
The Power of Procrastination: Detection and
Mitigation of Execution-Stalling Malicious Code

Clemens Kolbitsch
Vienna University of

Technology
Vienna, Austria

ck@iseclab.org

Engin Kirda
Northeastern University

Boston, MA, USA
ek@ccs.neu.edu

Christopher Kruegel
UC Santa Barbara

Santa Barbara, CA, USA
chris@cs.ucsb.edu

Abstract
Malware continues to remain one of the most important security
problems on the Internet today. Whenever an anti-malware solu-
tion becomes popular, malware authors typically react promptly
and modify their programs to evade defense mechanisms. For ex-
ample, recently, malware authors have increasingly started to create
malicious code that can evade dynamic analysis.

One recent form of evasion against dynamic analysis systems is
stalling code. Stalling code is typically executed before any mali-
cious behavior. The attacker’s aim is to delay the execution of the
malicious activity long enough so that an automated dynamic anal-
ysis system fails to extract the interesting malicious behavior. This
paper presents the first approach to detect and mitigate malicious
stalling code, and to ensure forward progress within the amount of
time allocated for the analysis of a sample. Experimental results
show that our system, called HASTEN, works well in practice, and
that it is able to detect additional malicious behavior in real-world
malware samples.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
Malware Analysis, Evasion, Emulation

1. INTRODUCTION
Malicious software (malware) is the driving force behind many

security problems on the web. For example, a large fraction of the
world’s email spam is sent by botnets [16], Trojan programs steal
account credentials for online banking sites [27], and malware pro-
grams participate in click fraud campaigns and distributed denial of
service attacks [15].

Malware research is an arms race. As new anti-malware solu-
tions are introduced, attackers are updating their malicious code to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

evade analysis and detection. For example, when signature-based
anti-virus scanners became widely adopted, attackers started to use
code obfuscation and encryption to thwart detection. As a conse-
quence, researchers and security vendors shifted to techniques that
focus on the runtime (dynamic) behavior of malware.

An important enabler for behavior-based malware detection are
dynamic analysis systems (such as ANUBIS [2], CW-SANDBOX [3],
NORMAN SANDBOX [4], and TEMU [25]). These systems exe-
cute a captured malware program in a controlled environment and
record its actions (such as system calls, API calls, and network
traffic). Based on the collected information, one can decide on
the malicious nature of a program, prioritize manual analysis ef-
forts [8], and automatically derive models that capture malware
behaviors [14, 19]. Such models can then be deployed to protect
end-users’ machines.

As dynamic analysis systems have become more popular, mal-
ware authors have responded by devising techniques to ensure that
their programs do not reveal any malicious activity when executed
in such an automated analysis environment. Clearly, when malware
does not show any unwanted activity during analysis, no detection
models can be extracted. For anti-malware researchers, these eva-
sion attempts pose a significant problem in practice.

A common approach to thwart dynamic analysis is to identify the
environment in which samples are executed. To this end, a malware
program uses checks (so-called red pills) to determine whether it is
being executed in a virtual machine [13, 24] or a system emulator
such as Qemu [20, 22, 23]. Whenever a malware program is able to
detect that it is running inside such an environment, it can simply
exit.

Reacting to the evasive checks (red pills), researchers have pro-
posed more transparent analysis environments [11, 12]. Another
approach has focused on the detection of differences between the
execution of a program in a virtual platform and on real hard-
ware [6, 17]. When such a discrepancy is identified, the checks
responsible for the difference can be removed. Finally, systems that
perform multi-path exploration [9, 21] or that identify “malicious
triggers” [10] can detect and bypass checks that guard malicious
activity.

In the next step of the arms race, malware authors have begun to
introduce stalling code into their malicious programs. This stalling
code is executed before any malicious behavior – regardless of the
execution environment. The purpose of such evasive code is to
delay the execution of malicious activity long enough so that auto-
mated analysis systems give up on a sample, incorrectly assuming
that the program is non-functional, or does not execute any action
of interest. It is important to observe that the problem of stalling
code affects all analysis systems, even those that are fully transpar-
ent. Moreover, stalling code does not have to perform any checks.

Thus, systems that aim to detect malware triggers or that explore
multiple execution paths do not reveal any additional behaviors.

With stalling code, attackers exploit two common properties of
automated malware analysis systems: First, the time that a sys-
tem can spend to execute a single sample is limited. Typically, an
automated malware analysis system will terminate the analysis of
a sample after several minutes. This is because the system has to
make a trade-off between the information that can be obtained from
a single sample, and the total number of samples that can be ana-
lyzed every day. Second, malware authors can craft their code so
that the execution takes much longer inside the analysis environ-
ment than on an actual victim host. Thus, even though a sample
might stall and not execute any malicious activity in an analysis
environment for a long time (many minutes), the delay perceived
on the victim host is only a few seconds. This is important because
malware authors consider delays on a victim’s machine as risky.
The reason is that the malicious process is more likely to be de-
tected or terminated by anti-virus software, an attentive user, or a
system reboot.

In this paper, we present the first approach to detect and evade
malicious stalling code, and to ensure forward progress within the
amount of time allocated for the analysis of a sample. To this end,
we introduce techniques to detect when a malware sample is not
making sufficient progress during analysis. When such a situation
is encountered, our system automatically examines the sample to
identify the code regions that are likely responsible for stalling the
execution. For these code regions (and these regions only), costly
logging is disabled. When this is not sufficient, we force the ex-
ecution to take a path that skips (exits) the previously-identified
stalling code.

We implemented our approach in HASTEN, an extension for ANU-
BIS, our dynamic analysis system. Our experimental evaluation
shows that HASTEN is effective in practice and can reveal addi-
tional behavior in real-world malware.

This paper makes the following contributions:

• We present the first approach to detect and deal with mali-
cious stalling code in real-world malware, and to ensure for-
ward progress within the amount of time allocated for the
analysis of a malware sample.

• We propose HASTEN, a dynamic analysis system extension
to detect and passively mitigate the impact of stalling code.
To this end, we identify stalling code regions and execute
them with reduced logging.

• We introduce an active extension to HASTEN that forces the
execution of the malware to take a path that skips the previously-
identified stalling code. This helps in cases where reduced
logging is not sufficient.

2. PROBLEM DESCRIPTION
In this section, we discuss the problem of stalling code in more

detail, and we show a real-world code example that implements
such a mechanism.

2.1 Definition
We define a stalling code region as a sequence of instructions

that fulfills two properties: First, the sequence of instructions runs
considerably slower inside the analysis environment than on a real
(native) host. In this context, “considerably slower” means that
the slowdown is large compared to the average slowdown that the
sandbox incurs for normal, benign programs. Examples of slow

1 unsigned count, t;

2
3 void helper() {

4 t = GetTickCount();
5 t++;

6 t++;

7 t = GetTickCount();
8 }

9 void delay() {

10 count=0x1;

11 do {

12 helper();

13 count++;

14 } while
15 (count!=0xe4e1c1);

16 }

Figure 1: Stalling code in W32.DelfInj

operations are system call invocations (because of additional log-
ging overhead) and machine instructions that are particularly costly
to emulate (e.g., floating point operations or MMX code).

The second property of stalling code is that its entire execution
must take a non-negligible amount of time. Here, non-negligible
has to be put into relation with the total time allocated for the auto-
mated analysis of a program. For example, for a dynamic analysis
system, this could be in the order of a few minutes. Thus, we expect
the stalling code to run for at least several seconds. Otherwise, the
analysis results would not be significantly affected. That is, when
an instruction sequence finishes within a few milliseconds instead
of microseconds, we do not consider this as stalling code.

Clearly, an attacker could create stalling code that stalls execu-
tion on the real host in the same way it does in the analysis environ-
ment. For example, the attacker could use sleep calls, or create high
amounts of activity to delay execution. However, in practice, exe-
cution delays using sleep-like functions can be easily skipped, and
delaying execution (for example, by raising the volume of activ-
ity) increases chances of being detected and terminated on a victim
host.

