgets. As long as
the address space layout of the targeted process remains secret,
attackers will very unlikely be able mount successful ROP attacks
against it.

It is worth mentioning that there are exceptions to this: both
services restarting themselves after crashing, and programs running
on 32-bit platforms, let the door open to statistical attacks [10,
36], allowing the attacker to recover the location of code gadgets.
However, in the general case, ROP attacks require prior knowledge
of the layout of the target’s address space.

This forces attackers to craft more sophisticated attacks by em-
ploying a two-step approach. In the first step, the attacker tries
to gather information about the address space layout in order to
recover the location of code gadgets. This is typically done by
identifying and exploiting a memory disclosure vulnerability in
the targeted application [40]. In the second step, a ROP attack is
mounted against the targeted memory corruption vulnerability.

The requirement of leaking process information for successful
exploitation led to a gain in interest around the process of discov-
ering information disclosure vulnerabilities, and modern exploits
rely on a number of info leaks techniques [34]. These techniques
exploit common logic bugs to leak information from memory, such
as arbitrary reads caused by buffer over-reads, type confusion, or

'Without prior knowledge of the base address of the program, or any address such as
a function pointer.


https://doi.org/10.1145/3359789.3359820
https://doi.org/10.1145/3359789.3359820
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3359789.3359820&domain=pdf&date_stamp=2019-12-09

use after free, amongst others. Apart from leaking addresses, in-
formation disclosure vulnerabilities are also commonly exploited
by attackers to leak sensitive data such as cryptographic keys or
passwords, as in the famous case of the Heartbleed bug [17], for
instance, which remained unnoticed for a long period of time before
it was discovered.

Due to the complexity of the software involved, it is difficult for
existing automated tools to detect deep bugs without additional
knowledge of the specific target environment and specificities of
the analyzed software, and, in practice, manual analysis along with
fuzzing are used in most cases to discover new vulnerabilities [12].

However, the process of manual analysis is both non-exhaustive
and error-prone, which results in a lot of vulnerabilities remaining
(publicly) undiscovered. In addition to this, despite being a very
active research topic, the coverage of fuzzing techniques remains
limited (e.g., program branches depending on specific conditions
such as a hash value are very unlikely explored), resulting in bugs
being found in either shallow paths or specific program branches.

The situation is even more critical when it comes to binary soft-
ware, for which the source code is not available, as it makes the
manual analysis and reverse engineering processes considerably
harder. Yet, proprietary software distributed in binary-only form
is ubiquitous. An example of this is Adobe’s flash player, which
because of its popularity and error-ridden implementation is regu-
larly subject to new discovered vulnerabilities, e.g., CVE-2018-4944,
CVE-2018-4934 or CVE-2018-4920.

Existing approaches to detect information leakage either focus on
out-of-bound reads, type confusion or use-after-free using dynamic
approaches or require source code [16, 21, 24, 26, 33]. However, as
of today, little attention has been spent in the research community
to address the detection of indirect information leaks in binary
software. In this paper, we introduce Sleak, a novel approach to
detecting and exploiting information disclosure vulnerabilities in
binary software, based on static program analysis and symbolic
execution. This approach targets unsafe pointer usage and manipu-
lation leading to partial or complete address leakage.

The underlying intuition behind our approach is that, by observ-
ing outputs of a program, an attacker can infer information about
randomized addresses corresponding to its internal objects? (e.g.,
stack variables), if there exists any dependence between such an
object and any output of the program. A dependence of this kind
may be introduced accidentally (e.g., through a pointer manipu-
lation error) or voluntarily (e.g., the programmer intended to use
the address as a unique identifier). Either way, those information
leaks are, by nature, indirect, and involve a number of operations
transforming the address into a value. Without prior knowledge
of the aforementioned transformations, it is very difficult for an
attacker to differentiate such an output value, leaking sensitive
information about the address space of the program, from a benign
value, as only part of an address may be revealed. In other terms,
transformations over partial pointer addresses "look” just like any
other random value from an observer’s standpoint.

Our system addresses this problem by providing to the observer
the ability to identify which bits of an output value correspond

2By objects, we refer to internal constructs such as stack variables, heap buffers or
functions being accessed through their addresses.

191

to transformations (or computations) over an address, or which
bits of the output indirectly leak address information. Once such
bits have been identified, our system builds symbolic expressions
that represent the values of those bits in terms of addresses of the
program. This accurate tracking of address information relies on
symbolic execution of code at the binary level, by following paths
from address definitions to the use of subsequent data as part of an
output of the program. As a result, based on a symbolic expression
and a concrete output value of a running instance of a program,
our system is capable of reconstructing parts of the (indirectly)
leaked address, up to the full address, depending on the nature of
the transormations.

Our approach does not necessarily require the attacker to inter-
act with the targeted remote process, and in that sense, can be done
passively, as long as the attacker is able to observe its outputs (e.g.,
network packets). It only requires prior knowledge of the binary
code of the corresponding program. In order to attack a remote
process, the attacker needs to i) run our analysis locally so as to
identify address leaks, and to obtain symbolic expressions of the
relevant output values of the program, and ii) solve symbolic con-
straints on these expressions given the knowledge of a concrete
output value. The approach we propose is fine-grained and detects
indirect information leaks at the bit level. Depending on the “size”
of the leak, that is, the number of bits of address that are revealed
in a given output, the attacker may directly and precisely recon-
struct the original address, or may need to brute force a range of
addresses containing the original address. In the latter case, leaking
bits of an address has the potential to significantly reduce the en-
tropy of ASLR, especially since most current implementations use
limited address pools due to practical constraints (e.g., user/kernel
separation, stack located higher than heap, etc.).

Architecture | Stack | Heap | mmap
32-bit 19 13 8
64-bit 30 28 28

Figure 1: Bits of entropy per memory region (Linux 4.5.0)

Shacham et al. [36] have demonstrated that, in practice, a 16-bit
entropy is not enough to prevent brute-force attacks against ASLR
(the authors also estimated that 20-bit remains within the reach of
practical attacks). As represented in Figure 1, current 32-bit Linux
systems are exposed to derandomization attacks, while the entropy
on current 64-bit Linux systems is significantly stronger. As these
numbers [25] suggest, it is therefore necessary for an attacker to
leak from 8 to 10 bits (roughly, a byte) of an address before consid-
ering a brute-force attack. However, the “effective” entropy may be
reduced in practice, as shown by Herlands et al. [19] by leveraging
lower-entropy regions®, which, if not directly exploitable, requires
the attacker to learn only a few bits of address.

To the best of our knowledge, this present work is the first
approach to automatically identify memory disclosures at the bit
level granularity in off-the-shelf binary applications. In summary,
our contributions are the following:

3 As of today, non-PIE (Position Independent Executables) as well as backward com-
patibility with 32-bit applications still expose 64-bit systems to low-entropy regions.



e We leverage binary program analysis techniques in a novel
way in order to detect sensible code paths leaking address
information.

e We design a fine-grained model to identify address defini-
tions in binary code, and to track address dependency in the
arguments of output functions that external attackers may
be able to observe.

e We present a prototype and evaluate it on user-space appli-
cations, a commonly used general purpose library as well
as in a filesystem implementation shipped with the Linux
kernel.

