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ABSTRACT
External vendors develop a signi�cant percentage of Windows ker-
nel drivers, andMicrosoft relieson thesevendors tohandle all aspects
of driver security. Unfortunately, device vendors are not immune to
software bugs, which in some cases can be exploited to gain elevated
privileges. Testing the security of kernel drivers remains challenging:
the lack of source code, the requirement of the presence of a physical
device, and the need for a functional kernel execution environment
are all factors that canprevent thorough security analysis.As a result,
there are no binary analysis tools that can scale and accurately �nd
bugs at theWindows kernel level.

To address these challenges, we introduce POPKORN, a light-
weight framework that harnesses the power of taint analysis and
targeted symbolic execution to automatically �nd security bugs in
Windows kernel drivers at scale. Our system focuses on a class of
bugs that a�ect security-critical Windows API functions used in
privilege-escalation exploits. POPKORN analyzes drivers indepen-
dently of both the kernel and the device, avoiding the complexity
of performing a full-system analysis.

We evaluate our system on a diverse dataset of 212 unique signed
Windows kernel drivers.When run against these drivers, POPKORN
reported 38high impact bugs in 27uniquedrivers,withmanual veri�-
cationrevealingnofalsepositives.Amongthebugswefound,31were
previously unknown vulnerabilities that potentially allow for Eleva-
tion of Privilege (EoP). During this research, we have received two
CVEs and six acknowledgments from di�erent driver vendors, and
we continue to workwith vendors to �x the issues that we identi�ed.
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1 INTRODUCTION
Device drivers are essential to modern operating systems, serving
as the backbone of communication between applications and under-
lying hardware components. In the Microsoft Windows operating
system, device drivers handle critical hardware interactions, such
as access to the GPU, BIOS updates, and management of network
cards. Since all of these operations require privileged access, dri-
vers are loaded directly into the kernel, and execute at the highest
privilege level (i.e., Ring 0) [72]. Device vendors develop most of the
drivers for Windows using frameworks provided by Microsoft, such
as theWindows Driver Model (WDM) [25] and theWindows Driver
Framework (WDF) [35]. Unfortunately, device vendors often lack
rigorous, security-focused development processes, and as a result,
they introduce bugs that can be exploited to gain elevated privileges.

To enforce basic security and performance requirements, Mi-
crosoft requires that drivers be signed by theWindows Hardware
Quality Labs (WHQL) and be certi�ed with Extended Validation
(EV) [36, 70]. While this may appear to be an adequate safeguard,
this stamp of approval can also provide a false sense of security,
as Microsoft does not thoroughly verify a driver’s code before its
certi�cation, and in fact, relies on vendors to adequately secure their
own drivers.

Indeed, recent attacks have shown that certifying drivers does not
provide complete security [53, 58, 75]. A relatively new technique
called BYOB ("bring your own bug") makes it possible to load an
unsigned driver into the kernel by piggybacking on a signed-but-
vulnerable driver [56]. For instance, theLoJax andSlingshotmalware
families [20, 60] ship a signed-but-vulnerable driver with the mal-
ware itself, which allows for loading of the malware into the kernel.
This problem also negatively a�ects game vendors, as players can
bypass anti-cheat software running in the kernel by loading their
unsigned kernel cheats [15, 63, 64].

Microsoft has taken these issues seriously, and developed several
veri�cation tools to support driver developers during the devel-
opment life cycle. These tools can be roughly divided into static
veri�cation tools, and dynamic veri�cation tools. Static tools, such
as Static Driver Veri�er (SDV) [46], analyze the driver source code
and are targeted towards �nding erroneous interactions with the
Windows kernel. On the other hand, dynamic tools, such as Driver
Veri�er (DV) [24], monitor the driver execution to detect bugs that
are di�cult to �nd statically (e.g., bu�er overruns and use-after-free
vulnerabilities). However, DV and SDV only support a set of speci�c
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assertions, rules, and tests that focus on the correct usage of Win-
dowsAPIs. Consequently, the applicability of these tools is restricted
to a limited subset of security vulnerabilities.

Given the critical role of drivers, developing third-party tools
for the identi�cation of bugs and vulnerabilities in kernel drivers
remains a priority. However, third-party analysis of kernel drivers
is challenging for several reasons. First of all, certain tools operate
only on source code, which is often not available for commercial
drivers [46]. Second, some tools require the presence of the hardware
device managed by the driver, which makes the analysis di�cult
to scale [16, 61, 62]. Thirdly, some analysis techniques require that
the driver be operating in the context of a functional kernel, which
makes the analysis resource-intensive and challenging to automate
because of the required installation procedure [16, 55, 61, 62].

To address these issues, we designed a lightweight and �exible
vulnerabilitydetection framework forWindowskernel drivers called
POPKORN. The POPKORN framework focuses on identifying inse-
cure uses of (certain) Windows kernel API functions within drivers.
More precisely, POPKORN combines taint analysis techniques and
targeted symbolic execution to detect when unsanitized user input
(the source) can reach functions that provide access to critical kernel
resources (the sinks). By focusing on a speci�c pattern of vulnera-
bility, POPKORN can analyze the binary image of the driver without
the need for the actual device or a functional kernel. As a result, the
POPKORN framework can perform automated analysis at scale on
a heterogeneous set of Windows drivers, including (but not limited
to): BIOS drivers, GPU drivers, display drivers, printer drivers, and
system diagnostic utilities.
In summary, this paper makes the following contributions:

(1) Weperforman in-depthanalysis of a classof logicbugs inWin-
dows kernel drivers. We focus on API functions commonly
seen in the exploitation of bugs that lead to local privilege
escalation, showing how the dispatch interface for driver in-
teractionsmight allow user-mode input to reach critical sinks
without proper checks.

(2) We present the design and implementation of POPKORN,
a �exible, lightweight, and extensible framework to detect
these API-misuse bugs in a diverse set of Windows drivers
using a combination of taint analysis and targeted symbolic
execution.

(3) We evaluate POPKORN on a diverse dataset of 212 signed
Windows kernel drivers and demonstrate its e�ectiveness
at �nding high-severity vulnerabilities in real-world kernel
drivers automatically and at scale. In total, POPKORN found
38 unique bugs, manually veri�ed as exploitable. 31 of the 38
exploitable bugs were previously unknown vulnerabilities
(0-days) that could potentially allow privilege escalation.

To foster further research in this area, we have released the source
code of POPKORN and the drivers used in the evaluation publicly. 1

2 BACKGROUND
In this section, we provide background information to help under-
stand the runtime environment of aWindowskernel driver.We intro-
duce concepts and termswewill use throughout the rest of the paper.

1https://github.com/ucsb-seclab/popkorn-artifact

2.1 Windows Kernel Drivers
Kernel drivers allow code running in user mode (Ring-3) to inter-
act with the operating system kernel and peripheral devices in a
complex yet �exible fashion. Microsoft has o�ered di�erent driver
frameworks with di�erent development paradigms over time. Start-
ing withWindows/386, Microsoft introduced VxD kernel drivers to
handle concurrent accesses to di�erent system resources.WithWin-
dows 98, theWindows Driver Model (WDM) introduced a layered
message-passing architecture forWindows drivers, which allowed
compiled drivers to be binary-compatible with, and run on, multiple
di�erent versions of theWindows operating system. Modern ver-
sions of MicrosoftWindows also support a newer framework, called
the Windows Driver Frameworks (WDF). This framework o�ers
object-oriented driver development options built on top of WDM.
Despite theWDF being the framework currently recommended by
Microsoft for modern driver development, WDM is still quite preva-
lent among existing software, as evidenced by the fact that 62% of the
drivers collected during this research areWDM drivers. For this rea-
son, in this paper, we focus onWDM drivers2, since they represent
the most widely used and deployed type of drivers.

WDM drivers follow a basic message-passing model: they accept
Interrupt Request Packets (IRPs) requests, process them using a
series of callback functions (dispatch handlers), potentially inter-
act with a hardware device, and �nally return a response (called
IOStatus) [29, 30, 33].