Intuitively, our definitions imply that stalling code contains “slow”
operations (to satisfy the first property), and that these operations
are repeated many times (to satisfy the second property). As a re-
sult, attackers typically implement stalling code as loops that con-
tain slow operations (and we will sometimes refer to stalling code
as stalling loops in this paper).

2.2 Example of Stalling Code
Figure 1 shows a stalling loop implemented by real-world mal-

ware. This code was taken from a sample that was first submitted
to the Anubis analysis system in February 2010. As the sample was
only available in binary format, we reverse engineered the malware
program and manually produced equivalent C code. Since the ex-
ecutable did not contain symbol information, we introduced names
for variables and functions to make the code more readable. To
determine the malware family that this sample belongs to, we sub-
mitted it to the popular VirusTotal service. VirusTotal uses around
40 anti-virus (AV) tools to scan each uploaded sample. All 40 AV
scanners considered the file to be malicious, and most tools labeled
our sample as Trojan Win32.DelfInj.

As can be seen in Figure 1, the code contains a number of un-
necessary calculations involving the return value of the Windows
GetTickCount function. According to documentation provided
by Microsoft [5], GetTickCount “retrieves the number of mil-
liseconds that have elapsed since the system was started, up to 49.7
days.” It is typically used to measure the time that elapses between
two events. In this scenario, however, the repeated invocations are
not useful. In fact, the value of the variable tick is simply over-
written by subsequent calls to GetTickCount. Moreover, this
loop is executed 15 million times. This strongly supports the intu-
ition that the purpose of this code is to stall execution.

When the code shown in Figure 1 is run natively on a real pro-
cessor, the loop executes and terminates in a matter of milliseconds.

Figure 2: Slowdown for native, hypervisor-based, and emu-
lated (Qemu) execution (native = baseline).

Interestingly, on the Qemu system emulator, the execution time is
not significantly higher. This is because of the way in which the
GetTickCount function is implemented on Windows. Instead
of invoking an expensive system call to retrieve the number of mil-
liseconds elapsed since system start-up, this value can be read di-
rectly from a kernel memory page that is mapped (read-only) into
the address space of all user programs (the counter is updated peri-
odically by the operating system).

Analyzing the stalling code inside ANUBIS, our Qemu-based dy-
namic analysis environment, yields a completely different result.
In ANUBIS, GetTickCount is monitored and, thus, the system
invokes a pair of log functions for each call to GetTickCount

(one before the call, and one after returning). These log functions
extract and write detailed information about the monitored function
call. For the stalling code in Figure 1, this means that the logging
functions of our analysis system are called 60 million times. Our
estimates show that this would take about ten hours, which means
that the attacker can successfully evade the analysis.

Note that excluding GetTickCount from the list of moni-
tored functions would provide a solution in this specific example.
However, the general problem that we address in this paper would
still remain. We discovered various other samples in the wild that
invoke different functions that are frequently monitored (such as
WriteFile), and we cannot generally ignore them all. Further-
more, attackers can implement stalling code without targeting the
overhead introduced by the monitoring system and instead make
use of instructions that are particularly slow to emulate. Figure 2
shows four examples of programs that make heavy use of FPU,
MMX, IO, and memory operations, each experiencing a significant
slowdown (up to a factor of 45). In comparison, for benign appli-
cations average overheads stay below a factor of 10.

3. SYSTEM OVERVIEW
In this section, we present a high-level overview of HASTEN.

The goal of our system is to detect stalling loops and to mitigate
their effect on the analysis results produced by a sandbox (such as
ANUBIS). In particular, our system must ensure that the analysis
makes sufficient progress during the allocated analysis timeframe
so that we can expose as much malicious activity as possible. To
this end, HASTEN can operate in three modes: monitoring, passive,
and active mode.
Monitoring mode. When the analysis of a malware sample is
launched, HASTEN operates in monitoring mode. In this mode,
the system performs lightweight observation of all threads of the
process under analysis. The goal is to measure the progress of each
thread, and to identify instances in which the execution might have
entered a stalling region.
Passive mode. When the monitoring mode detects insufficient
progress, this is typically due to slow operations that are executed

1 // H4X0r: make sure delay loop was not interrupted

2 void check() {

3 if (count!=0xe4e1c1) exit();
4 }

Figure 3: Malware code to check that the delay loop has not
been interrupted.

many times. Thus, as a first step, HASTEN attempts to identify
the code region that is repeatedly executed. To this end, our sys-
tem starts to dynamically record information about the addresses
of instructions (code blocks) that are executed. Using these ad-
dresses, we build a (partial) control flow graph (CFG) of the non-
progressing thread. This CFG is then searched for loops.

Intuitively, the code that is identified by this process represents
the stalling loop(s). For example, in the code snippet in Figure 1,
our tool would identify the do-while loop in the delay function
(Line 11-15). The stalling code region would also include the
helper function (L. 3-8), since it is invoked inside the body of
the loop (L. 12). Note that our system uses inter-procedural con-
trol flow analysis for loop detection. This allows us to handle cases
in which a loop is not part of a single function, but the result of
recursive function calls.

Once the stalling loop is identified, HASTEN adapts its analysis
for this code region. More precisely, we first whitelist the code
that is part of the stalling region. Note that this whitelist covers
only those instructions (basic blocks) that have been executed pre-
viously by the malware. Thus, parts of a stalling loop that have
not been executed before are not whitelisted. In the next step, the
system limits (or turns off) detailed malware introspection for the
whitelisted code regions. This approach significantly reduces (or
removes) the overhead that is introduced by the analysis environ-
ment.

The passive mode is called “passive” because we do not interfere
with the malware execution; we only modify the analysis environ-
ment to accelerate stalling loops.
Active mode. When HASTEN operates in active mode, it actively
interferes with the execution of the binary. In particular, the tool at-
tempts to force a stalling loop to exit (or, more precisely, to follow
a code path that exits the whitelisted region that the previous analy-
sis has identified; this might force execution into parts of a stalling
loop that have not yet been executed). To this end, our system uses
the previously-constructed CFG and identifies all nodes associated
with conditional jumps that are (i) part of the stalling loop and that
(ii) have one successor node that is not part of the whitelisted code
region. That is, we identify all nodes through which there exists a
path that exits the stalling code. At the next loop iteration, when
such a conditional jump is encountered, HASTEN flips the check
that this instruction implements (e.g., a less-than would be con-
verted into a greater-or-equal). Hence, the thread is forced to con-
tinue execution along a path outside the stalling region.

Altering the flow of execution of a program (such as prema-
turely preempting a loop or following an “unexplored” path within
the loop) can leave this program in an inconsistent state. Refer-
ring back to our example in Figure 1, one can see that the variable
count will not have the expected value (0xe4e1c1) when HAS-
TEN forces the loop to exit. This might be irrelevant, but at the
same time, there is a possibility that it could also lead to program
crashes. Malware authors could leverage these inconsistencies to
expose the analysis system. For example, consider an attacker that
calls check, shown in Figure 3, after the delay function (from
Figure 1). If our system would preempt the loop, this comparison

would succeed, and the malware would terminate without revealing
any additional malicious behavior.

To overcome this problem, our approach is as follows: Before
we exit a whitelisted code region, we first analyze this region for
all variables (memory locations) that the code writes as part of a
computation (logic and arithmetic instructions). These memory lo-
cations are then marked with a special label (tainted), indicating
that their true value is unknown. Whenever a machine instruction
uses a tainted value as source operand, the destination is tainted
as well. For this, we leverage the fact that we have implemented
our prototype solution on an emulator-based analysis platform that
already supports data flow (taint) tracking.

Whenever a tainted variable is used in a comparison operation
or in an indirect memory access (using this variable as part of the
address computation), HASTEN temporarily halts the execution of
the malware process. It then extracts a backward slice that ends at
the comparison instruction and that, when executed, will compute
the correct value for this variable. To obtain this slice, we leverage a
tool that we previously developed [18]. Once the slice is extracted,
it is executed on a native machine. As a result, this computation
does not incur any overhead compared to the execution on a real
victim host.