2 APPROACH OVERVIEW

Let us consider a vulnerable server-side authentication function.
It first receives an authentication token through the network, and
verifies its validity. The data structure representing the token, as
shown in Figure 2, embeds a union auth within a token C structure,
containing two fields of different sizes. Accidentally accessing the
union using the wrong field leads to a (partial) address leak since its
members have different sizes. It should be emphasized that this type
of construct is commonly encountered in libraries, such as libSDL’s
event handling code?, for instance, and that such vulnerabilities
are common. In fact, similar type confusion vulnerabilities have
been discovered in the past® in Adobe Flash Player, in the PHP
interpreter and in the Chrome browser, to mention only a few.
Analyzing code in binary form, as shown in Figure 3, is much
less intuitive than the source code version of the same program, due
to the lack of type information about the data structures. Figure 3
shows the relevant basic block involving the unsafe operation. In
this basic block, the address of the token is first stored in the register
rax, and then used to access the memory location of the auth union.
The content of this memory location is then passed as a parameter
to sprintf through the register rdx. It is important to note that,
at the assembly level, no distinction is made between the members
of the union as both correspond to the same underlying memory
location. Another aspect to consider is that the generated output
likely will not fall within the range of an address, since only part of
the address is leaked: this bug causes the value of a char * pointer
to be interpreted as an unsigned int. Such an address leak is not
obvious when simply observing the output of the program.

typedef struct _token {

1

2 int type;

3 union{

4 char xpass;

5 unsigned int key;

6 Yauth;

7 int status;

8 /7 L]

9 }token;

10 #define KEY(s) s—>auth.key
11 #define type_pass [’}

12 #define type_key 1

13 #define valid oxff

Figure 2: Definitions in header file.

“http://www.libsdl.org/release/SDL-1.2.15/docs/html/sdlevent.html
5CVE-2015-3077 , CVE-2014-4721 and CVE-2015-1302.

192

1 mov rax,QWORD PTR [rbp-0x18]

2 mov rdx,DWORD PTR [rax+0x8]

3 mov rax,QWORD PTR [rip+0x200516]
4 mov esi,0x400754

5 mov rdi,rax

6 mov eax,0x0

7 call  4004bo <sprintfgplt>

Figure 3: ASM representation

For additional details, the source code of this network authenti-
cation example and a more detailed description of the vulnerability
are provided in Appendix 8.2.

2.1 Challenges

While it is possible from the source code version of this program to
determine the types of variables and the layout of data structures
in memory, this information is absent from its assembly translation.
This has a direct impact on the complexity of the analysis, whether it
is manual or automatic. Without further information about memory
and register content, it is difficult to detect a vulnerability that leaks
information.

In order to retrieve information from binary programs, our ap-
proach leverages symbolic execution, and accurately tracks expres-
sions that depend on addresses. Symbolic execution allows us to
keep tracks of variable expressions and constraints, and makes it
possible to quantify and determine leaked information at the bit
level. However, one of the intrinsic limitations of symbolic execu-
tion is the problem of exponential path explosion. Even when using
techniques such as Veritesting and path prioritization [7, 31, 41], it
is often infeasible to analyze large programs symbolically. As a re-
sult, avoiding path explosion while keeping an acceptable coverage
of the program represents a challenge.

Our approach, in response, leverages a combination of static
and symbolic program analysis techniques in a novel way in order
to focus on analyzing the relevant paths of the analyzed binary
program, i.e.,, where information about addresses may leak. More
precisely, our approach involves the following analysis phases.

2.2 Analysis phases

Path selection and address identification. The first phase of
our analysis automatically identifies code paths and locations of
interest within the binary. During this phase, Sleak operates as
follows:

(1) Control-flow recovery: Sleak starts by generating a control flow
graph (CFG) of the analyzed binary program, in order to recover
the location of output functions, which are later used as sinks in
our analysis. During this step, a static control-flow graph is built,
and program paths involving output functions are identified.

(2) Address identification: On each identified program path, Sleak
identifies addresses by using a number of inference rules described
in Section 3.3. This step identifies and marks the set of program
locations involving addresses on each path.

Leak detection and address reconstruction. The second phase
of our analysis leverages symbolic execution and constraint solving
in order to accurately detect and determine what is leaked and to
reconstruct address information from the leaked program output.


http://www.libsdl.org/release/SDL-1.2.15/docs/html/sdlevent.html

(3) Detecting address dependence: Sleak determines whether the
arguments of output functions are data-dependent on marked ad-
dresses. The control-flow paths leading to each sink are analyzed
individually. Each selected path is analyzed through a symbolic
execution engine, which generates symbolic expressions and con-
straints on the program’s variables as the path is executed. This
step allows us to precisely characterize the leaked address, as a
symbolic expression, or formula.

(4) De-randomization: Once Sleak reveals the set of leaking out-
puts for a given program along with their formulas, an attacker
is able, based on the observation of a single concrete output of the
program corresponding to this variable, to infer the values of the
leaked bits of address by using a constraint solver, and therefore to
de-randomize the base address of the corresponding object (main
binary or library) within the address space of the remote process.
This process is described in §4.7.

2.3 Automation, scope and objectives

Our approach to detect sensible code paths and to generate symbolic
expressions of leaked addresses is entirely automated based on the
knowledge of the binary executable image of the program to analyze.
In order to de-randomize addresses, it requires, as input, the value
of one instance of concrete output corresponding to one of the
detected leaking paths. From this knowledge, our analysis returns
a set of solution addresses corresponding to the leaked object.

The process of interacting with a remote service is outside of the
scope of this work, and expected to be performed manually by a human
operator. Similarly, while this approach may be leveraged in order
to automate control-flow hijacking attacks (which typically require
such an information leak in order to bypass ASLR), it is outside of
the scope of this work. In this present work, we focus on defeating
ASLR by exposing the symbolic expression and constraints over
pointer addresses based on our automated binary-level approach.

The remainder of this paper presents our approach in more de-
tails. In Section 3, we present Sleak’s static analysis phase, which
selects program paths of interest in a lightweight and scalable man-
ner. Then, in Section 4, we introduce our symbolic execution model,
along with our and address recovery mechanisms. We describe our
evaluation on real-world software in Section 5, followed by a dis-
cussion of our approach in Section 6 and related work in Section 7.
We finally conclude in Section 8.

3 PATH SELECTION AND ADDRESS
IDENTIFICATION

As previously mentioned in Section 2, adopting a purely symbolic
exploration of the target program is very likely to cause path explo-
sion due to the large number of paths encountered by our analysis
system. Furthermore a large amount of library code is involved in
commodity software, which dramatically increases the amount of
code to analyze. This involves analyzing complex code paths going
back and forth between the main binary and the libraries. Code
paths of interest involve data dependencies between an address
(whether it is hardcoded or generated dynamically) and the argu-
ment of an output function. This section presents our approach
to identify sensible code paths of interest on which to focus our

193

analysis. The outcome of this is a set of program paths originating
from sources and terminating in sinks.

3.1 Control-flow recovery

Sleak builds on top of standard techniques for static disassembly
and control-flow recovery, as provided by [1], which it augments
with novel insights and heuristics. The disassembled code is lifted
to an Intermediate Representation (IR) as part of the disassembly
process, and our analyses operate at this level of abstraction.

Sleak’s first analysis stage consists in recovering an interprocedu-
ral static Control Flow Graph (CFG) of the binary, along with basic
coarse information about the program state at the entry point of
each node. This analysis step is to be thought of as a static pre-filter:
for efficiency reasons, the recovered CFG in this step is not context
sensitive, this allows us to scale our analysis to larger code bases, at
the cost of a limited accuracy. A context sensitive control-flow recov-
ery would consider multiple possible call site contexts into account
during the analysis, i.e., analyze each basic block considering the
context of each potential caller when generating the CFG. However,
such a context-sensitive analysis would also come with a consider-
able increase in terms of complexity. By omitting the context, Sleak
reduces the complexity by an order of magnitude and allow our
analysis to scale to larger binaries. On top of this context-insensitive
CFG, Sleak performs lightweight data dependency tracking within
the basic blocks surrounding output functions. In these blocks, con-
stant values that are placed in the binary by the compiler (and
loaded in registers or memory as immediate), as well as the result
of trivial operations, are evaluated, and flagged as addresses, if they
match one of the inference rules presented in paragraph 3.4. In the
presence of such potential addresses, Sleak tracks dependency be-
tween registers and temporaries at the Intermediate Representation
(IR) level and attempt to identify any data dependence® towards
the arguments of one of the output functions.