Figure 1 provides an example of an interaction between a user-
mode application and a kernel-mode driver in theWDM framework.
The user-mode application starts by opening a handle to the de-
vice driver �le, using the CreateFile API. The application then
calls the function DeviceIoControlwith the target IoControlCode
(0x800 in this example), and two user-space bu�ers, the input and
output bu�er. Depending on the driver implementation, these can
either be di�erent bu�ers, or a single bu�er can be reused for both.
The DeviceIoControl function creates an IRP object, containing
the IoControlCode and the bu�ers. Finally, the IRP is passed to the
driver’s IRP_MJ_DEVICE_CONTROL handler. At this point, the dri-
ver checks the IoControlCode and processes the desired actions,
and writes any result data into the output bu�er, before returning
an IOStatus code indicating whether or not the operation succeeded.

In the rest of this section, we take a closer look at the structure
of these messages as well as how they are handled.

2.2 DispatchHandlers
Device drivers typically declare a set of dispatch handler routines
(callbacks) that are invoked depending on the speci�c requests re-
ceived from user mode. A driver registers these callbacks by storing
them into an array of function pointers associated with the device
object, known as themajor function table. For example, the callback
at index 14 (IRP_MJ_DEVICE_CONTROL [28]) is invoked when a user
calls the API function DeviceIoControl [38]. Most dispatch han-
dlers have a corresponding user-spaceWindows API function that
can be used by user-space programs to interact with the driver.

The right hand side of Figure 1 shows how drivers can register
these dispatch handler routines. In this example, the driver leverages

2For the rest of the paper, unless otherwise speci�ed, we are referring to theWindows
Driver Model when referencing driver design or architecture.
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NTSTATUS __stdcall DriverEntry(_DRIVER_OBJECT * Driver ,
...)

{
...
struct UNICODE_STRING DevName;
_DEVICE_OBJECT* Device;
RtlInitUnicodeString (&DevName , �\\ MySymlink�);
IoCreateDevice(Driver , 0, &DevName , ..., &Device);

Driver ->MajorFunction[IRP_MJ_CLOSE] = CloseFunc;
Driver ->MajorFunction[IRP_MJ_READ] = ReadFunc;
Driver ->MajorFunction[IRP_MJ_DEVICE_CONTROL]

= DeviceControlDispatch;
...

}

Figure 1: On the left, an interaction between a user-space program and a driver [17]. On the right, an example of dispatch handler
routines (callbacks) being registered during driver initialization.

themajor function table to register the dispatch handlers ReadFunc,
CloseFunc, and DeviceControlDispatch. These handlers will be
invoked when a user-space application calls ReadFile, CloseFile,
and DeviceIoControl respectively on a driver �le handle.

2.3 Interrupt Request Packets (IRPs)
The messages being passed between the operating system, di�erent
drivers, and the user-space kernel API are called Interrupt Request
Packets (IRPs). The layout of these packets consists of an IRP request
header followed by a series of I/O-Stack Locations [26], each repre-
senting an operation to execute on a speci�c driver with a speci�c
set of arguments. InWDM, kernel drivers are a part of a layered ar-
chitecture [32]; drivers often request actions from other, lower-level,
drivers by appending a new I/O-Stack Location IRP and forwarding
the IRP to the target driver.

These IRPs are used in most driver interfaces that can be reached
from user mode. The driver dispatch handlers will access their cor-
responding I/O-Stack Location to retrieve the arguments provided
by the user-mode program.

3 POPKORNVULNERABILITIES
In this paper, we focus on a speci�c, known class of logic bugs that
often lead to privilege escalation. Speci�cally, we are looking for a
set of “Improper Input Validation”-style bugs, where a kernel driver,
acting as a confused deputy, passes untrusted user input (source) to
sensitiveWindows Kernel functions (sinks) without su�cient san-
itization. Unprivileged users can then “trick” the kernel driver into
performing sensitive functionality (e.g., mapping physical memory,
accessing other processes’ data) on their behalf. Depending onwhich
sensitive functions are accessible, the result can range from data
corruption and system crashes, to full privilege escalation and device
takeover. For the analysis in this paper, we selected common, and fre-
quently exploited, sources and sinks of vulnerabilities to maximize
the impact of our work.

Listing 1 presents an example of a driver function vulnerable to
the style of bugs that our system aims to �nd. This function retrieves
data from user space—speci�cally, the Irp object (Lines 4–6)—and
performs some checks on these parameters (Lines 9–11). Usually,
the IoControlCode value is used in a large switch-case statement,
so the driver performs di�erent operations depending on this value.
Moreover, the driver then often performs a series of checks on any
user-supplied data (e.g., the input bu�er needs to be at least 8 bytes

1 NTSTATUS DeviceControlDispatch(_DEVICE_OBJECT *DeviceObject,
2 _IRP *Irp)
3 {
4 auto IoStackLocation = Irp->Tail.Overlay.CurrentStackLocation;
5 auto Params = IoStackLocation->Parameters.DeviceIoControl;
6 auto Buf = Irp->AssociatedIrp.SystemBuffer;
7 auto Status = STATUS_UNSUCCESSFUL;
8
9 if ( Params.IoControlCode == 0x9C402530
10 && Params.InputBufferLength >= 8
11 && Params.OutputBufferLength >= 8
12 )
13 {
14 // Map one page as determined by request
15 PHYSICAL_ADDRESS* Address = (PHYSICAL_ADDRESS*)Buf;
16
17 void* res = MmMapIoSpace(*Address, 0x1000, MmNonCached);
18
19 if (res) {
20 *(void**)Buf = res;
21 IofCompleteRequest(Irp, 0);
22 Status = STATUS_SUCCESS;
23 }
24 }
25 return Status;
26 }

Listing 1: Motivating Example: Vulnerable Driver

long). Our example, for the sake of simplicity, only contains one
valid IoControlCode.

If all checks are successful, the function calls MmMapIoSpace (Line
17), which maps a physical page of memory—whose address, in this
example, is supplied by the user—into the current virtual address
space. In other words, this example shows how a user-space process
might trick the kernel driver into mapping physical memory pages
of other (potentially higher-privileged) processes into their own
address space, without ensuring that the target process is allowed
to access these pages.

The core idea behind POPKORN is to symbolically explore driver
functions and automatically checkwhether theparameters of certain
critical functions (such as MmMapIoSpace) can be directly controlled
by a user-space program. In the next section, wewill discuss the chal-
lenges associated with detecting this type of vulnerabilities, either
manually or by using targeted symbolic execution.

3.1 Challenges
Compiled Binaries.MicrosoftWindows kernel drivers (“.sys” �les)
are distributed as normal Windows Portable Executable (PE) [73]
�les. Oftentimes these drivers are released without source code or

856



ACSAC ’22, December 5–9, 2022, Austin, TX, USA Gupta and Dresel, et al.

documentation that might help to understand a driver’s internals.
Anyone attempting to audit the security of a driver has to �rst care-
fully reverse engineer it to understand the attack surface and avail-
able functionality. Furthermore, theasynchronousnatureof the inter-
actionsbetweentheWDMframeworkandtheWindowskernel ispar-
ticularly challenging for reverse engineering andprogram reasoning.
Modeling Kernel API Functions. The Microsoft Windows kernel
is a complex piece of software that exposes thousands of APIs to
user space and kernel drivers. Symbolic execution engines often ap-
proximate library or API functions using abstract implementations
(summaries). This constrains the symbolic exploration to the code
of the program-under-test, in our case the driver, and can help to
keep the analysis tractable by signi�cantly reducing path explosion.
However, given the large number of API functions, providing these
models for every function in the Windows kernel API is infeasi-
ble, since such function summaries are usually created manually.
Symbolic execution tools, such as angr [65], attempt to solve this
problem by replacing missing ones with a default abstract summary
which simply returns a fresh symbolic variable.
PathExplosion.Generally, the number of paths in a programgrows
exponentially in termsof thenumberof conditional branches; anaive
analysis based on enumerating all such paths will fail to scale, even
for programs of modest size. This problem is commonly known as
path explosion. Some speci�c areas that are prone to path explo-
sion include bug-�nding, bounded model checking [4], and formal
veri�cation [69].