4. MONITORING MODE
The goal of the monitoring mode is to determine whether a mal-

ware process has entered a stalling code region. To this end, HAS-
TEN monitors the progress of a program under analysis. More pre-
cisely, the system monitors, for each thread, the frequencies, types,
and return codes of all (native) system calls that this thread invokes.

System calls are the mechanism through which a process inter-
acts with its environment and the operating system. Also, to per-
form security-critical tasks (such as spawning new processes, mod-
ifying files, or contacting network services), a program must invoke
at least one system call. Thus, we believe that it is reasonable to
monitor the progress of a running program by inspecting the sys-
tem calls that it invokes. Moreover, all system calls use the same
convention to report errors. That is, there are well-specified values
that indicate a successful, or erroneous, invocation. This makes it
easy to determine whether a system call has been successful or not
(which is useful knowledge when reasoning about the progress of
a process). Finally, almost all analysis systems already support the
monitoring of system calls, and typically, this data can be collected
efficiently.
Detecting progress. To measure the progress of a process, HAS-
TEN periodically evaluates the system calls that each of its threads
invokes. More precisely, after a thread has been scheduled for a
time interval of length t, the system employs five simple detectors
to evaluate the system calls that have been observed during that last
period. Whenever one or more of these detectors reports insuffi-
cient progress, the system is switched into passive mode (explained
in more detail in the following Section 5).

When choosing a concrete value for the time interval t, we need
to balance two ends: Large values are more resistant against short
sequences of unusual, repeated behavior; small values allow faster
detection of abnormal activity. For our experiments, we have cho-
sen a value of t = 5 seconds. This allows us to evaluate the
progress multiple times during an analysis run (which is typically a
few minutes) and yielded good results in our experiments. Our five
detectors are discussed in the paragraphs below:
Detector for too few successful system calls: We expect to see a
reasonably large number of successful system calls that reflect the
normal interactions of a process with its environment and the OS.

Thus, when our system does not observe any system calls (or too
few of them), this is an indication of insufficient progress. This
detector simply computes the total number of successful system
calls Ss within the time interval t. An alarm is raised when this
number is lower than a threshold Ss < Smin,s.
Detector for too many successful system calls: Interestingly, there
is also the possibility that a malware process invokes too many sys-
tem calls, even though no progress is made. Usually, the number
of system calls a program executes is limited by the necessary data
processing in between two calls, or delays introduced while waiting
for IO completion. With some stalling loops, however, malware au-
thors try to exploit the logging overhead of the analysis system and
rapidly issue many calls. For this, one would typically select sys-
tem calls that finish very quickly (e.g., NTCREATESEMAPHORE,
as it does not need to wait for IO completion). This detector rec-
ognizes such attempts. An alarm is raised when the number of
successful system calls exceeds a certain threshold Ss > Smax,s.
Detector for too many failed system calls: Of course, it is also pos-
sible to overload a sandbox with many invalid system calls (i.e.,
system calls with incorrect parameters). Invalid calls are quickly
caught by the kernel, which checks the validity of the parameters
(e.g., pointers should not be NULL) early on. Hence, they exe-
cute very fast on a victim host. Unfortunately, they still incur the
full logging overhead on the analysis platform. Thus, this detector
raises an alarm when the number of failed system calls exceeds a
certain threshold Sf > Smax,f .
Detector for too many identical system calls: The previous two de-
tectors identify cases in which stalling code attempts to overload
the sandbox with excessive numbers of system calls. A more cau-
tious attacker could attempt to hide stalling code by issuing fewer
system calls (that stay under our thresholds) and inject additional
computations between the call sites. However, even in this case,
it is likely that we will observe the same (small) set of calls re-
peated many times (executed in a loop). This is different from nor-
mal program execution, where a program invokes more diverse sys-
tem calls. The detector for identical system calls recognizes cases
where most system calls seen within interval t belong to a small set.
To this end, we compute the entropy Se of the set of system calls
during t. An alarm is raised when the entropy is below a threshold
Se < Smin,e.
Detector for too diverse system calls: To thwart the previous de-
tector, a malware author could choose to execute a series of ran-

domly chosen system calls to artificially increase the entropy. Al-
though the stealth implementation of such an approach seems dif-
ficult (considering the detector for too many failed system calls),
we add an additional detector that raises an alarm when the entropy
exceeds a threshold that is atypical for normal program executions:
Se > Smax,e.
In our experiments, we found that the previously-described detec-
tors are successful in identifying stalling code in real-world mal-
ware. However, if necessary, it is easy to develop additional heuris-
tics and integrate them into our system.
Parameter computation. The choice of concrete parameter val-
ues used by the five detectors (Smin,s, Smax,s, Smax,f , Smin,e,
and Smax,e) determines how often the system is switched into pas-
sive mode. When the thresholds are set too low, HASTEN might
enter passive mode more often than necessary. When the thresh-
olds are too high, the system might mistake stalling code for suffi-
cient progress and, as a result, miss interesting activity. Because the
cost of unnecessarily switching into passive mode is only a small
performance hit, we prefer low thresholds that result in sensitive
detectors.

To compute the necessary thresholds, we compiled a training set
of 5,000 malware samples submitted to ANUBIS. We only selected
samples that performed obvious malware activity (they produced
network traffic, spawned additional processes, or opened a UI win-
dow). We assume that these samples do not contain stalling code
because the analysis successfully exposed malicious behaviors. All
samples from the training set were executed in HASTEN, counting
the numbers of successful and failed system calls during each time
period t, and computing their entropy. Then, the thresholds were
set so that the numbers derived for the training samples do not trig-
ger any detector. For more details about the parameter computation,
the reader is referred to Appendix A.

5. PASSIVE MODE
When the previous monitoring phase detects that a thread makes

insufficient progress, the system switches into passive mode (for
this thread). When in passive mode, the system performs two steps.

In the first step, the system attempts to find code blocks that are
repeatedly executed (as part of loops or through recursive function
calls). To this end, the system starts to build a dynamic control
flow graph (CFG) that covers the code that the thread is executing.
This CFG is then searched for cycles, and all blocks that are part
of a cycle are marked as (potential) stalling code. In the second
step, HASTEN reduces (or disables) logging for all blocks that the
previous step has marked as stalling code.

5.1 Identifying Stalling Code
Constructing the dynamic control flow graph. To build a dy-
namic, inter-procedural control flow graph, we need to keep track
of which instructions the program executes. For this, we lever-
age the execution infrastructure of ANUBIS, which is based upon
the system emulator Qemu. More precisely, whenever HASTEN is
switched into passive mode, the system starts to instrument the first
instruction of each translation block (which is roughly the Qemu-
equivalent to a basic block) as well as all call and ret instruc-
tions. The first instruction of a basic block simply appends the
value of the current instruction pointer %eip to a queue. This al-
lows us to efficiently determine the sequence in which a thread has
executed its basic blocks. The call and ret instructions addi-
tionally store the current value of the stack pointer. This makes it
easier to handle non-standard function calls (when the callee does
not return to the calling function).

The queue holding %eip information is processed periodically
(during scheduling or when switching to kernel code). At this point,
the sequence of values (eip1, eip2, ..., eipn) in the queue is used to
construct the CFG: Each distinct eipi value represents a different
basic block, and hence, a different node in the control flow graph.
Thus, for each eipi 8i : 1 i n, we check whether there exists
already a corresponding node in the CFG. If not, it is added. Then,
for each pair (eipi, eipi+1) 8i : 1 i < n, we insert an edge from
the node associated with eipi to the node associated with eipi+1 (if
this edge does not exist). Finally, the queue is flushed, and the last
element eipn (which has not been processed so far) is inserted as
the next head of the queue.