In summary, this initial analysis step is used to build a CFG
and to identify constants and simple cases of address-dependent
outputs of the program at a small computational cost. Based on
this information, Sleak proceeds with the identification of output
functions, and their call sites within the binary image of the program
and its libraries.

3.2 Output functions identification

When a program depends on the code of shared libraries, its binary
translation is either statically or dynamically linked to the corre-
sponding library code. In the case of dynamically-linked binaries,
output functions are, in the vast majority of cases, external to the
binary and imported as part of a library. It is extremely unlikely to
encounter a binary reimplementing its own output functions such
as printf, therefore we assume that all output functions are part
of external shared libraries. The addresses of such library functions
are exposed in the global offset table of dynamically-linked binaries,
and functions are called through their respective procedure linkage
table (PLT) entries. In this case, extracting function information is
trivial. However, in the case of statically-linked binaries, function
calls are performed directly (as opposed to calling a stub for resolu-
tion), and if a binary does not contain symbol information (i.e., it

®That is, address information used as data.



was stripped), then no information about the location of functions
is available. In this case, we perform a preliminary step of function
identification, as described in Appendix 8.1.

In the reminder of this section, we assume that we are working
with dynamically-linked binaries, and that program outputs rely
on standard library functions. We also assume that we know the
prototype of such standard functions (i.e., we know the type of their
parameters). These assumptions are reasonable, since in practice,
the vast majority of programs rely on the C standard library, which
provides system-call wrappers and the implementation of the most
common input/output functions.

Once output functions have been identified, Sleak locates their
call sites by iterating through each node of the CFG while scanning
for the targets of call instructions. We refer to this analysis step as
SA1. At the end of this step, all reachable, known output functions as
well as their call sites have been identified. Each call site represents
a potential address sink in the following analysis steps.

3.3 Identifying addresses

The next step through identifying address leakage is to identify
memory locations containing addresses, which we treat as sources.
In binary form, addresses can be encoded in different manners:
when the address of a symbol is known at compilation time, the
compiler will substitute the symbol with an immediate value, repre-
senting e.g. the address of a Procedure Linkage Table (PLT) stub, or a
global variable. If the binary is compiled to be position independent
(PIC), addresses will often’ be encoded as offsets from the current
value of the instruction pointer (i.e., $rip + offset in x86_64
assembly). In other cases, addresses may be evaluated at runtime
from simple (e.g., offset from stack pointer) to complex expressions
that are either difficult to determine statically, or not statically
computable without specific knowledge about the application (e.g.,
functions registered at runtime).

Sleak identifies addresses based on the set of inference rules de-
scribed below in § 3.4. We refer to this analysis step as SA2.

3.4 Address inference

While destinations of jump targets can easily be flagged as being
addresses, the distinction between addresses and data is not obvious
in other situations. Consider the following assignment, for example,
along with its assembly translation:

©)
(ASM)

x = (char*) &printf;
mov QWORD PTR [rax],0x4003e0

While it is clear that rax corresponds to an address (as its con-
tained value is dereferenced), 9x4003e0 is an immediate value, and
it may never be used as an address in the program. We may also
encounter cases where the actual value of the operand is unknown
by our analysis. For example, consider the following statement:

mov rax, QWORD PTR [rdi+@x4]

Here, the value located in memory at [rdi+@x4] is read, and stored
in the register rax. Without further analysis about the context, we
cannot tell whether [rdi+@x4] corresponds to an address, or to
some data. In order to cope with this lack of information, we use the

"Depending on the architecture support for instruction pointer addressing.

194

following inference rules to determine whether a value potentially
corresponds to a valid address:

(1) Semantic information: when analyzing dynamically-linked
binaries, we can generally extract information from the binary for-
mat, such as the location of Global Offset Table (GOT), or relocation
information®. The GOT contains addresses of external library func-
tions that are called from within the binary, therefore we know that
any memory read from these locations will contain an address.

(2) Value range: if a value falls into the boundaries of the . text,
.data, heap or stack regions of the address space, then this value
is a potential address and flagged for further analysis.

(3) IR operations: the set of operations available at the intermedi-
ate representation level expects values of different types. If a value
is used as an address as part of an operation (e.g., a memory load,
store or a jump instruction), then it is flagged accordingly.

(4) Return values: the return values of libc functions or system
calls, known to return pointers to memory locations, such asmalloc
or mmap, are tracked as part of our analysis.

3.5 Dynamic resolution

In some large software components such as operating system ker-
nels or complex libraries implementing generic programmatic con-
structs (e.g., parsers), dynamic behavior such as runtime binding,
asynchronous method invocations and polymorphism tend to chal-
lenge static analysis, and it is sometimes necessary to provide
hints to static analysis methods in order to resolve part of the
control flow. For instance, filesystems in the linux kernel register
a inode_operations structure when the initialization routines of
the related modules are executed. Predicting such a behavior stat-
ically, without prior knowledge of the inner mechanisms of the
kernel is not practical.

In order to reason about such programs exhibiting a highly dy-
namic behavior, we rely on partial concrete execution of the code
in order to initialize the program to a reasonable state prior to pro-
ceeding with our analysis. In order to do so, we leverage dynamic
testcases or known well-formed input to the program and collect ex-
ecution traces. From these traces, we extract the execution context
at the entry points of each encountered function, which we feed as
initial state to our analysis. From there, our analysis proceeds with
path selection and address identification in an identical manner to
what is performed in a purely static setting.

In conclusion, the first phase of our analysis performs the recov-
ery of a control flow graph of the binary program, and identifies
sensible control-flow paths between potential sources and sinks.
The next section describes the next phase of our analysis, based on
symbolic execution.

4 LEAK DETECTION AND ADDRESS
RECONSTRUCTION

Sleak leverages symbolic execution to accurately reason about ad-
dress leaks. In this section, we describe why and how we use sym-
bolic execution on vulnerable program paths (described in Section 3)

8Even when debug information is not present or the binary is stripped, the loader
requires a certain amount of information concerning the location of certain GOT slots
along with relocations to perform.



CFG recovery

N

Address Identifica

-

Data Dependence Analysis

Attacker

.

Output Function Identification

Output Observation  Sleak

/

Concrete Value  Leak Formula

Path Selection

N

Concolic Tracing

.

Figure 4: Leak detection and address reconstruction

Derandomization

N

Symbolic Execution

Addresses

and summarize the techniques involved. An overview is presented
in Figure 4.

4.1 Identifying vulnerable paths

The key property of program paths leaking address information is
that, within such paths, a data dependence exists in the program
between a source and a sink. A source corresponds to an instruction
i1 where a location such as an instance of a register or a variable in
memory) containing the value of an address is accessed. A sink, i.e.,
another instruction iz where an argument is passed to an output
function. In order to detect vulnerable paths, Sleak analyzes the
existence of data dependence between sources and sinks which
have been identified during the previous analysis phase presented
in §3.

We now present Sleak’s data-dependence analysis in more de-
tail. We first describe some limitations of static data-dependence
tracking techniques at the binary-level, followed by our approach
to overcome such limitations in the context of our analysis.