Therefore, apath-basedanalysismust limit thenumberofbranches
explored, e.g., by deprioritizing or dropping paths indiscriminately
or in a targetedmanner (e.g., paths that cannot reach a point of inter-
est). Lastly, the analysis can be limited in scope to reduce the number
of paths, e.g., by analyzing only individual functions. Pruning paths
that cannot exercise a certain presumed vulnerable program point
is known to be possible (with caveats), but generally, determining
which paths will exercise any vulnerability is not.

Due to the callback-based nature ofWindows drivers, we do not
attempt to implement ananalysis emulating a complete path through
the driver code. Instead, we focus our analysis on the functions most
commonly involved in existing exploits and vulnerabilities in order
to keep the amount of driver-kernel interaction we need to model
tractable.

4 CVEANALYSIS
To motivate the selection of the sources and sinks used in this pa-
per, we performed an analysis of the Common Vulnerabilities and
Exposures (CVE) database [50], maintained by MITRE. Using a com-
bination of regular expressions and manual post-processing, we
extracted a total of 1390 CVEs likely related to third-partyWindows
drivers from the years 1999–2021. For this analysis, we used the
o�cial CVE database in XML format [51]. Since the CVE description
text is often limited to a few sentences, we augmented this informa-
tion with any text content extracted from all available referenced
�les and web pages.

In particular, we applied a series of regular expressions and man-
ual �ltering on the resulting text, in the following steps:

(1) Identify a set of CVEs that are related to theWindows kernel;

(2) Filter only for driver-related CVEs (i.e., we discard CVEs that
are related to the mainline kernel);

(3) Select the CVEs that refer to third-party kernel drivers;
(4) Identify likely mentioned sources, sinks, and vulnerabilities.
In the following sections, we analyze the results of this analysis,

and study theprevalence of detected sources, sinks, andvulnerability
classes individually.

4.1 Sources
To identify common input sources in third-partyWindows drivers,
we analyzed each augmented CVE text (including all linked refer-
ences) for keywords that indicate the source of the input triggering
the vulnerability. The results showed that the DeviceIoControl
interface is by far the most common input source for known vulner-
abilities, being mentioned in 760 (55%) of our selected CVEs. This is
far and ahead of the nextmost common input sources, being “remote
attack” at 21% and “DirectX interfaces” at 15%.

We also performed a manual investigation of 100 randomly sam-
pled CVEs for which no input source was found, to ensure our analy-
sis was notmissing anymajor input sources. Among these 100 CVEs,
we found 10 CVEs not related toWindows drivers, 36 related to the
mainlineWindows kernel, and 54 a�ecting third-party drivers. For
43 of these third-party driver CVEs, we could not determine an input
source manually (e.g., CVE-2010-15923), and of the remaining 11,
the most common (4) input source was again the DeviceIoControl
function. We include a detailed breakdown of this manual investi-
gation in Table 6 in Appendix B.

We suspect that this over-representation stems from the seman-
tic ambiguity of the DeviceIoControl interface. While most in-
teractions between drivers and user-mode applications follow a
clear semantics (e.g., ReadFile is used to transfer or retrieve data
from a kernel driver to user space using standard �le APIs), the
DeviceIoControl interface is designed to be entirely de�ned by
the driver, with no interference from the operating system. This
makes it impossible for the kernel to validate the arguments to the
DeviceIoControl interface on the driver’s behalf, leaving the driver
itself solely responsible for ensuring that untrusted user input is
handled securely. For POPKORN, we therefore chose the function
DeviceIoControl as the source for our symbolic analysis.

4.2 Sinks
Similarly to the input source analysis, we attempted to extract pos-
sible vulnerability sinks from the augmented CVE descriptions. We
selected the 25 most commonly referencedWindows kernel func-
tions and global variables, and categorized them based on the role
they play in the description of the vulnerability. The results of this
analysis are presented in Table 1. As reported in this table, some of
the symbols mentioned in CVEs are vulnerability sinks, while other
symbols refer to mitigation functions or exploit targets. We include
the full analysis of these functions in Appendix E.

In addition, we analyzed our dataset of 3,094WDMdrivers by cre-
atingControl FlowGraphs (CFG) of eachdriver and statically extract-
ing all theWindows API functions used. The top 25 most frequent
functions used throughout the driver database are listed in Figure 3.
Note thatwe pruned instances of functions thatwere undocumented
3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1592
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in theo�cialMicrosoftdocumentation, e.g.,ZwReadVirtualMemory,
and ZwWriteVirtualMemory. In addition, we also �ltered instances
of the corresponding closing functions to make the list more di-
verse, for example, we counted the function ZwOpenKey, but pruned
the closing function ZwClose. Notably, only a few API functions
allow manipulation based on the user input, and most of them
are used for basic operations (e.g., RtlInitUnicodeString and
RtlCopyUnicodeString are used for initializing and copying Uni-
code strings).

Based on the results of these analyses, we selected the functions
MmMapIoSpace, ZwMapViewOfSection, and ZwOpenProcess (from
an existing CVE [57]) as relevant targets for our use case since they
can often be trivially exploited for privilege escalation [5]. Following,
weexamine theprototypesof these functions and the arguments that,
when controlled by an attacker, can be used to compromise a system.

Category Kernel API function and variables

Vulnerable Sink MmMapIoSpace, RtlCopyMemory, KeBugCheckEx,
ZwEnumerateValueKey, ZwQuerySystemInformation

Mitigation ProbeForWrite, MmHighestUserAddress, ProbeForRead
Exploit target HalDispatchTable, PsInitialSystemProcess

Table 1: Exploit-relevant Kernel API functions mentioned
in CVEs.

MmMapIoSpace. This kernel routine maps a given physical address
range into virtual memory and returns a virtual address pointing
to the newly mapped address space. Typical use cases of this func-
tion include scanning the physical memory range, retrieving data
stored by UEFI boot loaders, or mapping a PCI device’s DMA bu�ers
into kernel space and/or user space [10, 68, 71]. MmMapIoSpace is
imported by 8% of the drivers in our evaluation dataset (see Table 2).

PVOID MmMapIoSpace(PHYSICAL_ADDRESS PhysicalAddress,
SIZE_T NumberOfBytes,
MEMORY_CACHING_TYPE CacheType);

For the purposes of exploitation, the arguments PhysicalAddress
and NumberOfBytes are particularly interesting since the parame-
ters together denote the physical address range to be mapped into
the virtual memory of the attacker process.
ZwOpenProcess. This kernel function is used to retrieve a handle to
interact with another process. The Zw version of OpenProcess, as
opposed to the Nt version, assumes that the parameters come from
a trusted source, i.e., the kernel itself, and it processes the request
without validation [34], making the kernel routine a good target for
POPKORN’s analysis.

NTSTATUS ZwOpenProcess(PHANDLE ProcessHandle,
ACCESS_MASK DesiredAccess,
POBJECT_ATTRIBUTES ObjectAttributes,
PCLIENT_ID ClientId);

When exploiting ZwOpenProcess, an attacker who controls the
ClientId of this call can retrieve a handle to any arbitrary pro-
cess running on the system, including higher-privileged ones. The
attacker can then, for example, modify the target’s process memory
or terminate the process.