Every time the system processes the queue with the %eip val-
ues, there is potentially more information available that can be used
to obtain a more complete picture of the program’s CFG. However,
we expect that there are diminishing returns. That is, after some
time, all code blocks that are part of the stalling code region have
been seen, and no new nodes are added to the CFG when the queue
is processed. At this point, the CFG can be analyzed for stalling
code regions. Note, we also trigger this analysis after a timeout Tr

(currently set to 8 seconds). This handles cases where the stalling

Figure 4: Example CFG for functions m, f , and g.

code contains a loop with many different paths so that a few more
nodes are discovered and added every time.
Finding live loops. To find stalling code, we analyze the CFG for
loops. To this end, we use the algorithm proposed by Sreedhar et
al. [26]. At this point, we have identified a number of loops in
the dynamic control flow graph of the malware program. Some of
these loops might be nested, but in most cases, we will find non-
overlapping loops that belong to different functions. The question
now is: Which of these loops (and which code blocks) should we
consider to be part of the execution stalling region?

To answer this question, we first identify all code blocks that are
live at the current point during the execution. Intuitively, live code
blocks represent the code of all functions the program has started to
execute, but have not returned yet. More precisely, we define live
code blocks as follows:

Definition: A code block b is live when there is a path
in the inter-procedural CFG from the node that corre-
sponds to block b to the node c that corresponds to the
current code block. Moreover, this path can traverse
only intra-procedural edges and live call edges.

The current code block is the code block that holds the currently-
executing instruction (i.e., the code block that the instruction pointer
%eip currently points to). A live call edge is an edge that has been
introduced into the graph by a function call that has not returned
yet. Consider a function f that invokes function g. This introduces
an edge into the CFG from a node in f to a node in g. Initially,
this edge is live, because the program executes instructions in g.
When g returns, g is no longer live and its frame is removed from
the stack. As a result, the call edge between f and g is no longer
live. Of course, the edge in the CFG still remains.

Consider an example where a main function m first invokes f
and then, after f has returned, a second function g. Figure 4 shows
a CFG for this example. Let us further assume that the current code
block is in function g (node in black). It can be seen that only the
call edge between m and g is live. The live blocks for this program
are represented as gray nodes. Note that the live blocks cover the
loops in m and the first nodes in g.

To determine live call edges, we use a stack to track call and re-
turn instructions that the malware program executes. As mentioned
previously, the stack pointer information associated with call and
return instructions helps us to handle cases in which functions
perform non-standard returns.
Finding stalling loops. Once we have determined all live code
blocks, the next step is to identify active loops. Intuitively, an active

loop is a loop that is still in progress; that is, it has not finished yet.
We are only interested in active loops as potential stalling loops,
since we assume that the stalling code is still running when we
perform our analysis.

A necessary precondition for an active loop is that it contains
code blocks that are live. However, this is not sufficient: Consider,
again, the example in Figure 4. One can see that function m con-
tains two sequential (non-nested) loops; l1 followed by l2. The
current code block is in g, which is called from a node in l2. This
indicates that l1 has finished. Thus, even though l1 is live, it is not
active. In our example, only l2 is active.

To determine active loops, we first identify all live loops. This
is straightforward: A live loop is a loop in the CFG with at least
one node that corresponds to a live block (actually, because there is
a path from all nodes inside a loop to all other nodes in that loop,
either all nodes in a loop will be live, or none). Then, we mark as
active all live loops where either (i) the current code block is part
of the loop, or (ii), a node with an outgoing, live call edge is part of
the loop.

Note that all active loops within the same function (instance) are
nested. To see this, consider all active loops within one function.
They must contain either the node associated with the current code
block or the node associated with the live call edge. In the case of
recursive function calls, we need to distinguish between different
instances of the same function, but for each instance, there can be
at most one live call node.

Any active loop (or a combination thereof) is potentially respon-
sible for stalling the execution. Thus, we can use different heuris-
tics to pick the one(s) that is (are) most likely stalling. For example,
we could pick the innermost active loop. This assumes that the ex-
ecution is stalled inside the loop that is currently executing, and the
code region for which logging is reduced is as small as possible
(which is desirable). However, if the inner loop is only a part of a
larger stalling loop, accelerating only this region is not sufficient.
As an alternative, it is also possible to simply take the outermost
loop. In this case, it is very likely that the stalling code is covered
in its entirety. On the downside, reduced logging will be enabled
for a larger portion of the malicious code. Thus, in our system, we
pick the innermost, active loop as the stalling loop. This ensures
the most accurate analysis results. In the following subsection, we
discuss how we handle the situation when this innermost loop does
not cover the entire stalling code region.

5.2 Reducing Analysis Overhead
Once the system has selected the active loop that is likely caus-

ing the execution to stall, we have to find the entire code that is part
of the stalling code. Of course, the code blocks that are part of the
selected, active loop are part of the stalling code, but this is not ev-
erything. We also need to add to the stalling region all code blocks
that are reachable from any block in the loop body, even when these
blocks are not live at the point in time. This is necessary because
the stalling region must cover the entire code that is executed as
part of the loop; including other functions that can be invoked by
the loop, not only those parts that are currently live. However, it is
important to remember that the stalling code region can only con-
tain basic blocks that the program has executed previously (others
are not part of our CFG).

To find the stalling code region, we find all code blocks b in the
CFG so that there is a path from any active loop block to b. This
is very similar to the analysis that finds live code blocks, but with
the main difference that a path can pass through any call edge (and
not only live call edges). All code blocks b that are found by this
analysis are added to the stalling region. In the example shown in

Figure 4, this means that the stalling code also includes code blocks
in function f (since they are reachable from l2 in m).

Once we have found all blocks that are part of the stalling code,
we reduce the amount of analysis that is performed while this code
is executing. More precisely, we temporarily disable logging of all
functions that are not critical for the proper operation of the analysis
system or that we consider highly security-critical. Examples for
functions that are continued to be analyzed even in these situations
are related to loading of libraries or spawning of new processes. Of
course, this is done only for the selected thread and limited to the
identified stalling code.

Whenever the execution exits the stalling region, we switch back
to monitoring mode. To this end, we whitelist all blocks that are
part of the stalling loop. Whenever execution encounters a non-
whitelisted code block, the system is reverted back to monitoring
mode, and the full analysis is re-enabled.

In case a stalling region contains multiple, nested loops, we first
whitelist the innermost loop. When we later observe that this is not
sufficient, the whitelisted region is successively extended to cover
also the enclosing, parent loops. The details of the process are
described in Appendix B.

6. ACTIVE MODE
In passive mode, HASTEN attempts to accelerate the execution

of stalling loops by reducing the overhead associated with logging
security-relevant functions. Unfortunately, this might not be suffi-
cient to obtain progress. In particular, malware authors can write
stalling code that exploits machine instructions that are very slow to
emulate (such as floating point or MMX instructions). To address
such types of stalling code, we introduce HASTEN’s active mode.
In active mode, the system forces the termination of the whitelisted
stalling code. The purpose of this is to continue to explore the pro-
gram execution further.

6.1 Modifying the Flow of Execution
When entering active mode, we first have to identify suitable

nodes in the CFG that have an outgoing edge that exits the stalling
loop. To this end, HASTEN searches all whitelisted code blocks
that are part of the stalling region for those that end in a condi-
tional branch. Then, the system checks whether any of these con-
ditional branch instructions has a successor node that is not part of
the stalling region. These instructions are marked as exit points.
If the system fails to find at least one suitable exit point, HASTEN
stops analysis and flags the analysis report for subsequent human
analysis. Finally, we resume the execution of the malware.

Whenever the process subsequently attempts to execute an exit
point instruction, HASTEN examines the operands of the branch
operation and determines the path that the execution is about to
take. When this path exits the stalling region, the process is allowed
to continue. Otherwise, our system will dynamically invert the
branch (for example, a greater-than operation is changed into less-

or-equal). This means that HASTEN will take the first exit point that
the execution encounters after switching into active mode. See Sec-
tion 8 for a discussion of the implications of this approach. Once
execution leaves the whitelisted code region, HASTEN re-enables
full monitoring.

6.2 Handling Inconsistent Variables
When HASTEN changes the control flow and, thus, the execution

of a process, the state of this process might become inconsistent.
This is a problem when the program later tries to access or use vari-
ables that are modified by the stalling code (but that hold incorrect
values). For example, the program could compute a magic value

inside a stalling loop that is checked afterwards; a simple mecha-
nism to detect whether an analysis system has skipped the stalling
code.