4.2 Limitations of static techniques

The generation of data dependence graphs is a common problem
of data-flow analysis, and established algorithms exist in the com-
piler and source-level analysis literature [5, 42], to compute such
graphs based on the computation of so-called def-use chains. A
data dependence graph exposes the relations between statements
of a program with respect to the definition and use (also sometimes
called production and consumption) of data. However, when apply-
ing these principles to binary program analysis, this process is made
difficult by the lack of accuracy of control flow graph techniques
with respect to memory and register content, and the complexity
of memory access patterns, which directly affects the accuracy of
def-use chains. Each time such an access is incorrectly resolved,
it breaks the chain into seemingly independent chains, and the
data-dependence is lost between the corresponding statements.
Therefore, the accuracy of the underlying memory model is critical
in this context.

In order to cope with these limitations, we take inspiration from
previous work [29] and leverage symbolic execution as a tainting
engine.

195

4.3 Symbolic Execution

Dynamic symbolic execution is similar to dynamic emulation of
a program with one main exception: instead of concrete ones and
zeroes, the data in registers and memory are symbolic variables.
This applies quite well to the evaluation of address leaks, since the
variables in the expressions are retained through execution. For
example, the x86 instruction add eax, ebx with eax containing
the symbolic variable A and ebx containing the concrete value 1
will result in the expression A + 1 being stored in eax. Later, we will
use this detail of symbolic execution to identify leaked program
pointers.

We utilize a standard symbolic execution engine, based on com-
mon techniques in the field of symbolic execution [11, 14, 31]. Our
symbolic execution engine interprets binary code and applies ac-
tions carried out by this code onto a symbolic state containing the
values in memory and registers. As the analysis comes to a condi-
tional jump, the constraint solver is queried for possible values of
the jump condition. When a condition can be both true and false
(because the symbolic variable included in its expression is not
constrained or loosely constrained), the state splits and the engine
continues the analysis of both paths, with new constraints added
to the variables involved in the comparison.

4.4 Symbolic tracking

Dynamic symbolic execution suffers from path explosion. As pre-
viously mentioned, when a jump conditional cannot be shown to
be explicitly true or false, then both branches must be followed.
As the analysis continues through a program, more and more of
these branches are spun off (in fact, each conditional has an expo-
nential effect on the number of states) until the analysis becomes
unmanageable.

To remedy this, we use the dynamic symbolic execution engine
to perform selective symbolic tracking by constraining our symbolic
execution engine to analyzing only certain paths. Specifically, we
only trace the previously-identified potentially leaking paths (as
described in Section 4.1). Tracking these paths instead of exploring
the entire binary keeps our analysis from experiencing a path ex-
plosion in unrelated code, and allows us to focus the analysis on
detecting leaks. Conceptually, this is similar to the symbolic compo-
nent of concolic execution, when concrete inputs are symbolically
traced [18].

During symbolic tracking, we represent all pointers in the pro-
gram (for example, the stack pointer, any pointers returned from
allocation functions such as malloc, a code pointer into the binary
program and libraries, etc.) as expressions representing the addition
of a fixed offset to a symbolic variable representing the base of that
region. This allows us to detect leaked pointers in the next step.

4.5 Symbolic execution as a tainting engine

The rich state information extracted from symbolic execution is
used by Sleak to compute data dependence in a precise manner.
More precisely, Sleak keeps tracks of potential variables of inter-
est (ie., corresponding to addresses) by making these variables
symbolic, and by symbolically executing the previously identified
control-flow paths starting at each program point defining a vari-
able of interest (which is determined through static analysis) and



until a sink (output function) is reached. In this context, we leverage
under-constrained symbolic execution [28] in order to start execu-
tion at these arbitrary program points. We refer to this execution
step as SE1. Similarly to [29], we only explore loops one time during
this analysis step in order to speed up the execution while retaining
taint information. In addition to this, SA1 also applies the inference
rules defined in §3.4 in order to identify additional sources that
were missed during static analysis.

When the execution reaches a sink, each function argument is an-
alyzed. The way arguments are passed to output functions depends
on the architecture, and the convention used by the compiler: argu-
ments may be placed on the stack or placed in architecture specific
registers. Figure 5 shows an example of function call on x86_64.
For each argument passed to an output function, Sleak analyzes
the corresponding symbolic expression, formulated as an Abstract
Syntax Tree (AST), in order to determine eventual dependence on
one of the previously marked symbolic variables corresponding to
addresses.

rax [rbp+8]

1

2 mov rsi rax ; arg 2
3 mov rdi 0x40095d ; arg 1

4 call 0x4005b0 ; printf@PLT

Figure 5: Calling an output function

When such a dependence exists, an address leak has been de-
tected. For the sake of precision, the corresponding path is re-
executed symbolically without the aforementioned optimizations
tailored for tainting. The result of this analysis is the symbolic
expression along with path constraints for each leaking path. We
refer to this step of full symbolic execution as SE2.

From there, the process of reconstructing the original address
based on the output is presented in Sections 4.6 and 4.7.

4.6 Recovering Address Information

Each path that is symbolically traced terminates at an output func-
tion. At this point, Sleak analyzes the final state of that path and
checks the content of the output for the presence of symbolic vari-
ables corresponding to addresses. Let us describe it in an example.
Consider the code in Figure 6.

// C code
int x = 1;
printf("X is \%d\n", &x);

Qe w o =

// ASM translation

mov [rsp+81, 1

1
2 lea rsi, [rsp+8]

3 mov rdi 0x40095d ; "X is \%d\n"
4 call 0x4005b0 ; printf@PLT

Figure 6: C and assembly code of type confusion stack leak.

In this example, the bug is introduced by the incorrect referencing
of x: a pointer to it, rather than its value, is passed to printf. In
the assembly code, this manifests as a 1ea (Load Effective Address)
instruction, instead of the mov instruction that would be required to
pass x by value. The lea instruction will, in this case, move rsp+8

196

into the rsi register to pass it as an argument to printf. Since
Sleak initializes the stack pointer to the symbolic value STACK_BASE
at the beginning of the trace, rsi will contain some offset of that
variable as well. For the sake of the example, let us suppose that
the expression in rsp was STACK_BASE-32, in which case the ex-
pression in rsi will be STACK_BASE-24.

When Sleak detects that an expression that depends on one of
the base addresses is passed to an output function, it analyzes it to
identify what parts of the base address can be recovered. In this
simple example, it is a trivial matter of subtracting 24 from rsi to
recover STACK_BASE and defeat ASLR.

4.7 Addressing partial leaks

Not all arithmetic operations are directly reversible. While some
operations such as adding/subtracting a constant or XORing a value
with a constant are reversible, a number of other operations are
not. In these cases, bits of the initial value are lost, which translates
to multiple, possibly many solutions when trying to solve con-
straints on these expressions. Sleak leverages constraint solving to
support a wide range of possible transformations on the pointer,
including complex and/or irreversible arithmetic operations. By
using constraint solving, our approach exercises the space of possi-
ble solutions, which constitutes the set of brute-force candidates
for an attacker to use. Consider, for instance, the case of division
on fixed-sized integers. This operation is not directly reversible.
Let us assume that a program outputs an expression out as being
out = x/4. When executing the program, if one observes that the
output is 42, it is possible to obtain possible values for x using a
constraint solver, e.g., Z3, as follows:
z3.solve(out== 42, out== x/4)

Which will yield the solutions:(x = 168, out = 42),(x =
169, out = 42),(x = 170, out = 42),(x = 171, out = 42)

By leveraging constraint solving, Sleak is thereby able to auto-
matically recover address information even in the case of subtle
instances of partial pointer leaks (e.g., arithmetic transformations
over pointer values leading to leak only a few bytes), based on
the knowledge of a concrete output value of the target running
program.