ZwMapViewOfSection. Similar to ZwOpenProcess, this routine also
assumes that its parameters originate from a trusted source. ZwMap-
ViewOfSection creates a view of aWindows section object into the
current address space. A section in Windows kernel terminology
refers to any region of memory designated for shared access [31].
If a kernel driver can be exploited to map sections of shared ob-
jects into the current process’ virtual memory space, which this
process should not have access to (for instance, sections of the �le
\Device\PhysicalMemory), the attacker might be able to modify
the memory of privileged processes or the kernel itself.
NTSTATUS ZwMapViewOfSection(

HANDLE SectionHandle,
HANDLE ProcessHandle,
PVOID *BaseAddress,
ULONG_PTR ZeroBits, // 0
SIZE_T CommitSize,
PLARGE_INTEGER SectionOffset, // NULL
PSIZE_T ViewSize,
SECTION_INHERIT InheritDisposition, // NULL
ULONG AllocationType, // sets allocation flags
ULONG Win32Protect // page access protection

);

In thiscase, thearguments targetedbyPOPKORNareSectionHandle,
ProcessHandle, BaseAddr, CommitSize and ViewSize. The �rst
parameter, SectionHandle, is generated by a successful call to -
ZwOpenSection or ZwCreateSection, which points to a privileged
memory section fromwhich a viewhas to bemapped. The parameter
ProcessHandle refers to the target process into which the kernel
will map the created view, and BaseAddress refers to the base ad-
dress of the view. Finally, CommitSize and ViewSize represent the
total number of bytes that need to be mapped in the process. We �ag
usages of this function as vulnerable if the SectionHandle is user-
controllable or originates from the �\Device\PhysicalMemory�
�le. Additionally, the user has to control the argument BaseAddr or
ProcessHandle and/or the CommitSize and ViewSize arguments
to map arbitrary pages of PhysicalMemory.

5 POPKORNDESIGN
In this section, we elaborate on POPKORN’s design and the di�erent
stages of the analysis process. A high-level overview of POPKORN
is presented in Figure 2. First, POPKORN collects a heterogeneous
set of software packages and extracts any driver �les (“.sys” �les).
Each driver is then analyzed independently using targeted symbolic
execution to automatically discover potential exploit primitives for
privilege escalation.

5.1 Retrieving Kernel Drivers
Download Engine. The �rst task is to create a database of driver
�les that can be used as input for the analysis. Since no single author-
itative source forWindows drivers exists, we created a distributed
crawler to scrape popular software repositories on the Internet.

The crawler downloaded around 90,000 compressed software
packages from various sources in a period spanning 14 days. These
packages are released in di�erent �le formats, including executable
�les (.exe) packaged with di�erent types of installers (such as In-
stallAware, InstallShield, etc.) as well as compressed archives (.zip,
.rar, .cab, .tar) with driver �les (.sys) inside them.
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Figure 2: POPKORN SystemOverview.
Extraction Engine.Due to a large number of di�erent packaging
installers used to create executable �les, we used a universal extrac-
tion engine called UniExtract2 [13] to unpack all the compressed
�les. The tool uses a signature detectionmechanism for determining
di�erent �le types, and then invokes the appropriate extractor for
each detected contained�le. After running the appropriate extractor,
our system saves any extracted driver �les (“.sys” �les) for further
processing. This approach successfully unpacks 94% of all down-
loaded packages across the di�erent �le formats, and we extracted
(coincidentally) exactly 5,000Windows drivers.

5.2 Analysis Engine
Our Analysis Engine is built on top of the angr framework [65].
After loading a kernel driver, the engine symbolically explores the
DeviceIoControl dispatch handler until a state reaches a poten-
tially vulnerableWindows kernel API function. As discussed in the
previous section,POPKORN supports the detection of vulnerabilities
related to the usage of the following functions: MmMapIoSpace [40],
ZwMapViewOfSection [42], and ZwOpenProcess [43].

Whenever a sink is discovered, the built-in vulnerability detection
mechanism examines the source of the arguments. As discussed in
Section 2, users can store data in input bu�ers and send them to
the driver using a DeviceIoControl request. During the symbolic
exploration, POPKORN �ags a driver as vulnerable if the arguments
to the sinks are directly or indirectly loaded from the user-mode
bu�ers.When a vulnerability is detected, our system creates a report
outlining relevant meta-information about the target, including the
IoControlCode used to invoke the target and any constraints on
the DeviceIoControl parameters, such as bu�er length checks.
Imports, Device Names. The analysis starts by ensuring that the
driver is based on theWindows Driver Model (WDM) by checking
if the driver object is initialized using the IoCreateDeviceWDM
API function. When a call to IoCreateDevice is encountered, POP�
KORN extracts the device name from the arguments and reports it
to the user so that a Proof-of-Concept (PoC) can easily be created.
DeviceIoControlDispatchHandler. The �rst step in our analy-
sis is to locate the dispatch handler DeviceIoControl and record

the global state of the driver after successful initialization. We sym-
bolically execute the driver entry point until it returns with a STA-
TUS_SUCCESS return code, indicating successful initialization. We
save the recorded state and reuse its concrete memory for the later
stages of the analysis in order to preserve any initialized state. Fur-
thermore,we ensure that the dispatch handler is calledwith the same
DeviceObject as was returned by the IoCreateDevice function
during initialization. This is important as drivers can store driver-
speci�c information in the DriverExtension �eld, which can later
be accessed by the dispatch handlers.
Fetching IoControlCodes.Next, we have to �nd the 32-bit integer
I/O Control Codes, often called IOCTL codes, supported by the dri-
ver. Requests sent from user-mode code to the dispatch handler via
DeviceIoControl contain the speci�c IoControlCode in the IRP
structure. Figure 1 illustrates how a driver processes an IRP to access
the user-mode parameters. The driver accesses its I/O-Stack Loca-
tion [27] by accessing the �eld Tail.Overlay.CurrentStackLocation,
allowing access to any user-mode parameters.

To extract the possible values of these IoControlCodes, POP�
KORN synthesizes an IRP structure with a single I/O-Stack Loca-
tion with symbolic arguments. After symbolically exploring the
DeviceIoControl function, it checks, for each path, if the symbolic
variable corresponding to the IoControlCode codewas constrained
to a single value, and if so, reports it as a valid IoControlCode.
Function Analysis. Finally, as described in Section 5.2, POPKORN
symbolically executes the DeviceIoControl handler with an inte-
grated vulnerability detection engine for the aforementioned vul-
nerabilities in the three sink functions. Our system �rst creates the
symbolic expressions corresponding to the IoControlCode and the
contents and lengths of the input and output bu�ers. This informa-
tion is then used to create a symbolic IRP structure, which, together
with the DeviceObject recovered from the successful DriverEntry
execution, are used as the input parameters to theDeviceIoControl
handler.

At this point, POPKORN starts to symbolically execute this han-
dler function. Whenever a call to a sink function is encountered
during the symbolic exploration, POPKORN checks whether or not
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the parameters are user-controllable, and a vulnerability is reported
for the current call if so. POPKORN then outputs a report indicat-
ing which vulnerable functions were triggered, the arguments that
the user-mode process can control, as well as the data that should
be passed by the user-mode program to reach the vulnerable func-
tion. This includes, at a minimum, the IoControlCode needed to
reach the vulnerability, any constraints placed on the user bu�ers
and their contents and lengths. During our research, we used this
meta-information to manually generate a proof-of-concept exploit
to verify that the vulnerability exists and is exploitable.
Modeling the Environment. The POPKORN framework is built
on top of angr [65], an open-source symbolic execution engine.
We added support for the Windows kernel driver environment
since angr is targeted towards programs that run in user space.
The main component that had to be implemented was a collec-
tion of symbolic summaries called SimProcedures [1] forWindows
kernel API functions. For our analysis, creating summaries for the
following minimal set of functions was su�cient to reach the tar-
geted sink functions: IoCreateDevice, IoCreateSymbolicLink,
RtlInitUnicodeString, RtlCopyUnicodeString,
ExAllocatePool, ZwOpenSection, and ExAllocatePoolWithTag.
Taming Path Explosion. Finally, POPKORN implements a combi-
nation of measures to combat path explosion. First, we keep track of
thenumberof generated states and stop theexecutionwhenwereach
a threshold of 10,000 symbolic states (called SimStates in angr). In
addition, we reduce the scope of our analysis to driver functions only
by implementing symbolic summaries for kernel functions instead
of emulating their concrete implementations. As a result, no states
in unrelated kernel code are created, reducing the amount of code
to analyze.