To handle the problem of inconsistent variables (which are vari-
ables that hold potentially incorrect values), we use taint analysis to
track memory locations that might hold incorrect values (as well as
the variables that are derived from these memory locations). When
the program later uses a potentially inconsistent variable, we ex-
tract a slice that efficiently computes the correct value.

In a first step, we need to determine all memory locations that
can potentially be written by the stalling code. We can then assign
a taint label to these variables that marks them as inconsistent. Our
underlying analysis platform already supports the tracking of taint
labels. That is, whenever a computation (or data transfer opera-
tion) involves at least one tainted source operand, the destination is
tainted as well. As a result, at any later point in time, the system
can determine whether the value of a memory location was derived
from an inconsistent variable.

To approximate all locations that can be written by the stalling
code, we use the following technique: While the program is exe-
cuting in passive mode, we label the destinations of all arithmetic
and logic operations. Given that the stalling code is executed many
times, we assume that we see all write targets at least once.

Whenever a labeled (tainted) value is used as an operand in a
control flow operation (a conditional or indirect branch), an indirect
memory access, or an argument in a system call, HASTEN needs to
step in. This is because using an incorrect value as input to these
fragile operations might yield visibly incorrect program behavior
(such as program crashes, invalid outputs, etc.). This is different
from “normal” instructions, which HASTEN handles in a lazy fash-
ion by simply propagating taint labels.

Efficiently computing inconsistent variables. Whenever HAS-
TEN encounters a fragile instruction that uses a tainted operand, we
need to efficiently compute its correct, expected value. To this end,
we extract a backward slice from the malware program that con-
tains exactly the instructions necessary to compute the inconsistent
value.

To extract the slice, we leverage our previous work on INSPEC-
TOR [18], a tool to extract stand-alone programs (gadgets) from
malware programs. More precisely, the goal of INSPECTOR is to
extract, from a given malware binary, a slice that computes the ar-
gument values of interesting (security-relevant) system calls. This
is very similar to our problem, where we are interested in a slice
that computes the value of an inconsistent variable.

To perform its task, INSPECTOR employs binary backward slic-
ing. This process exploits the fact that detailed runtime information
can be gathered from the dynamic execution of malware (such as
the targets of indirect memory accesses and control flow instruc-
tions). This allows the extraction of complex slices that span mul-
tiple functions and involve elaborate memory access patterns. For
space reasons, we have to refer the reader to our previous paper [18]
for a detailed discussion of INSPECTOR.

Once our system has extracted a slice, it can be executed as a
stand-alone program by the slice player that comes with INSPEC-
TOR. Note that the slice player performs no instrumentation, and it
can execute the code directly on a native host. Thus, the slices ex-
ecute the stalling code very fast, basically as fast as on the victim’s
machine. For stalling code that exploits the overhead introduced
by slow emulation, this can speed up execution by several orders
of magnitude. Once the slice has computed the required value, it
replaces the current (incorrect) value of the tainted variable, and
HASTEN continues the execution of the malware process.

7. EVALUATION
In this section, we evaluate HASTEN’s ability to mitigate stalling

code in malware binaries. We show that detecting signs of low
progress works on samples found in the wild, and we test the effec-
tiveness of HASTEN’s different modes.

7.1 Malware Data Set
To evaluate our system, we randomly selected 29,102 samples

from the files that were submitted to ANUBIS between August 2010
and February 2011. When picking malware programs for our data
set, we did not include any invalid Windows PE files or files that
failed to load in the analysis environment (e.g., due to unresolved
library dependencies). Moreover, we did not select any sample that
terminated within the time allocated for the original analysis run
(in our case, 240 seconds). The reason is that these samples have
already revealed their entire malicious activity during the allocated
analysis timeframe. Our data set represents a diverse mix of mal-
ware currently active on the Internet.

We also retrieved the analysis report generated for each of the
samples. We refer to these reports as the base run, and we use
the observed behavior as one part to evaluate whether HASTEN is
successful in revealing additional behavior.

7.2 Measuring Behavior
The goal of HASTEN is to reveal additional behaviors in malware

samples that contain stalling loops. To be able to measure this in
an automated fashion, it would be tempting to simply re-run each
sample in our system and compare the observed behavior to this
sample’s base run. However, this would not be fair. The reason is
that the behavior exhibited by a sample can significantly depend on
the date/time of analysis and the availability of remote resources.

Thus, for a fair evaluation of HASTEN, we re-ran each of the
samples twice: First, we performed a redundancy run with iden-
tical settings compared to the base run; in parallel, we conducted
a test run using HASTEN. In this way, we attempted to minimize
external influences on the behavior of a sample by eliminating the
time between test and redundancy runs for each binary.

Whenever a test run reveals added behavior compared to the re-
dundancy run, we also compare the redundancy run to the (initial)
base run. If these two runs differ considerably, it is possible that
the detected, added behavior is independent of HASTEN. To assess
the added behavior produced by HASTEN, we use three different
metrics: Optimistic improvement (OI) considers any added behav-
ior seen during the test run (over the redundancy run) as an im-
provement due to HASTEN. Average improvement (AI) takes into
account randomness in malware executions. To this end, we do
not attribute any added behavior to HASTEN when the test run pro-
duces less added behavior than the corresponding redundancy run
over the base run. Pessimistic improvement (PI) counts added be-
havior in the test run as new only when redundancy and base runs
do not differ.
Added behavior. To determine added behavior when comparing
two analysis runs, we only take into account persistent features of
the corresponding behavioral profiles: A persistent feature is an ac-
tivity performed by the malware that is visible from the outside of
the analysis sandbox or that introduces permanent changes to the
system. Examples for such features are communicating over net-
work sockets, writing to files in the file system, or opening graph-
ical windows. Table 3 (Appendix C) lists all combinations of re-
sources and actions that we considered persistent features in this
paper. In our setting, focusing on persistent features is reasonable,
since they are indicative of the typical behavior used to classify and
detect malware.

7.3 Evaluation Results
We analyzed each of the 29,102 samples in our test set twice;

once without HASTEN (redundancy run), and once with our system
enabled (test run). HASTEN has a negligible impact on analysis
performance in monitoring mode and only introduces small over-
heads in the other modes. We considered extending the analysis
time for the test runs to compensate for this difference. However,
this difference is difficult to predict precisely. Thus, we conserva-
tively used the same timeout (240 seconds) for all evaluation runs.

Monitoring mode results. 9,826 (33.8%) of the analyzed mal-
ware programs exhibited insufficient progress at some point during
the analysis. That is, at least one of the heuristics triggered. In
98.3% of these cases, observing too few successful system calls
was the predominant cause for switching into passive mode. An
excessive number of successful and failed system calls were ob-
served in 1.5% and 0.3% of the cases, respectively. Throughout
our experiments, the heuristics for identical or suspiciously diverse
calls never triggered. This does not come as a surprise, however,
as we introduced these to increase the burden to bypass our sys-
tem. With attackers becoming aware our system, we expect these
detectors to become more important.

For the 9,826 low progress samples, HASTEN switched into pas-
sive, and, if necessary, also into active mode. The remaining 19,276
programs showed good progress. While this number appears large
at first glance, it makes sense. We do not expect that a majority of
malware samples in the wild already contains stalling code against
sandboxes.

Passive mode results. Whenever HASTEN switches into passive
mode, the system starts to record the control flow of the thread
that stalls and tries to extract live loops. For the 9,826 samples
that exhibited stalling behavior, the tool was able to do so in 6,237
(63.5%) cases.

We manually inspected some of the remaining 3,589 cases to
determine why no loop was identified, despite low progress. We
found that many samples were in a “mostly waiting” state; that is,
the threads were sleeping, occasionally interrupted by the OS that
invoked a callback function. In other cases, we found that “stalling
loops” were of short duration, and threads made progress before
HASTEN could complete the analysis of the loop. We attribute
these cases to the conservative thresholds that we selected for the
detectors in monitoring mode. That is, the malware processes show
signs of low progress but it is not due to malicious stalling. Thus,
we cannot expect that HASTEN can extract added behavior. Note
that the negative impact of switching into passive mode is minimal
(only a small performance loss).