4.8 Concolic tracing

Sleak supports concolic tracing, that is, the ability to feed the sym-
bolic engine with concrete inputs obtained from the environment
of a dynamic execution trace. Our concolic tracing module takes,
as input, both symbolic data and concrete data obtained from the
input state of the augmented CFG presented in Section 3.

At any point in the trace, the state of the program (including all
of its memory and registers contents) can be obtained, and fed into
our symbolic execution engine. This ability to switch from dynamic
(concrete) execution to symbolic execution allows us to analyze
code paths using a hybrid state composed of concrete and symbolic
data. Symbolic data is introduced by the following three operations:
1) reading an address depending on a symbolic base, as presented
in Figure 6, 2) reading unconstrained® data from the file system,
the network, or any user input, 3) unsupported system calls.

%Since we cannot reason about such input values, these are represented as uncon-
strained symbolic variables at the time they are read from user input.



Sleak leverages this technique to analyze potential leaking paths
identified during the first phase of the analysis.

5 EVALUATION

Our evaluation of Sleak comprises a set of userspace applications
and services, a complex userspace library and a linux kernel filesys-
tem. In more detail, we analyzed:

o 80 binaries from Capture The Flag (CTF) competitions in-
cluding Defcon’s final CTF and its qualifying events from
years 2012 to 2018.

e 1ibXSLT, a library specialized in the transformation of XML
documents, which is part of many common software appli-
cations, including Firefox and Chrome. The extensive size
and the complexity of this library made it a good candidate
for evaluating our system.

o The overlayfs filesystem from the Linux kernel (used by
Docker virtualization containers).

5.1 Ground truth data

We compared our results against (1) CTF writeups and (2) exist-
ing vulnerabilities published in the Common Vulnerabilities and
Exposures database available from NIST, as well as from manual
verification of source and binary code, which motivated our choice
for open-source projects in our evaluation.

5.1.1  CTF binaries. We gathered 80 userspace services from prior
capture the flag competitions. Since it is a requirement for successful
exploitation in the presence of address space layout randomization,
4 of these services are vulnerable to information leakage, where a
pointer address is leaked. We collected ground truth data from CTF
writeups and manual reverse engineering.

5.1.2 libXSLT. Earlier versions of the 1ibXSLT library were vul-
nerable to an information disclosure vulnerability, reported in CVE-
2011-1202. This bug has been fixed since!?, after remaining un-
noticed for 10 years!!. Figure 7 shows the relevant basic block
involving the unsafe operation which is causing the vulnerability
(in the Generateld function) at line 8. For additional clarity, the
matching source code is presented in Appendix 8.2 in Figure 10.
At the beginning of this basic block, the register rbp contains the
value of a heap pointer cur (which corresponds to a pointer of type
xmlNodePtr). This value is then copied into register rdx at line 2,
multiplied by a constant at line 4, and shifted right by 6 at line 7.
This is how the compiler translates and optimizes integer division
(here, the value is divided by sizeof (xmlNode)).

5.1.3  OverlayFS. The implementation of the overlayfs filesystem
in the Linux kernel (up to version 4.4.5) leaks the kernel memory
address of a struct dentry pointer to userspace!?.

At the beginning of the vulnerable function, the register rsi con-
tains a pointer to a dentry structure. This pointer is a heap pointer,
that is allocated outside of the scope of this function. Therefore,

by only looking at the code in Figure 8, there is no indication that

Ohttps://git.gnome.org/browse/libxslt/commit/?id=ecb6bcb8d1b7e44842e
dde3929f412d46b40c89f

Hyt was introduced 10 years
ladlac261f5e4e0efbb656263a26d27bedea2afe
12This bug was fixed on September 16, 2016.

earlier in commit

197

1 mov rax, rbp ; cur

2 mov rdx, 8888888888888889%h

3 lea rsi,[rip+ox1257al ; "id%ld"
4 mul rdx

5 lea rdi, [rsp+0x10] ; str

6 g xor eax, eax

7 shr rdx, 0x6

3 call 0x7ffff7bag920 <sprintfeplt>

Figure 7: Snippet (ASM) of the Generateld function from libXSLT

1 ﬂ push rbp

2 push  rbx

3 i mov rex,rsi

. M mov rdx, Oxffffffff81a85100 ;"format"
5 5 mov rbp, rdi

6 6 mov esi,ox14 ;"n"

7 7 sub rsp,0x20

8 8 lea rbx, [rsp+0x4]

o 9 mov rax,QWORD PTR gs:0x28

u  [ig  mov QWORD PTR [rsp+0x18],rax

2 1] xor eax, eax

13 E mov rdi, rbx ; "name"

u 13 call oxffffffffg13c5a60 // snprintf()
15 E . |

6 [15  cal oxfFFFffff811966fe // printk()

Figure 8: Assembly translation of the source code in Figure 11.

this value is a pointer. This value is moved to register rcx (line 3)
and the snprintf function copies it to the local stack variable at
rsp+0x4. After some error checking (ommited from Figure 8 for
brievity), the value of name is then exposed to userland by invoking
printk().

5.2 Experimental setup

Our system builds on top of the angr program analysis framework,
which we extended ( 1500 lines of Python) with custom analyses
and heuristics to detect information leakage vulnerabilities. Our
dynamic trace collection mechanism is a custom implementation.
We made light modifications to the Qemu emulator and leveraged
its gdb stub to communicate with our analysis platform and to
dump the memory of the stack, the heap, and the global data areas.

Our analysis runs on stripped binary executables. Therefore, in
spite of the presence of open-source code in our evaluation dataset,
Sleak operates identically regardless of whether the underlying
code is open-source or closed-source.

For each binary, the number of basic blocks in the control-flow
graph, the number of analyzed functions, and the number of sinks
marked are logged. In the case of 1ibXSLT and Overlayfs, we also
leverage test cases to collect dynamic traces. For 1ibXSLT, our dy-
namic phase consists of executing test cases which ship with the
library. For the Linux kernel filesystem, it extracts a large archive
containing the Linux kernel source tree while collecting dynamic
traces. All our experiments were performed on a Dell Precision
tower 5810 with 6 Xeon E5-1650 v4 @ 3.60GHz CPUs and 64GB of
memory. See Section 6.1 for performance information.



Challenge CFG nodes | Functions | Sinks | Leak | GT
CTF binaries

0x00ctf 17 left 72 1 3 v v
a5afefd29d5dc067ed6507d78853¢691 496 16 11 v X
defcon_16_heapfundu 200 5 1 v N

ez_pz 91 2 3 v v

pwnl 318 1 1 v X

int3rrupted 327 6 4 v v

libXSLT 76842 505 27 v v

Overlayfs 1981 191 27 v v

Table 1: Analysis results (summarized)

5.3 Analysis results

We summarize our results (i.e., we only report binaries for which
a leak exists or is reported by our system) in Table 1, which we
compare against the ground truth, represented in the last column
labelled GT. Sleak successfully detects all instances of leaks present
in our dataset, with the addition of two additional leaks which
correspond to false positives, i.e., where no leaks actually exist in
the corresponding binaries. After investigation, we were able to
determine that these false positives are caused by intentional stack
manipulations attempting to obfuscate program behavior which
do not follow standard practices (i.e., as found in benign programs
compiled with standard compilers). In all cases, Sleak returns the
symbolic expression of the leaked variable along with its path
constraints. From this knowledge, an attacker who has observed a
concrete output of the program can easily leverage constraint solving
as described in §4.7 in order to reveal the solutions corresponding to
the set of possible leaked address values (which corresponds to a single
value in cases where a vulnerability exposes an entire address), and
therefore bypass ASLR (i.e., a single address is sufficient to recover the
base address of a loaded program or library).