6 EVALUATION
To determine the e�ectiveness of POPKORN, we evaluate it on a
dataset of 3,094WDM kernel drivers. We �rst look at the ability of
POPKORN to detect real-world security bugs in Section 6.1. Then, in
Section 6.2, we present an in-depth analysis of some of the detected
bugs. We present an analysis of false positives and false negatives in
sections 6.3 and 6.4, respectively. Finally, in Section 6.5, we compare
our results to Microsoft’s Driver Veri�er tools.
Analysis Performance.We ran our experiments on an eight-core
Intel i7-7700K 4.20GHz CPU and 64GB of RAM. On average, every
successful execution of the analysis engine spent about 6.92 seconds
analyzing each driver (min 0.40 sec, max 148.72 sec) with 70% of
drivers’ analysis �nishing in less than 24.58 sec, and the average
driver size being 381.5 KB (min 1.2 KB, max 52 MB).
Dataset Collection. To evaluate the ability of POPKORN to �nd
bugs in the real world, we �rst had to assemble a suitable dataset.
As discussed in Section 5, we �rst downloaded a diverse set of about
90,000 software packages from various sources and extracted 5,000
kernel drivers (“.sys” �les) for both 32-bit and 64-bit versions of
Windows combined. Of these, 3,094 drivers (62%) were based on
the Windows Driver Model (WDM). We further �ltered these dri-
vers down to 271 containing at least one of our target sink functions
(MmMapIoSpace,ZwMapViewOfSectionorZwOpenProcess).Toavoid
skewing our results from over-represented drivers, we performed
a best-e�ort driver deduplication based on the driver names, hashes,

debug symbol paths, and manual checking. After this, we were left
with a set of 212 unique drivers.

The results presented in this section will refer to the set of dedu-
plicated drivers. Our analysis was run on every single driver in the
dataset, but unless otherwise noted, most results were consistent
across driver versions. In case we found divergences between the
results for di�erent versions of the drivers, we mentioned them
separately.

Using Function Vulnerable Usages

Kernel Function Total Dedup. Total Dedup.

MmMapIoSpace 240 (7.76%) 188 24 17
ZwMapViewOfSection 40 (1.29%) 32 17 12
ZwOpenProcess 14 (0.45%) 11 0 0

Total (Unique) 271 (8.76%) 212 38 27

Table 2: Drivers using speci�c target functions, and drivers
found vulnerable by POPKORN, out of a total of 3,094WDM
drivers.

6.1 Bug Finding
The second and third columns of Table 2 show a breakdown of
the number of drivers using at least one of our analysis targets
(MmMapIoSpace, ZwMapViewOfSection, and ZwOpenProcess). Note
that certain drivers might usemore than one of the three target func-
tions, so the numbers add up to more than 271. The 271 drivers were
used as input to POPKORN. The last two columns of Table 2 present
a breakdown of the results that POPKORN’s analysis delivers: The
total number of vulnerable drivers we found for each one of the
di�erent sinks.

In total, POPKORN found 38 distinct vulnerable drivers (27 after
deduplication). 24 vulnerabilities were related to improper calls to
MmMapIoSpace and 17 to invocations of ZwMapViewOfSection. Our
dataset did not contain instances of vulnerable ZwOpenProcess calls.
All 38 bugs were veri�ed manually, demonstrating a zero false pos-
itive rate. For false negatives, we performed multiple analyses of
known-vulnerabledriverswithPOPKORN. Thisprovided someanec-
dotal evidence of a relatively low number of false negatives (< 33%
in both experiments). Of the 38 bugs involving the critical functions,
31 bugs were previously unknown, and most of them potentially
allow for Elevation of Privilege (EoP) on the system, because of their
similaritywith the bugs used in existing EoP exploits. The remaining
seven bugs were previously known or already had CVEs assigned to
them. All bugs detected by POPKORN have the potential to impact
the security and the availability of the system, either via a Denial-of-
Service (DoS), leaking sensitive kernel data, or privilege escalation.
Vulnerability Impact and Disclosure.At the time of writing this
paper, we have received two CVEs and six acknowledgments for
reporting the bugs. Only one of the CVEs has been made public
so far and has been assigned a CVSS score of 7.8 HIGH. Table 5
shows the impact of each vulnerability not currently under embargo,
along with their respective disclosure status. Notably, POPKORN
found two high-impact privilege escalation bugs in AMD’s �agship
graphic software (AMD Radeon Software Adrenalin) that is shipped
pre-installed on AMD machines. In addition, POPKORN found a
critical bug in MSI’s principal gaming center (MSI Dragon Center),
which also comespre-installedwith everyMSI device that is released,
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along with three critical bugs in Intel’s �ash update utility used by
many driver developers themselves.

These �ndings demonstrate the real-world impact of POPKORN.
The remaining bugs are either prohibited from being disclosed or are
in the triage process. We are working closely with the vendors’ mit-
igation teams on rolling out bug �xes and disclosing them publicly.
Interestingly, despite the fact that some of the bugs that we reported
are present in critical software (such as antivirus engines and BIOS
update utilities), we did not hear back from certain vendors.

6.2 Real bugs found by POPKORN
In this section, we explain two vulnerabilities found by POPKORN
in real-world drivers.
Case Study I: MmMapIoSpace Abuse. One of the most inter-
esting bugs that POPKORN found was a privilege escalation by
MmMapIoSpace abuse (this is one of the six acknowledged bugs, and
the �x is yet to be released). A simpli�ed version of the vulnerable
device driver that uses MmMapIoSpace is shown in Listing 2. In Lines
4–7 the physical address range is mapped into the virtual memory,
and a pointer to its base address is returned. However, the mapped
address is not available to user mode yet. The base virtual address
and size are now used to create a Memory Descriptor List (MDL),
which essentially describes the bu�er that needs to be allocated via
IoAllocateMdl [39] (Line 13). Finally, a pointer to MDL is passed
to MmMapLockedPages [41] (Line 19). The second argument spec-
i�es the AccessMode as either UserMode (1) (meaning accessible
to user mode) or KernelMode (0) (accessible only to kernel mode),
which determines where the MDL will be mapped. Since the drivers
are primarily meant to be used by user-space applications to allow
interaction with the hardware, the MDL has to be mapped to User-
Mode (1). Then, the starting address to themapped range is returned
through the output bu�er (Line 20).

Therefore, since thephysical address range isuser-controllable, an
attacker canultimatelymapkernelmemory into its process space. To
exploit this, an attacker can simply iterate through all physical pages
until it reaches critical kernel data structures, such as EPROCESS
which is the kernel structure used to represent a running process.
The attacker can then locate and overwrite their process token with
the security token of a process running with SYSTEM privileges,
successfully escalating their privileges to NTAuthority/System. Our
analysis only detects whether or not the user-controlled physical ad-
dress range is provided to MmMapIoSpace; a determination of actual
exploitability is performed manually afterward.
Case Study II: ZwMapViewOfSection Abuse. This section ex-
plains a typical case of ZwMapViewOfSection abuse that POPKORN
detected in multiple drivers. An example of a vulnerable implemen-
tation can be seen in Listing 3. The ProcessHandle and CommitSize
/ ViewSize are loaded from the input bu�er (Lines 4 and 5). Then,
ZwOpenSection opens a privileged section handle (with r/w per-
missions) that originates from the �\\Device\\PhysicalMemory�
(Lines 12–16). This allows an attacker tomap an arbitrary number of
bytes of physical memory into their own process. The exploitation
of this vulnerability is similar to the one previously described for
MmMapIoSpace. For a user-controlled SectionHandle, the same can
be achieved by using existing techniques to leak a kernel section
handle for the PhysicalMemory device [5].