We further investigated the 6,237 samples for which HASTEN
discovered insufficient progress and extracted a live loop. In 3,770
cases, the system only switched into passive mode. In the remain-
ing 2,467 test runs, the system activated the passive and, subse-
quently, the active mode. Table 1 details our findings of new, added
behavior observed during the test runs, using the average improve-
ment metrics (for a detailed overview of added behaviors using the
optimistic and pessimistic metrics, refer to Table 4 in Appendix D).
The table also shows the number of malware labels assigned to dif-
ferent sets of malware samples by a popular anti-virus product. We
used only the family portion of the malware labels for this analysis
(that is, W32.Allaple.A becomes allaple). Of course, we
are aware of the limitations of labels assigned by anti-virus prod-
ucts. We just provide these numbers to underline the heterogeneity
of our malware data set.

The left side of Table 1 shows that the passive mode allowed
HASTEN to observe new behaviors in 1,003 runs (26.6% of all

passive-only runs). With 25.2% and 14.9%, file and registry mod-
ifications are the most prevalent behavior detected by HASTEN,
respectively. Furthermore, 11.8% of samples in this class partic-
ipated in new networking behavior, which can lead to the exposure
of new command and control servers or drop zones on the Internet.

HASTEN detected added behavior in 1,447 more cases. How-
ever, due to the conservative nature of our evaluation, and since
the redundancy run also produced additional features, we cannot
conclusively attribute this to our approach.

For the remaining 1,320 analysis runs, we did not observe new
behavior, but neither did the system advance into active mode. Typ-
ically, this means that HASTEN did not manage to build a whitelist
in time that covers the entire stalling code. More precisely, while
building the CFG, some paths inside the stalling code were ini-
tially not observed, or a deeply nested stalling loop is executed.
As a result, HASTEN repeatedly hits non-whitelisted code, which
switches the system back into monitoring mode. After monitoring
progress for another time slot, passive mode is re-enabled, and a
more complete whitelist is generated. However, the analysis time-
out is encountered before this iterative process can complete. A
longer timeout or more aggressive whitelisting could be used to
address such situations.
Active mode results. For certain samples, HASTEN did not ob-
serve progress despite reduced logging. Thus, the system proceeds
to actively interrupt stalling code to force forward progress. In our
evaluation set, HASTEN modified the control flow of 2, 467 sam-
ples, revealing new behavior in 549 analysis runs (22.3%). The
right-hand side of Table 1 shows details about the added behaviors.

While new behavior in passive mode always means additional,
relevant activity, we need to be more careful in active mode: Since
we actively change the flow of execution, we could follow infea-
sible paths that lead to errors (shown in the last row of Table 1).
We handle inconsistent variables as discussed in the previous sec-
tion, but the program might still show undesired behavior (such
as premature program exits or exceptions). The reason is that the
program could be forced down an error path that does not refer-
ence any tainted variable modified in the loop, but simply performs
some clean-up activities and then raises an exception. A prominent
example are the checks that are introduced by Microsoft’s compiler
to guard the return addresses on the stack against overflow corrup-
tion. As a result, when HASTEN encounters as exit point the condi-
tional branch that checks for stack corruption and forces execution
down this path, the program terminates with an exception (see the
next Section 8 for a discussion on how this can be addressed). Of
course, we discard all added behaviors that are due to exceptions
(such as the start of the debugger).

Overall, HASTEN detected the use of inconsistent variables dur-
ing 780 analysis runs in active mode. In 778 cases, INSPECTOR
needed to be invoked once, for two runs, two invocations were nec-
essary.
Discussion. Table 1 demonstrates that HASTEN was able to reveal
interesting added behavior for 1,552 (1,003 + 549) samples, using
the average improvement metrics. This number increases to 3,275
when considering the optimistic measure for additional behavior
(as shown in Table 4). This behavior relates to significant activity,
such as file system accesses or network traffic. Our numbers show
that HASTEN successfully found additional behavior in 24.5% (or
52.5%, when using the optimistic metrics) of the 6,237 samples
that contain some kind of loop that delays progress in a sandbox.
The failure to expose additional behavior for the remaining samples
has several reasons: Most often, some necessary resource (e.g., a
command and control server) was no longer available, thus, the
malware stopped its execution. In other cases, HASTEN switched

Table 1: Additional behavior observed in Hasten (using average improvement).

Description Passive Active
samples % # AV families # samples % # AV families

Runs total 3,770 � 319 2,467 � 231
Added behavior (any activity) 1,003 26.6% 119 549 22.3% 105
- Added file activity 949 25.2% 113 359 14.6% 79
- Added network activity 444 11.8% 52 108 4.4% 31
- Added GUI activity 24 0.6% 15 260 10.5% 51
- Added process activity 499 13.2% 55 90 3.6% 41
- Added registry activity 561 14.9% 82 184 7.5% 52

Ignored (possibly random) activity 1,447 38.4% 128 276 11.2% 72
No new behavior 1,320 35.0% 225 1,642 66.5% 174
- Exception cases 0 0.0% 0 277 11.2% 63

into passive mode towards the end of the analysis timeframe, and
a timeout was encountered before additional behaviors could be
exposed. Finally, in some cases, HASTEN selected an error path
that lead to premature program termination.

We also wanted to understand in more detail the nature of the
stalling code introduced by malware authors. To this end, we fo-
cused our attention on the 1,552 samples that revealed added behav-
ior. While it is difficult to determine with certainty that a particular
piece of code has been deliberately inserted by a malware author
to prevent dynamic analysis, we checked for the presence of many
repeated calls to API functions that serve no apparent purpose. In
particular, during manual analysis of a few samples, we observed
repeated calls to GetTickCount and GetCommandLine. We
then checked the prevalence of these calls in the execution traces of
the 1,552 samples. We found that more than a third of the sam-
ples (543) invoked one of these two functions more than 5,000
times inside a loop.

Even when considering the entire data set of 29,102 malware
programs, a surprisingly large number of samples contains stalling
code. This demonstrates that execution stalling is not a purely the-
oretical problem. Instead, a non-trivial fraction of malware in the
wild already includes such evasive techniques. Thus, it is crucial
that sandboxes are improved to handle this threat.

8. DISCUSSION AND LIMITATIONS
As mentioned previously, the fight against malicious code is an

arms race, and malware authors always strive to improve their pro-
grams to resist new analysis and detection approaches. In this sec-
tion, we discuss the robustness of our approach and possible, future
improvements to further harden our techniques.

Malware authors can target each of the three modes of HAS-
TEN: First, the stalling loop could be crafted so that it delays the
execution of malicious activity in the sandbox without triggering
any of the detectors in monitoring mode. To this end, a malware
process would have to issue successful system calls with a fre-
quency and diversity similar to non-stalling programs. To counter
such mimicry attacks, we can add additional detectors that measure
progress in different ways. For example, we could count, for each
time interval, the number of distinct basic blocks that a program ex-
ecutes or the number of new (never before executed) basic blocks
that Qemu, our system emulator, has to translate. For stalling code,
we expect both values to be low. Moreover, we could opportunisti-
cally (and randomly) switch to passive mode every once in a while,
even when no detector has raised an alert.

Likewise, it is possible that long-lasting operations (e.g., the de-
cryption of large files) trigger one of our heuristics. Internally, we
refer to this as accidental stalling code, since the malware author

does not do this deliberately. This is similar to opportunistically
switching to passive mode and introduces only a minor perfor-
mance hit.

Passive mode is more difficult to exploit for the attacker. While
we reduce the amount of information that is logged, we are careful
to preserve all security-relevant information. To this end, we only
whitelist code regions (basic blocks) that have previously been ex-
ecuted by the malware. For example, consider a malware author
who puts a piece of malicious code into the body of a stalling loop
and guards this code with a conditional branch. When the passive
mode recognizes the stalling loop, it will only whitelist the part of
the loop that has been executed before. The malicious code region,
on the other hand, will be excluded from reduced logging. More-
over, certain security-critical system calls are always recorded.