5.3.1 libXSLT. Sleak detects this vulnerability in two different set-
tings involving two different inference rules: 1) in a purely static
setting, without any knowledge of the dynamic behavior of the
library, and 2) by starting the analysis from a concrete state, as
described in §3.5. In the following, we present the results for both.

(1) Static detection. In a purely static setting, Sleak identifies
27 potential sinks during its first analysis phase (SA1), called from
7 distinct functions out of 505, as represented in Table 1, including
the vulnerable call to sprintf. In terms of address detection (SA2),
the GenerateId function does not present any information which
would enable our analysis to determine that one of the parameters
of sprintf is a pointer. The reason for this is that generateld
gets this pointer from its parameters, which types are unknown
to our analysis. However, during the SE2 analysis phase, while
the symbolic execution engine explores multiple paths of the func-
tion, the analysis hits an IR operation corresponding to a deref-
erence (i.e., inference rule #3 from §3.4) in another function call
happening in a parallel branch to the branch performing the vul-
nerable sprintf call. The call in question invokes the function
int xmlXPathCmpNodes() which defeferences the same XMLN-
odePtr pointer. Sleak propagates this information back to the up-
most branching point one function higher in the call tree, and to
infer that the parameter of sprintf is indeed a pointer. This ability

198

to propagate address type information across branches is powerful,
and combined with address inference rules, allows us to reason
about complex code.

(2) Static detection augmented with traces. When neither
the analyzed code paths nor their parallel branches expose sensible
IR operations, it may not be possible to infer address information
from the code statically. Therefore, Sleak also leverages execution
traces as presented in Section 3.5. By doing so, Sleak obtains a
concrete call context for each function invoked in the execution
trace, which is then used as part of our static model. The developers
of 1ibXSLT distribute the library along with test cases, which we
leverage as input data in order to generate dynamic traces. Our
system successfully detects the vulnerability, in the basic block
represented in Figure 7. The value in register rbp is identified as a
heap variable by our analysis, and the call to sprintf as a dangerous
use of an address. Sleak infers the presence of an address due to
inference rule #2 presented in §3.4.

Symbolic expression of leaked data Regardless of whether a
static or dynamic detection method is used, when executing the
detected path symbolically as part of SE4, at the beginning of the
first instruction, our symbolic execution engine represents the con-
tent of register rbp as an unconstrained symbolic variable of the
form heap_addr_uid where uid is a unique identifier. After exe-
cuting instruction 3, the register rsi contains the format string
id%1d. This represents the first argument to the call to sprintf3.
When reaching the call to sprintf, Sleak parses the format string
in register rsi, and determines that the value of the next argument
can be fetched directly from register rdx without dereferencing a
pointer, since %1d expects a long integer. At this point, the value
contained in register rdx is represented by our symbolic engine by
an expression describing operations on a symbolic heap pointer.
This expression is represented internally in terms of bit vector oper-
ations by our symbolic engine, and it is equivalent to a division by
sizeof (xmlNode) of the symbolic heap variable. Since arithmetic
division is not a reversible operation, multiple solutions are possi-
ble (i.e., it is a partial leak). As a result, Sleak outputs the symbolic
expression of the leaked address along with its associated constraints.

5.3.2  Overlayfs. The Linux kernel presents a very asynchronous
behavior as well as many dynamic characteristics, such as regis-
tering stuctures at runtime (e,g.,struct inode_operations) and
other filesystem specific interfaces which are hooked at runtime.
Therefore, the static detection phases of Sleak is not able to detect

BFollowing the calling convention of the ELF format on x86_64.



this vulnerability, but our approach of static detection augmented
with traces is effective, following the same steps as the analysis
of 1ibXSLT described earlier. When reaching the call to printk
at line 15 of Figure 8, our symbolic engine evaluates the content
of register rsi to an unconstrained symbolic variable of the form
heap_addr_uid, corresponding to the leakage of a full heap ad-
dress. This expression indicates that the output value corresponds
to an entire address.

6 DISCUSSION

6.1 Performance and scalability

In terms of scalability, a potential bottleneck of any approach re-
lying on symbolic execution is peak memory usage. This is why
Sleak carefully filters out the sets of paths to analyse based on static
analysis. During our experiments, the peak memory consumption
was below 20GB at all times, and the longest symbolic path was
executed under 10 minutes. The overall analysis time was under 80
minutes for CTF binaries, and under 20 hours for libXSLT and the
kernel filesystem together. We have not reached any memory bot-
tleneck, even on kernel code, which demonstrates the effectiveness
of our filtering approach.

6.2 Limitations

Sleak and its implementation rely on state of the art static analysis
and symbolic execution technique. Despite this fact, our approach
is subject to code coverage limitations and to state explosion, in
some cases.

Code coverage: as discussed in Sections 3 and 4, the coverage
of the static analysis techniques that we presented has some limita-
tions. Due to the inherent difficulties of statically recovering a full
control-flow graph, some parts of the analyzed binary application
may not be reachable by Sleak, which potentially yields a number
of false negatives. We mitigate this problem by leveraging dynamic
resolution, as presented in Section 3. As a result, our approach
provides a trade-off between coverage and accuracy.

State explosion: large code paths sometimes remain to be sym-
bolically analyzed, even after the first phase of our analysis. This
happens in particular when tracking heap pointers are initialized
early, and used/leaked later in the program, after executing a long
code path. Complex loops can also cause state explosion, regardless
of the size of the analyzed paths. We partially mitigate this issue
by leveraging veritesting and path prioritization techniques.

Implementation: empirically, while the implementation of our
proof-of-concept is able to successfully analyze real-world binary
applications, our modeling of the environment (e.g., system calls)
as well as some complex standard library functions (e.g., string
functions such as strcmp) is neither comprehensive nor completely
accurate, which may impacts our coverage in some cases (e.g., by
involving incorrect constraints on some symbolic variables, which
may lead to unsatisfiable symbolic states.) This problem is not
specific to our approach, and affects any binary analysis approach
in general.

199

7 RELATED WORK

Information leakage. In the last decade, researchers have pro-
posed several approaches to detect information leaks from kernel-
space towards user-space at the source code level. Peiro et al. re-
cently proposed an approach based on static analysis for detecting
kernel stack-based information leaks [27]. The proposed approach
is able to detect particular instances of information leaks (such as
leaks caused by missed memory initializations and missing checks
on user reads). The authors found five new vulnerabilities in the
Linux kernel by analyzing its source code with their tool. However,
one of the limitations of this approach is that the analysis is limited
to single functions (i.e., inter-function analysis is not supported).

Johnson et al. [22] previously introduced a pointer bug detection
model based on type qualifier inference. The authors extended
the open-source tool CQUAL [2] for this purpose. This approach
requires manual annotations of functions, such as system calls
accepting user arguments, before the analysis can be performed.
While such source-level approaches address a similar problem than
the focus of our study, these are not applicable as-is at the binary
level, due mainly to the lack of type information in the disassembly.

On the information theory side, past research focused on quan-
titative information flow [6, 8, 38], as initially proposed by Den-
ning [30], where the objective is to measures the amount of secret
information leaked by a program, by observing its outputs. In par-
ticular, Backes et al. [8] proposed a model based on equivalence
relations to characterize partial information flow. This model is
used to identify which information is leaked and provide a quanti-
tative interpretation of the leaked variables. While this approach
is generic and may be used to reason about information leakage
of any sort, it does not focus on individual program runs, but in-
stead generalizes the behavior of a program. In comparison to our
approach, this model lack information about the mapping between
actually leaked bits, and their origin within the program’s memory.