1 void *__fastcall mmapiospace_func(void *inbuf){
2 // mapping addr from input buffer
3 base_addr = MmMapIoSpace(
4 *(void**)(inbuf+0), // start addr,
5 *(size_t*)(inbuf+8), // number of bytes
6 MmNonCached); // Caching Behavior
7
8 if (base_addr)
9 {
10 // allocating a memory descriptor list
11 // (MDL) to map virtual buffer
12 mdl_ptr = IoAllocateMdl(base_addr,
13 *(size_t*)(inbuf+8),0,0,0);
14
15 if (mdl_ptr)
16 {
17 // pages are being mapped in UserMode(1)
18 mapped_start_addr = MmMapLockedPages(mdl_ptr, 1);
19 *(void**)outbuf = mapped_start_addr;
20 // freeing allocations
21 IoFreeMdl(mdl_ptr);
22 MmUnmapIoSpace(base_addr, inbuf_size);
23 return SUCCESS;
24 }
25 }
26 }

Listing 2: MmMapIoSpace Abuse detected by POPKORN.

1 void *__fastcall zwmapviewofsection_func(void *inbuf)
2 {
3 void *SectionHandle;
4 HANDLE *ProcessHandle = *(HANDLE *)&inbuf[0];
5 SIZE_T CommitSize = *(size_t*)inbuf[1];
6 PVOID BaseAddress = 0;
7 ULONG_PTR ViewSize = CommitSize;
8 struct _OBJECT_ATTRIBUTES ObjectAttributes;
9 struct _UNICODE_STRING DestinationString;
10
11 RtlInitUnicodeString(&DestinationString,
12 �\\Device\\PhysicalMemory�);
13 ObjectAttributes.ObjectName = &DestinationString;
14
15 // Mapping the privileged SectionHandle to �PhysicalMemory�
16 success = ZwOpenSection( &SectionHandle,
17 DesiredAccess, &ObjectAttributes);
18 if(success){
19 return ZwMapViewOfSection( SectionHandle,
20 ProcessHandle, BaseAddress, 0, CommitSize, 0,
21 ViewSize, ViewShare, 0, 0x40u);
22 }
23 }

Listing 3: ZwMapViewOfSection Abuse detected by POP�
KORN.

6.3 False Positives
False positives should be extremely rarewithPOPKORN as the analy-
sis has the full constraints for a path and the solver should guarantee
that thepath is feasible during the real execution. Falsepositives arise
whenunmodeled functions performside-e�ects, e.g.,writing to argu-
ments or global memory. In such cases, stale data can be erroneously
treated as tainted inputs. However, none of the bugs reported by
POPKORN exhibited this behavior, and we manually veri�ed all 38
(27 deduplicated) bugs as true positives. Furthermore, we do provide
models for commonmemory manipulation functions, e.g., memcpy,
to reduce the chances of stale symbolic data erroneously triggering
a vulnerability report. If a new function is identi�ed that causes false
positives, it is trivial to provide a model for it going forward.
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6.4 False Negatives
We analyzed the possibility of false negatives of our analysis in two
experiments. Speci�cally, by evaluating POPKORN on both a public
dataset of vulnerable drivers as well as drivers mentioned in public
CVEs, we provide an empirical false negative rate.
Vulnerable Drivers. For the �rst experiment, we used a publicly
available dataset of 128 drivers with physical memory mapping vul-
nerabilities4. From this initial dataset, we removed 23 drivers that
do not contain any of our sinks. In addition, we removed two drivers
that were also included in our crawled dataset.

We ran POPKORN on the remaining 103 drivers, and report re-
sults after driver deduplication, as this dataset includes multiple
versions of the same driver. There were 30 deduplicated drivers in
the dataset. A summary of the results is presented in Table 3: our
system detected 21 vulnerable drivers (68%), timed out while ana-
lyzing 6 drivers (19%), and terminated for 4 drivers without �nding
any vulnerability (13%). Timeouts were largely caused either by
long-running concrete loops (e.g., inlined memset on a bu�er of size
0x20000), which is a known weakness of angr, or by state explosion
in very complex drivers. Manual investigation of the 4 drivers where
POPKORN reported no results showed that these driversmaintained
internal state, and that the vulnerable functionswould only be called
after a sequence of multiple DeviceIoControl calls were made, a
behavior not currently supported by POPKORN.

With the exception of one driver (included twice in the results),
the results were consistent across driver versions. For the incon-
sistent driver, the analysis succeeded in detecting the vulnerability
for one version, while timing out for another. Manual veri�cation
showed that the other version of the duplicate driver contains the
same vulnerability; to be conservative, we counted this driver as
timed out in our results.

Analysis Result #Drivers

Reported vulnerability 20 (+1*)
Timed out 6
Analysis terminated 4

Table 3: POPKORN results for physmem_drivers

DatasetDriverswithKnownCVEs.To assess false negatives from
another angle, we separately inspected all drivers in our crawled
dataset that are explicitly mentioned in a CVE. This dataset con-
sists of 16 CVEs, 7 of which refer to vulnerabilities POPKORN could
�nd. The other 9 either refer to unsupported bug classes (unchecked
pointer dereference, bu�er over�ow, etc.) or cannot be reached via
the DeviceIoControl interface. After analyzing the 5 drivers (3
unique) mentioned in these CVEs, POPKORN detected the known
vulnerability in4outof5drivers (2outof3uniquedrivers).Afterman-
ual analysis, we discovered that the remaining driver (MODAPI.sys)
was not the vulnerable driver mentioned in the CVE, but a di�erent
driver sharing the same name.
Summary.Basedontheseresults,webelieve thatPOPKORNachieves
both a very low false positive rate, and an acceptable rate of false
negatives, positioning it well for automated, large-scale analyses of
Windows drivers.
4https://github.com/namazso/physmem_drivers

6.5 Comparison withMicrosoft’s Driver Veri�er
In this section, we compare POPKORN against twoMicrosoft tools,
namelyDriverVeri�er (DV)[24], andStaticDriverVeri�er (SDV)[46].
We selected these two tools because they are provided by Microsoft
and they are purposefully designed for and actively used by driver
developers to assess the security and stability of their Windows
kernel drivers. Any bugs missed by Driver Veri�er and Static Driver
Veri�er might land in release builds. Unfortunately, since the source
code for the drivers in our dataset is not available, we could not
directly use SDV. However, as a proxy, we analyzed the assertion
rules documented in SDV to analyze if the API-misuse bugs, which
are targeted by POPKORN, could be detected.
DriverVeri�er (DV).This tool is shippedwith theWindowsDriver
Development Kit (WDK), and it runs a prede�ned list of checks for
performing stress tests ondevice drivers under heavy load.Microsoft
recommends using DV throughout the development cycle of kernel
drivers to �nd design �aws, troubleshoot problems, and to debug
crashes early in the development cycle.

Driver Veri�er triggers speci�c bug checks (via Blue Screen of
Death (BSoD)) [48] if it detects a violation during stress testing. The
bug checks help driver developers in debugging the root cause re-
sponsible for the crash, such as Bug Check 0x3B [44] (exception
occurs while transitioning from non-privileged to privileged code),
Bug Check 0xBE [45] (write to read-only memory), and Bug Check
0xC4 [47] (routine executes at incorrect interrupt request level IRQL).

Nevertheless, these checks are based on generic rules that are
applicable to every driver. These generic assertions prevent DV
from verifying driver-speci�c interfaces and code paths that require
taint-style analysis, such as the IRP_MJ_DEVICE_CONTROL interface.
They are primarily geared towards detecting irregular API usage
violations but cannot analyze the input source for the API functions.
This makes DV unsuitable for �nding the privilege escalation bugs
targeted by POPKORN. In addition, DV requires that the drivers be
already installed in theWindows kernel, and it checks each installed
driver only during the OS startup process. This increases themanual
e�ort required for the analysis and limits DV from scaling to analyze
a database of thousands of drivers.