The active mode seems most vulnerable to attacks since it mod-
ifies the normal flow of program execution, and, thus, could leave
the program in an inconsistent state or force it along an impossi-
ble path. HASTEN addresses the problem of inconsistent program
state by tracking the variables (memory locations) that stalling code
modifies. Moreover, through taint analysis, all variables derived
from these memory locations are tracked as well. Whenever the
malware process attempts to check or use a potentially inconsistent
variable, its execution is suspended. Then, the system generates a
slice that will efficiently compute the variable’s correct value, and
this value is provided to the program before it is allowed to con-
tinue. Of course, a malware author can force our system to extract
and execute slices. However, as described in more detail in [18], the
slices that INSPECTOR generates are small, stand-alone executables
(gadgets) that can be executed directly on a native host. Moreover,
slice generation is fast. Thus, the stalling code will be run almost
as fast as on a native (victim) machine.

An important limitation is our current, simple technique to deter-
mine all variables (memory locations) that stalling code can write
to. Since this technique uses only dynamic information, it might
miss certain locations. One way to address this problem is to in-
corporate static analysis to identify and taint such variables. This
analysis can be conservative, as “over-tainting” can only result in
unnecessary calls to INSPECTOR but will not cause incorrect pro-
gram executions. Furthermore, it is possible that INSPECTOR can-
not extract a proper slice to compute a needed value. This is less of
a concern, as our previous work has shown that the tool is able to
extract meaningful slices from real-world malware programs that
span multiple functions and that contain non-trivial memory ac-
cesses. Also, INSPECTOR will report the failure to extract a slice,
allowing further manual inspection.

An attacker could also try to force HASTEN to skip a stalling loop
that contains malicious code (and thus, fail to observe malicious
activity). This is difficult for the attacker because all conditional

branches that exit any whitelisted stalling code region are possible
exit points. In particular, when there is previously non-executed,
malicious code inside a stalling loop, the branch that guards this
malicious code is considered as a possible exit point (in addition
to the loop exit). Recall that we only whitelist code that was pre-
viously executed; this implies that we will not whitelist the entire
body of a stalling loop when there are paths through this loop that
were not executed before.

In our current prototype, we force the program execution out of a
stalling region through the first exit point that is encountered. This
has two drawbacks. First, we might skip malicious code inside the
loop (when the wrong exit point is chosen). Second, it is possi-
ble that HASTEN picks an incorrect (infeasible) loop exit path that
later results in a program exception (as mentioned in the previous
section, an example are error paths). To tackle these problems, we
can leverage the fact that our system has full control over the anal-
ysis environment. More precisely, we can create a snapshot of the
CPU and the memory before any active modification to the pro-
gram’s control flow. This way, HASTEN can later revert to previ-
ous snapshots and explore multiple exit paths in a more systematic
fashion. This is similar in spirit to a multi-path exploration of the
binary [21].

9. RELATED WORK
The idea of detecting and evading dynamic malware analyzers

is not new. In the past, malware authors have introduced checks,
so-called red pills, to detect execution inside a virtualized environ-
ment [13, 24]. Other work has proposed techniques to detect exe-
cution in system emulators, such as Qemu [20, 22, 23]. Yet other
research [1, 7] has discussed practical fingerprinting techniques to
recognize public, dynamic malware analyzers (e.g., ANUBIS [2],
CWSANDBOX [3], JOEBOX, etc.). Fingerprinting a malware anal-
ysis system is particularly easy when the system provides a public
interface that accepts submissions from anywhere.

To mitigate the problem of checks that detect malware analyzers,
researchers have proposed transparent analysis environments [11,
12]. These systems leverage novel virtualization features of mod-
ern processors to implement a minimalistic hypervisor. This makes
it more difficult to reveal the presence of the analysis platform.

Others have focused on the detection of differences between the
execution of a program in a virtual or emulated platform, and on
real hardware [6, 17]. The basic intuition is that any difference
between the executions in two different environments (using deter-
ministic replay) must be due to checks in a sample. If one can de-
termine that a sample is trying to evade analysis, the evasive check
can either be removed, or the sample can be marked for manual
inspection.

Finally, checks that detect the analysis environment can also be
bypassed by systems that perform multi-path exploration [9, 21,
28]. The idea is to first identify conditional branches that depend
on some input read from the program’s environment (file system,
registry, network, ...). Once such a branch (check) is found, both
alternative execution branches can be explored. When the system
explores the branch that is different from the the current program
execution, care must be taken to keep the program state consistent.
In a related approach [10], the authors try to identify behaviors that
are triggered by timer events.

The crucial difference between previous research and this work
is that previous techniques focused on the detection and mitigation
of evasive checks. Such checks are inserted by malware authors to
identify dynamic analysis environments and, subsequently, change
the behavior of their programs. In this paper, we present the first
solution to the growing problem of dynamically analyzing malware

samples that include stalling code. Stalling code does not use any
checks, and it does not alter the flow of execution of the malware
program in a dynamic analysis environment. As a result, transpar-
ent platforms or systems that detect and remove evasive checks are
ineffective.

10. CONCLUSIONS
As new malware analysis solutions are introduced, attackers re-

act by adapting their malicious code to evade detection and analy-
sis. One recent form of evasion code for dynamic analysis systems
is stalling code. In this paper, we present the first approach to de-
tect and mitigate malicious stalling code, and to ensure forward
progress within the amount of time allocated for the analysis of a
sample. Our results show that HASTEN works well in practice, and
is able to reveal additional behaviors in real-world malware sam-
ples that contain stalling code.

11. ACKNOWLEDGEMENTS
The research leading to these results has received funding from

the European Union Seventh Framework Programme under grant
agreement n. 257007 (SysSec), the Austrian Research Promotion
Agency (FFG) under grant 820854 (TRUDIE), the NSF under grant
CNS-1116777, the ONR under grant N000140911042, and the Na-
tional Science Foundation (NSF) under grants CNS-0845559 and
CNS-0905537. We also acknowledge Secure Business Austria for
their support.

This publication reflects the views only of the authors, and the
funding agencies cannot be held responsible for any use which may
be made of the information contained therein.

12. REFERENCES
[1] Forum Posting - Detection of Sandboxes.

http://www.opensc.ws/snippets/3558-

detect-5-different-sandboxes.html, 2009.
[2] http://anubis.iseclab.org, 2010.
[3] http://www.cwsandbox.org, 2010.
[4] http://www.norman.com/enterprise/all_

products/malware_analyzer/norman_

sandbox_analyzer/en, 2010.
[5] http://msdn.microsoft.com/en-us/library/

ms724408%28VS.85%29.aspx, 2010.
[6] BALZAROTTI, D., COVA, M., KARLBERGER, C.,

KRUEGEL, C., KIRDA, E., AND VIGNA, G. Efficient
Detection of Split Personalities in Malware. In Network and

Distributed System Security Symposium (NDSS) (2010).
[7] BAYER, U., HABIBI, I., BALZAROTTI, D., KIRDA, E.,

AND KRUEGEL, C. A View on Current Malware Behaviors.
In Workshop on Large-Scale Exploits and Emergent Threats

(LEET) (2009).
[8] BAYER, U., MILANI COMPARETTI, P., HLAUSCHEK, C.,

KRUEGEL, C., AND KIRDA, E. Scalable, Behavior-Based
Malware Clustering. In Network and Distributed System

Security Symposium (2009).
[9] BRUMLEY, D., HARTWIG, C., LIANG, Z., NEWSOME, J.,

SONG, D., AND YIN, H. Towards automatically identifying
trigger-based behavior in malware using symbolic execution
and binary analysis. Tech. Rep. CMU-CS-07-105, Carnegie
Mellon University, 2007.

[10] CRANDALL, J., WASSERMANN, G., DE OLIVEIRA, D., SU,
Z., WU, F., AND CHONG, F. Temporal Search: Detecting
Hidden Malware Timebombs with Virtual Machines. In
Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (2006).
[11] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W.