In [32], Seibert et al. present a model for remote side channel
attacks that allow attackers to exploit memory corruption vulner-
abilities even in the presence of code diversification. The authors
claim that the assumptions behind code diversity are broken, due to
the fact that executing code leaks information about the code itself,
which may allow the attacker, under certain circumstances, to re-
cover the location of code gadgets. While this model achieves goals
similar to ours, this requires the attacker to actively modify the
state of the program, by overwriting data or crafting specific inputs,
where our approach is passive and relies solely on the observation
of the outputs of the program.

Type casting verification. Existing approaches to detect in-
formation leakage either focus on out-of-bound reads, type confu-
sion or use-after-free using dynamic approaches or require source
code [16, 21, 24, 26, 33]. In particular, Hextype leverages source-
code analysis along with compiler-level techniques in order to
replace static checks by runtime checks. Similarly, EffectiveSan [16]
enforces type and memory safety in C and C++ programs by using
a combination of low-fat pointers, type meta data and type/bounds
check instrumentation.

However, as of today, little attention has been spent in the re-
search community to address the detection of indirect information
leaks in binary software.



Binary program analysis. At the binary level, a number of
approaches based on symbolic execution have been proposed to
detect memory corruption vulnerabilities in off-the-shelf applica-
tions [31, 39, 41], to analyze firmware [37, 44] in order to detect
backdoors and logic bugs, and to analyze drivers [13, 23] for reverse
engineering purposes and for detecting undesired behavior. Among
these existing binary-level approaches, the BORG [26] focused on
detecting buffer overreads in binary software using guided symbolic
execution. Our approach draws on similar concepts, but focuses on
addressing different challenges.

8 CONCLUSION

We presented Sleak, a system designed to recover information about
the memory layout applications, even in the presence of address
space randomization (ASLR). Our system analyzes applications at
the binary level, and detects information disclosure vulnerabilities,
regadless of how many bits of pointer addresses are leaked. Sleak
leverages symbolic execution to craft precise symbolic expressions
representing the addresses of known objects of the target appli-
cation, such as stack or heap variables, or function pointers. As a
result, even in the case of partial information disclosure, Sleak is
able to recover useful information about the leaked address, and
defeat ASLR.

AKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their valu-
able comments and input to improve our paper. This material is
based on research sponsored by DARPA under agreement numbers
HR001118C0060, FA8750-19-C-0003 and the NSF under Award num-
ber CNS-1704253. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA, or the U.S. Government.

REFERENCES

(1]
(2]

(3]
(4]
(5]

Angr, a binary analysis framework. http://angr.io.

CQUAL, A tool for adding type qualifiers to C. http://www.cs.umd.edu/ jfoster/c-
qual/.

OpenBSD’s W*X. http://www.openbsd.org/papers/bsdcan04/mgp00005.txt.
The PAX Team. https://pax.grsecurity.net.

A. V. Aho, M. S. Lam, R. Sethi, and ]J. D. Ullman. Compilers: Principles, Techniques,
and Tools (2Nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006.

M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, and C. Palamidessi. Founda-
tions of security analysis and design vi. chapter Quantitative Information Flow
and Applications to Differential Privacy, pages 211-230. Springer-Verlag, Berlin,
Heidelberg, 2011.

T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing symbolic execution
with veritesting. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 1083-1094, New York, NY, USA, 2014. ACM.

M. Backes, B. Kopf, and A. Rybalchenko. Automatic discovery and quantification
of information leaks. In Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy, SP °09, pages 141-153, Washington, DC, USA, 2009. IEEE Computer
Society.

T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. Byteweight: Learning to
recognize functions in binary code. In Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC’14, pages 845-860, Berkeley, CA, USA, 2014. USENIX
Association.

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh. Hacking blind.
In Security and Privacy (SP), 2014 IEEE Symposium on, pages 227-242, May 2014.

(6]

8

=

[9

=

[10

200

[11

[12

(13]

(14]

[16]

(17]

[18

[19

[20

[21

[22]

(23]

[24

[25]

[26

)
=

@
&,

C. Cadar, D. Dunbar, D. R. Engler, et al. KLEE: Unassisted and Automatic Genera-
tion of High-Coverage Tests for Complex Systems Programs. In OSDI, volume 8,
pages 209-224, 2008.

M. Carvalho, J. DeMott, R. Ford, and D. Wheeler. Heartbleed 101. Security Privacy,
IEEE, 12(4):63—67, July 2014.

V. Chipounov and G. Candea. Reverse engineering of binary device drivers
with revnic. In Proceedings of the 5th European Conference on Computer Systems,
EuroSys ’10, pages 167-180, New York, NY, USA, 2010. ACM.

V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-path
analysis of software systems, volume 47. ACM, 2012.

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, SSYM’98, pages 5-5, Berkeley, CA, USA, 1998. USENIX
Association.

G. J. Duck and R. H. Yap. Effectivesan: type and memory error detection using
dynamically typed c/c++. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 181-195. ACM, 2018.
Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver,
J. Amann, J. Beekman, M. Payer, and V. Paxson. The matter of heartbleed. In
Proceedings of the 2014 Conference on Internet Measurement Conference, IMC ’14,
pages 475-488, New York, NY, USA, 2014. ACM.

P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox fuzzing for security
testing. Communications of the ACM, 55(3):40-44, 2012.

W. Herlands, T. Hobson, and P. J. Donovan. Effective entropy: Security-centric
metric for memory randomization techniques. In Proceedings of the 7th USENIX
Conference on Cyber Security Experimentation and Test, CSET’14, pages 5-5,
Berkeley, CA, USA, 2014. USENIX Association.

E. R. Jacobson, N. Rosenblum, and B. P. Miller. Labeling library functions in
stripped binaries. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools, PASTE ’11, pages 1-8, New York, NY, USA,
2011. ACM.

Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer. Hextype: Efficient detection of
type confusion errors for c++. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 2373-2387. ACM, 2017.

R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type inference.
In Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04, pages 9-9, Berkeley, CA, USA, 2004. USENIX Association.

V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source binary device
drivers with ddt. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, pages 12-12, Berkeley, CA, USA, 2010.
USENIX Association.

B. Lee, C. Song, T. Kim, and W. Lee. Type casting verification: Stopping an
emerging attack vector. In USENIX Security Symposium, pages 81-96, 2015.

H. Marco-Gisbert and smael Ripoll-Ripoll. Exploiting linux and pax aslr’s weak-
nesses on 32- and 64-bit systems. In Blakhat Asia 2016, 2016.

M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos. The borg:
Nanoprobing binaries for buffer overreads. In Proceedings of the 5th ACM Confer-
ence on Data and Application Security and Privacy, CODASPY ’15, pages 87-97,
New York, NY, USA, 2015. ACM.

S. Peir6, M. Mufloz, M. Masmano, and A. Crespo. Detecting stack based kernel
information leaks. In International Joint Conference SOCO’14-CISIS’14-ICEUTE 14,
pages 321-331. Springer, 2014.

D. A. Ramos and D. R. Engler. Under-constrained symbolic execution: Correctness
checking for real code. In USENIX Security Symposium, pages 49-64, 2015.

N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi, E. Gustafson, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna. Bootstomp: on the security of bootloaders in
mobile devices. In 26th USENIX Security Symposium, 2017.

D. E. Robling Denning. Cryptography and Data Security. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1982.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Un-
leashing mayhem on binary code. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 380-394. IEEE, 2012.

J. Seibert, H. Okhravi, and E. Séderstrém. Information leaks without memory
disclosures: Remote side channel attacks on diversified code. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, CCS
’14, pages 54-65, New York, NY, USA, 2014. ACM.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer:
A fast address sanity checker. In USENIX Annual Technical Conference, pages
309-318, 2012.

F.J. Serna. The info leak era on software exploitation. Black Hat USA, 2012.