Table 4 describes our results when evaluating Driver Veri�er and
POPKORN over a set of 20 known vulnerableWDM drivers (taken
from already known CVEs) and 20 WDM drivers taken randomly
from our database (that have at least one of the target functions). We
tested Driver Veri�er on theWindows 10 20H2 build, and measured
an average execution time of each driver of 246 seconds (min 106 sec,
max 438 sec). SinceDriverVeri�er can only analyze already-installed
drivers while the system boots, it took us 40 system restarts to com-
plete the analysis. Out of the 20 vulnerable drivers, DV invoked bug
checks in four drivers, while POPKORN found a vulnerability in ten
drivers, for the remaining ten drivers the analysis did not terminate
with a result due to state explosion. Moreover, out of the 20 new
drivers, DV triggered no bug checks, while POPKORN detected one
MmMapIoSpace abuse bug.
Static Driver Veri�er (SDV). This tool is a code veri�cation utility
for driver developers shipped with the Windows Driver Develop-
ment Kit (WDK) [46]. SDV analyzes the driver’s code using a pre-
de�ned set of rules and assertions to detect Windows API usage
bugs and driver design issues. However, SDV does not have rules
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Driver Dataset Bugs found by
POPKORN

Crashes found by
DV (BugCheck)

Known vulnerable
drivers (out of 20)

8-MmMapIoSpace
2-ZwMapView

2 (0x3B)
1 (0xBE)
1 (0xC4)

RandomDrivers
(out of 20)

1-MmMapIoSpace 0

Table 4: Bug comparison between POPKORN and Driver
Veri�er.

for detecting improper access to physical memory. In general, SDV
is not geared towards �nding defects that require taint analysis of
Windows Kernel API functions.

7 FUTUREWORK
SupportedDriver Frameworks.POPKORN currently analyses dri-
vers implemented using theWindowsDriverModel (WDM) [25]. Al-
though the majority (62%) of drivers from our dataset were based on
WDM,Windows Driver Frameworks (WDF) is the currently recom-
mended driver architecture by Microsoft. With increasing adoption,
support forWDFdrivers becomesmore important, andweplan to ex-
tend POPKORN by adding this support in future work. This requires
a much more extensive model of symbolic objects and is considered
orthogonal to this paper, since the identi�ed class of vulnerabilities
and the important sources and sinks should remain the same.
Exploit Generation.While responsibly disclosing the vulnerabil-
ities, it is critical to provide working Proofs-of-Concept (PoCs) to
driver vendors to prove a vulnerability’s impact. However, creating
POCs manually for every bug report is a laborious task. To expedite
this process, we plan on automating the creation of PoCs for detected
vulnerabilities.

8 RELATEDWORK
For fuzzingWindows kernel drivers, tools such as ioctlbf [74], ioctl-
fuzzer [54], iofuzz [23] and IoAttackbyMicrosoft are available. These
tools are fairlybasic,withnocoverageguidanceor insight intokernel
state beyond the return values of the kernel interfaces. It is notable
that ioctlbf is aWindows driver fuzzer designed to fuzz the DeviceIo-
Control interface speci�cally and can recover validIoControlCodes
through fuzzing by analyzing di�erences in kernel API result codes
between valid and invalid IoControlCodes. However, it is not de-
signed to detect the taint-style bugs POPKORN targets, aiming to
�ndmemory-corruption bugs instead.More recently, BSOD[22]was
proposed to fuzz NVIDIA GPU drivers on multiple operating sys-
tems. Unfortunately, this requires record & replay of real hardware
interactions, making it infeasible for large-scale analysis.

Static analysis is another popular technique for �nding bugs in
OS kernel drivers. Recently, static analysis has been heavily focused
on UNIX-based systems, where the source code of the kernel or the
drivers is often used [11, 14, 21, 59, 66, 67]. However, static analysis
is also used to aid in dynamic analysis tasks, e.g. NTFuzz [9] uses
static analysis on user-space code to�nd type-information of system
calls to e�ectively fuzz theWindows kernel binary code. However,
POPKORN does not rely on the type information of system call
arguments, and can directly analyze the kernel driver binaries sym-
bolically. Notably, other signi�cant static analysis research on the

Windows kernel and drivers dates back more than a decade, e.g.,
SLAM [3], Device Driver Analyzer (DDA) [2], and Bounded Address
Tracking in Jakstab [18].

Lastly, symbolic execution has been used successfully for ker-
nel and kernel-driver bug-�nding. For Windows kernel drivers,
Kuznetsov et al. proposed DDT [19], a symbolic execution frame-
work based on the KLEE [6] symbolic execution engine paired with
a QEMU runtime that found several memory corruption bugs in de-
vice drivers at the time. However, DDT requires signi�cant manual
setup of the driver and to provide PCI device information. Screwed-
Drivers [12] manually applied symbolic execution to detect pass-
through drivers incorrectly handling untrusted input, focusing on
general faults/crashes. S2E[8]performs selective symbolic execution
using full-systememulationandenables symbolic executionnotonly
in the device drivers but anywhere in the kernel. However, due to the
full-system emulation, S2E is not well-suited for large-scale analysis.

Recently, Cao et al. [7] have proposed di�erential replay of full
Windows kernel executions to �nd bugs in the Windows kernel
itself. However, replay systems require emulating a full Windows
operating system, where any drivers to be analyzed have to be in-
stalled, set up, and con�gured correctly. In contrast, solutions like
POPKORN analyze drivers outside of the native environment and
constrain state explosion to the behavior of the kernel driver itself.

9 CONCLUSION
Windows kernel drivers pose an inherent risk to the security of a sys-
tem since they execute with kernel-level privileges. In this paper, we
introduced POPKORN, a symbolic-execution-based bug-�nding sys-
tem to help vendors and third-parties �nd critical vulnerabilities in
their kernel drivers. POPKORN is a lightweight analysis framework
that can download, extract, and �nd critical vulnerabilities inWin-
dows kernel drivers in an automated fashion.We show that our tech-
nique is e�ective in recovering the device names, IoControlCodes,
function arguments, and the bu�er data needed to reach a vulnerabil-
ity. Based on this information, we could e�ectively generate proof-
of-concepts by hand. We conducted a thorough evaluation of POP�
KORN over a diverse set ofWindows kernel drivers and compared its
performance against Microsoft’s analysis tool, Driver Veri�er (DV).

POPKORN found a total of 38 bugs, 31 of which were previously
unknown.We have received two CVEs and six acknowledgments
from vendors so far. We are open-sourcing POPKORN to provide an
automated vulnerability detection framework for securingWindows
kernel drivers and fostering further research in this �eld.
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A IMPACT
OF VULNERABILITIES FOUNDBY POPKORN

Vendor BugsCVSS-7.8
(HIGH)

Disclosure

Privilege Escalation
via MmMapIoSpace
in FLASHUD.sys

CVE-2021-33104

Intel:One Boot
Flash Utility
14.1 Build 25

Privilege Escalation
via MmMapIoSpace
in IBSMUtil.sys

Fixed
(same CVE)

Privilege Escalation
via MmMapIoSpace
in imbdrv.sys

Fixed
(duplicate)

MSI:Dragon Center
2.0.104.0

Privilege Escalation
via MmMapIoSpace
in MODAPI.sys

CVE-2021-29337

AMD: Radeon
Software Adrenalin
19.1.1

Privilege Escalation
via MmMapIoSpace
in atdcm64a.sys

Fixed
(internally)

Privilege Escalation
via MmMapIoSpace
in atdcm64a.sys

Fixed
(internally)

Total 6

Table 5: Impact of vulnerabilities found per vendor (only
bugs not under embargo are included).

B MANUALLYDETERMINED
INPUT SOURCES IN SAMPLEDCVES

Input source Count
Bug inWindows (not in third-party driver) 36

Not aWindows driver bug 10
Unknown 43

DeviceIoControl 4
File System 1
Network 1

Custom Shader 1
DirectX 1

Named Pipe 1
Serial Line 1
SSDT hook 1

Table 6: Manually determined input sources in the 100
sampled CVEs where the automatic analysis did not detect
an input source

C MOST
FREQUENTWINDOWSAPI FUNCTIONS

Figure 3: Top 25most frequentWin-API functions extracted
from our dataset of 3,094 drivers.