Ether: Malware Analysis via Hardware Virtualization
Extensions. In ACM Conference on Computer and

Communications Security (2008).

[12] FATTORI, A., PALEARI, R., MARTIGNONI, L., AND
MONGA, M. Dynamic and Transparent Analysis of
Commodity Production Systems. In International

Conference on Automated Software Engineering (ASE)

(2010).
[13] FERRIE, P. Attacks on Virtual Machines. In Proceedings of

the Association of Anti-Virus Asia Researchers Conference

(2007).
[14] FREDRIKSON, M., JHA, S., CHRISTODORESCU, M.,

SAILER, R., AND YAN, X. Synthesizing Near-Optimal
Malware Specifications from Suspicious Behaviors. In IEEE

Symposium on Security and Privacy (2010).
[15] FREILING, F., HOLZ, T., AND WICHERSKI, G. Botnet

Tracking: Exploring a Root-Cause Methodology to Prevent
Distributed Denial-of-Service Attacks. In European

Symposium On Research In Computer Security (ESORICS)

(2005).
[16] JOHN, J., MOSHCHUK, A., GRIBBLE, S., AND

KRISHNAMURTHY, A. Studying Spamming Botnets Using
Botlab. In Usenix Symposium on Networked Systems Design

and Implementation (NSDI) (2009).
[17] KANG, M., YIN, H., HANNA, S., MCCAMANT, S., AND

SONG, D. Emulating Emulation-Resistant Malware. In
Workshop on Virtual Machine Security (VMSec) (2010).

[18] KOLBITSCH, C., HOLZ, T., KRUEGEL, C., AND KIRDA, E.
Inspector Gadget: Automated Extraction of Proprietary
Gadgets from Malware Binaries. In IEEE Symposium on

Security and Privacy (2010).
[19] KOLBITSCH, C., MILANI COMPARETTI, P., KRUEGEL, C.,

KIRDA, E., ZHOU, X., AND WANG, X. Effective and
Efficient Malware Detection at the End Host. In Usenix

Security Symposium (2009).
[20] MARTIGNONI, L., PALEARI, R., ROGLIA, G. F., AND

BRUSCHI, D. Testing CPU Emulators. In International

Symposium on Software Testing and Analysis (ISSTA) (2009).
[21] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring

Multiple Execution Paths for Malware Analysis. In IEEE

Symposium on Security and Privacy (2007).
[22] PALEARI, R., MARTIGNONI, L., ROGLIA, G. F., AND

BRUSCHI, D. A Fistful of Red-Pills: How to Automatically
Generate Procedures to Detect CPU Emulators. In
usenix-woot (2009).

[23] RAFFETSEDER, T., KRUEGEL, C., AND KIRDA, E.
Detecting System Emulators. In Proceedings of the

Information Security Conference (2007).
[24] RUTKOWSKA, J. Red Pill... or how to detect VMM using

(almost) one CPU instruction. http://www.invisible
things.org/papers/redpill.html, 2004.

[25] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J.,
JAGER, I., KANG, M. G., LIANG, Z., NEWSOME, J.,
POOSANKAM, P., AND SAXENA, P. BitBlaze: A new
approach to computer security via binary analysis. In
Conference on Information Systems Security (Invited Paper)

(2008).
[26] SREEDHAR, V. C., GAO, G. R., AND FONG LEE, Y.

Identifying loops using DJ graphs, 1995.
[27] STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT,

B., SZYDLOWSKI, M., KEMMERER, R., KRUEGEL, C.,
AND VIGNA, G. Your Botnet is My Botnet: Analysis of a
Botnet Takeover. In ACM Conference on Computer and

Communications Security (CCS) (2009).
[28] WILHELM, J., AND CHIUEH, T.-C. A Forced Sampled

Execution Approach to Kernel Rootkit Identification. In
Recent Advances in Intrusion Detection. 2007.

APPENDIX
A. MONITORING MODE: PARAMETERS

Figures 5a and 5b show information about the number of suc-
cessful and failed system calls, respectively, that we observed for

the 5K malware samples in our training set (see Section 4). More
precisely, the figures show, for a particular number n of system
calls (depicted on the x-axis), the (absolute) number of time slots
during which we have seen n system calls (depicted on the y-axis).
For example, when analyzing the samples, we have recorded 150
successful system call invocations for roughly 1,000 intervals (see
Figure 5a). Likewise, Figure 5c shows that the number of times (y-
axis) a certain entropy value (x-axis) was encountered. Table 2
shows the thresholds that we derived from the training runs for
HASTEN’s detectors.

Table 2: Threshold values used in monitoring mode (for slot
time duration t = 5 seconds).

Type Name Threshold Threshold
(min) (max)

Successful Smin/max,s 3 600
Failed Smax,f � 900
Entropy Smin/max,e 0.17 20.0

B. HANDLING NESTED STALLING LOOPS
When HASTEN operates in passive mode, its goal is to find and

whitelist code that stalls execution. To this end, the system checks
the program’s dynamic CFG for loops. When a number of ac-
tive, nested loops are found, HASTEN whitelists the innermost one
(as discussed in Section 5.2). This is a problem when the inner-
most, active loop is only a part of the entire stalling code (we have
encountered cases in real-world malware where a stalling loop is
itself executed many times by an outer loop). In this case, the
system reverts back to monitoring mode as soon as the innermost
loop is finished. Unfortunately, the entire execution still does not
make progress, and the outer loop will simply execute the inner
loop again. Of course, the monitoring phase will detect insuffi-
cient progress, and the system will be switched into passive mode.
However, our analysis will find the same active loops again. At this
point, whitelisting the inner loop only would be the wrong solution.
This would result in an execution where the system would con-
stantly switch between monitoring and passive mode. To address
this problem, the system keeps track of all loops that have been
previously whitelisted. When we find that an active loop has been
previously whitelisted, but no progress has been made, the system
extends the whitelist to include the next enclosing loop. That is,
nested loops are incrementally added to the whitelist, starting from
the inner-most one, proceeding outwards.

C. PERSISTENT BEHAVIORAL FEATURES
Table 3: Persistent behavioral features.

Resource Action
file create, delete, write, open-truncate

rename, set-information
network any

registry keys: create, delete, save, restore;
set-value, set-information

process create, terminate, set-information
driver load, unload
GUI open window

D. DETAILED FINDINGS
As mentioned in Section 7.2, we can use different approaches for

measuring additional behavior. Table 4 shows additional behaviors
detected by HASTEN as measured by the optimistic and pessimistic
and metrics.

(a) Successful system calls Ss. (b) Failed system calls Sf . (c) System call entropy Se.

Figure 5: Evaluating the progress of active samples by bucketing number of observed system calls (x-axis) and counting observed
number of time-slots for each bucket (y-axis).

Table 4: Additional behavior observed in Hasten.

Description Passive Active
samples % # AV families # samples % # AV families

Runs total 3, 770 � 319 2, 467 � 231

Optimistic Improvement
Added behavior (any activity) 2, 450 65.0% 188 825 33.5% 139
- Added file activity 1, 873 49.7% 169 519 21.0% 100
- Added network activity 906 24.0% 73 128 5.2% 39
- Added GUI activity 28 0.7% 16 367 14.9% 69
- Added process activity 895 23.7% 79 127 5.1% 48
- Added registry activity 795 21.1% 107 224 9.1% 62

No new behavior 1, 320 35.0% 225 1, 642 66.5% 174
- Exception cases 0 0.0% 0 277 11.2% 63

Pessimistic Improvement
Added behavior (any activity) 416 11.0% 86 500 20.3% 94
- Added file activity 390 10.3% 80 314 12.7% 69
- Added network activity 257 6.8% 41 95 3.9% 29
- Added GUI activity 20 0.5% 12 249 10.1% 49
- Added process activity 177 4.7% 42 70 2.8% 34
- Added registry activity 331 8.8% 60 165 6.7% 46

Ignored (possibly random) activity 2, 034 54.0% 156 325 13.2% 84
No new behavior 1, 320 35.0% 225 1, 642 66.5% 174
- Exception cases 0 0.0% 0 277 11.2% 63