H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS *07, pages 552-561, New York, NY,
USA, 2007. ACM.

H. Shacham, M. Page, B. Pfaff, E.-]. Goh, N. Modadugu, and D. Boneh. On the
effectiveness of address-space randomization. In Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS *04, pages 298-307,


http://angr.io
http://www.openbsd.org/papers/bsdcan04/mgp00005.txt
https://pax.grsecurity.net

New York, NY, USA, 2004. ACM.

Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice -
automatic detection of authentication bypass vulnerabilities in binary firmware.
2015.

G. Smith. On the foundations of quantitative information flow. In Proceedings of
the 12th International Conference on Foundations of Software Science and Compu-
tational Structures: Held As Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, FOSSACS *09, pages 288-302, Berlin, Heidelberg,
2009. Springer-Verlag.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena. Bitblaze: A new approach to computer security via
binary analysis. In Proceedings of the 4th International Conference on Information
Systems Security, ICISS °08, pages 1-25, Berlin, Heidelberg, 2008. Springer-Verlag.
R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter.
Breaking the memory secrecy assumption. In Proceedings of the Second European
Workshop on System Security, EUROSEC ’09, pages 1-8, New York, NY, USA, 2009.
ACM.

Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. AEG:
Automatic Exploit Generation. In Proceedings of the network and Distributed
System Security Symposium, Feb. 2011.

T. B. Tok, S. Z. Guyer, and C. Lin. Efficient flow-sensitive interprocedural data-
flow analysis in the presence of pointers. In Proceedings of the 15th International
Conference on Compiler Construction, CC’06, pages 17-31, Berlin, Heidelberg,
2006. Springer-Verlag.

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On the ex-
pressiveness of return-into-libc attacks. In Proceedings of the 14th International
Conference on Recent Advances in Intrusion Detection, RAID’11, pages 121-141,
Berlin, Heidelberg, 2011. Springer-Verlag.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A Framework
to Support Dynamic Security Analysis of Embedded Systems’ Firmwares. In
Network and Distributed System Security (NDSS) Symposium, NDSS 14, February
2014.

[37]

[38

[39]

[40

[41

[42]

[43]

[44

APPENDIX

8.1 Function identification

Binaries not exposing symbol information (i.e, stripped binaries),
do not provide information about the location of functions, which
prevents Sleak from directly identify output functions. However,
the general problem of function identification in binary remains
an open research challenge, and the accuracy of existing solutions
is limited [9, 20]. Our approach to function identification takes
different steps, and focuses on the particular case of detecting output
functions. We first identify function boundaries by scanning the
binary for function prologues and epilogues. Once the location
of functions has been identified, we use the following heuristics
to recognize output functions: if one of the identified function
is invoking the write system call, and if one of the function’s
arguments is passed to this system call, we consider it an output
function. This allows us to detect the majority of output functions,
given the fact that most of them are, in practice, implemented as
writing to an underlying file descriptor 14, and therefore perform a
call towrite.

8.2 Network authentication example

The source code of the network authentication function presented
in §2 is shown in Figure 9 below. The vulnerability lies at the
end of the function verify_token: when the authentication is
unsuccessful, an unprotected access to the union causes the value

of its key member to always be read regardless of the token’s type.

If a token with type_pass is passed to the verification function, this
results in an address leak, where a char * address is interpreted
as being an int value. The amount of leaked bits depends on the

4This model does not consider hardware-specific /O mappings implemented through
e.g.ioctl.

201

architecture!®. Looking at the C code in Figure 9, it is possible for an
analyst to manually determine that the unguarded call to sprintf
may leak an address. However, analyzing code in binary form, as
shown in Figure 3, is much less intuitive than the source code
version of the same program, due to the lack of type information
about the data structures.

1 int authenticate(token #*v)

2 A

3 -

4 switch(v->type)

5 {

6 case type_pass:

7 // Handle password checking.
3 break;

9 case type_key:

10 // Handle key verification.
11 break;

12 default:

13 return -EINVAL;
14 }

15 }

16 int verify_token(token *v)

17 {

18 int auth;

19 cee

20 if (lv)

21 return;

22 -

23 auth = authenticate(v);
24 if (auth == 1)

25 {

26 v->status = valid;

27 return;

28 }

29 cee

30 sprintf(buf,"INVALID:%d",v->auth.key);
31

32 int authenticate_client(void)
33

34 token *tk;

35 .

36 tk = received_token()

37 verify_token(tk);

38 }

Figure 9: Accidental address leak through type confusion.

9 GROUND TRUTH/SOURCE CODE
9.1 libXSLT

Let us consider the code in Figure 10. This code snippet shows the
vulnerable version of the function providing the XSLT transforma-
tion generate-id(). For the sake of brevity, we only represented
the relevant parts of the function, w.r.t. the aforementioned vulner-
ability in Figure 10. The purpose of this function is to generate a
unique identifier for a given XML node. In this function, the variable
val represents the unique identifier. In order to generate a unique
value, the value of cur is assigned to val, which is then divided by
sizeof (int). Note that while cur is a stack variable, its content is
the address of ctx->context->node, which contains the address
of a heap pointer. The identifier contained in val is then appended
to a string, which value is later exposed in the output document.
Exploiting this bug reveals the heap location of the process running

150n x86_64 machines, this corresponds to a leak of 32 bits out of a 64-bit address.



this library. Among other applications using 1ibXSLT, Chrome, Sa-
fari and Firefox were affected. This vulnerability was introduced
by an intentional, but unsafe, pointer manipulation. Without se-
curity in mind, an address may seem like a good candidate, for its
uniqueness, to generate an identifier. Looking at the comments in
the vulnerable version of the code, we can also confirm that the
programmer intentionally used the address of the XML node to
compute a unique identifier. However, by multiplying the output
value by sizeof (int), it is possible to fully recover the leaked
heap address.

void GenerateId(ContextPtr ctxt, int nargs)
{

xmlNodePtr cur = NULL;

unsigned long val;

xmlChar str[20];

cur = ctxt->context->node;

val = (unsigned long)(char x*)cur;
val /= sizeof(xmlNode);
sprintf((char *)str, "id%ld", val);

O ~NO U AWN =

Figure 10: Simplified version of CVE-2011-1202 in libXSLT.

9.2 OverlayFS

In recent years, because of the escalation of user-space security
mechanisms and protections against memory corruption attacks,
it became more and more difficult for attackers to reliably execute
their exploits on remote systems. In contrast, the Linux kernel
started to implement support for address space layout randomiza-
tion later, and even when it is enabled, it provides less entropy than
its user-space counterpart. As a result, attackers’ attention partially
shifted towards kernel-exploits, which became more common.

1 struct dentry *ovl_lookup_temp(

2 struct dentry *workdir,

3 struct dentry xdentry)

+ {

5 1 struct dentry *temp;

6 2 char name[20];

7 3

8 4 snprintf(name, n, "#%1x", (unsigned long)
9 dentry);
10 5 temp = lookup_one_len(

11 name, workdir, strlen(name));

13 7 if (!IS_ERR(temp) && temp->d_inode)
14 8 {

15 9 pr_err(msg, name);

16 10 dput(temp);

17 11  temp = ERR_PTR(-EIO);

18 }

19 return temp;

Figure 11: Vulnerable function in the overlayfs filesystem.

9.2.1 Pointer disclosure. The implementation of the overlayfs
filesystem in the Linux kernel (up to version 4.4.5) leaks the kernel

memory address of a struct dentry pointer to userspace'®, as

18This bug was fixed on September 16, 2016.
shown in Figure 11. This pointer address was meant to be used as a

unique identifier (and to that extend, this bug is similar to the bug
in 1ibXSLT that we presented earlier).

202