D ADDITIONALCASE STUDIES
With the empirical evaluation done, in the following section, we
present two additional case studies. The�rst demonstrates how POP�
KORN can be used to re-discover and verify the existence of known
bugs in drivers, while the second discusses how POPKORN can be
extended to support other critical sinks.
Case Study I: ZwOpenProcess Abuse. This case study elaborates
on the bug described in CVE-2017-9769, which POPKORNwas able
to automatically discover, given the vulnerable driver �le. Unfortu-
nately, our driver dataset did not contain instances of this vulner-
ability in the wild, however POPKORNwas able to rediscover the
existing vulnerability in under four seconds. The decompiled driver
source we refer to is shown in Listing 4. In this case, the ClientId is
loaded from the user input and the DesiredAccess is hard-coded to
allow reading and writing of process memory (constant 0x2000000,
Line 18). As a result, it becomes trivial for an attacker to take over
any arbitrary process running on the system.

To implement this correctly, the driver developer has to i) not al-
low the user to control the process being opened, or ii) specify either
the OBJ_FORCE_ACCESS_CHECK or the OBJ_KERNEL_HANDLE �ags on
the ObjectAttributes. This way, the kernel would verify that the
calling user-mode process has the correct permissions to access the
desired process or that only the kernel driver could use the handle.
Then, even though the user-mode process successfully opens a privi-
leged handle to the process, it cannot perform anymalicious actions.
However, since the driver developer left the ObjectAttributes
uninitialized, the calling process can use the handle opened by the
driver to inject malicious code into any privileged process [57].
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1 void *__fastcall zwopenprocess_func(void *inbuf)
2 {
3 NTSTATUS status;
4 struct _CLIENT_ID ClientId;
5 struct _OBJECT_ATTRIBUTES object_attr;
6 void *p_handle;
7 // USER INPUT
8 ClientId.UniqueProcess = *(void**)inbuf;
9
10 object_attr.Length = 0x30;
11 object_attr.RootDirectory = 0;
12 object_attr.Attributes = 0;
13 object_attr.ObjectName = 0;
14 p_handle = 0;
15
16 status = ZwOpenProcess(
17 &p_handle, // process handle
18 0x2000000, // r/w access
19 &object_attr, //typical process attrs
20 &ClientId); // process id
21 if ( status < 0 )
22 {
23 printf(�Failed to open process�);
24 }
25 return p_handle;
26 }

Listing 4: ZwOpenProcess Abuse

Case Study II: Dell Privilege Escalation Bug. In this section, we
demonstrate the extensibility of POPKORN by adding support for a
recent bug found in a driver module from Dell’s BIOS update utility.
The example presented in this section isCVE-2021-21551 [52],which
was disclosed (and patched) recently. The bug stems from the vul-
nerable usage of the memmove library function [49]. memmove is used
to move a �xed number of bytes of memory from a source location
to a destination memory block, and it has the following protoype:
void *memmove(void *dest, const void *src, size_t count);

In this version of the vulnerable Dell driver, all of memmove’s three
arguments (destination, source, and count) can be controlled by
the user. In other words, insu�cient access control checks result
in user-provided bu�ers being directly used in the memmove rou-
tine. This is a classic write-what-where vulnerability, which lets an
attacker overwrite any arbitrary pointer in kernel memory with
user-supplied data.

The decompilation of the vulnerable driver code-snippet can
be seen in Listing 5. In order to reach the memmove routine, a spe-
ci�c IoControlCode (0x9B0C1EC8) [37] needs to be supplied, and a
four-�eld user bu�er is used to �ll all the parameters of memmove. A
DeviceIoControl request servesas theentrypoint toexploit thevul-
nerability. After satisfying the IoControlCode checks, the source,
destination, andsizeparametersare loaded fromuserbu�er�elds
(Lines 23–25). These parameters are then passed to memmove directly,
creating an arbitrary write vulnerability. This bug can be potentially
exploited to escalate privileges to NT Authority/System [52].

Due to the �exible nature of POPKORN, adding support for de-
tecting this bug was straightforward. We just had to add memmove
to the list of critical sink functions that POPKORN targets. In par-
ticular, we added a check function that gets triggered whenever an
invocation of memmove is encountered. This function examines the
parameters of memmove and determines whether they are loaded
from user-supplied bu�ers.

1 // CVE-2021-21551
2 __int64 __fastcall vuln(DEVICE_OBJECT *device_object,
3 IRP *irp)
4 {
5 // initialize buffers
6 .....
7 // entry in the I/O stack
8 iostacklocation = irp->Tail
9 .Overlay.CurrentStackLocation;
10
11 // I/O Control Code
12 ioctl = iostacklocation->
13 Parameters.DeviceIoControl.IoControlCode;
14
15 // load buffer data from user input
16 *inbuf = &irp->AssociatedIrp.MasterIrp->Type;
17
18 // vulnerable ioctl
19 if (ioctl == 0x9B0C1EC8)
20 {
21 Dest = (void *)((*inbuf)[1] +
22 (*inbuf)[2]); // dest
23 Src = *inbuf + 3; // ptr to source block
24 size = *inbuf - 0x18; // bytes to move
25
26 // user controllable data is accepted as is.
27 memmove(Dest, Src, size); // Write-What-Where Bug
28 ......
29 }
30 }

Listing 5: Decompiled driver containing CVE-2021-21551.

With this new check in place, we run our system against the
vulnerable driver: POPKORN automatically found the location of
IRP_MJ_DEVICE_CONTROL—which reaches the vulnerable routine—
and detected the bug in less than three seconds. Moreover, our anal-
ysis system reported the IoControlCode and bu�er data that needs
to be supplied to reach (and exploit) the vulnerable memmove routine.
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E KERNELAPI FUNCTIONS IN CVES

Kernel API Function Count Category Whymentioned?
ProbeForWrite 26 mitigation checks user-speci�ed address
MmMapIoSpace 23 vulnerable sink see Section 4.2

MmHighestUserAddress 22 mitigation distinguish between usermode and kernel address
ProbeForRead 22 mitigation checks user-speci�ed address
IofCallDriver 18 stacktraces

RtlCopyMemory 16 vulnerable sink bu�er over�ow if size controlled
HalDispatchTable 14 exploit target syscall table, overwriting gives code execution

ZwDeviceIoControlFile 14 exploit code and stacktraces
ExAllocatePoolWithTag 12 driver code, integer over�ows

KeBugCheckEx 11 vulnerable sink assertion failure, often after memory corruption
IoGetRequestorSessionId 10 10 related CVEs, triggers crash after corruption

KiDeliverApc 8 stacktraces
IoCreateDevice 7 driver code

KeInsertQueueApc 7 stacktraces
RtlInitUnicodeString 7 driver code

DbgPrint 6 driver code
IoCompleteRequest 6 stacktraces, driver code
ExFreePoolWithTag 5 driver code
IofCompleteRequest 5 5 related CVEs, can bugcheck beforeWin7
PsLoadedModuleList 5 WinGDB output

ZwClose 5 driver code
ZwEnumerateValueKey 4 vulnerable sink performs arbitrary write

ZwQuerySystemInformation 4 vulnerable sink performs arbitrary write
ExAllocatePool 3 driver code, integer over�ows
IoIs32bitProcess 3 3 related CVEs can only trigger in 32-bit driver

KeQueryPerformanceCounter 3 unrelated changelog, crypto seed
MmUnmapIoSpace 3 driver code

PsInitialSystemProcess 3 exploit target leaked to locate privileged access token
ZwMapViewOfSection 3 vulnerable sink see Section 4.2

Table 7: Kernel API functionsmentioned by CVEs.
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