
PeerPress: Utilizing Enemies’ P2P Strength against Them

Zhaoyan Xu
SUCCESS Lab

Texas A&M University
z0x0427@cse.tamu.edu

Lingfeng Chen
SUCCESS Lab

Texas A&M University
lingfeng@cse.tamu.edu

Guofei Gu
SUCCESS Lab

Texas A&M University
guofei@cse.tamu.edu

Christopher Kruegel
Dept. of Computer Science

UC Santa Barbara
chris@cs.ucsb.edu

ABSTRACT
We propose a new, active scheme for fast and reliable de-
tection of P2P malware by exploiting the enemies’ strength
against them. Our new scheme works in two phases: host-
level dynamic binary analysis to automatically extract built-
in remotely-accessible/controllable mechanisms (referred to
as Malware Control Birthmarks or MCB) in P2P malware,
followed by network-level informed probing for detection.
Our new design demonstrates a novel combination of the
strengths from both host-based and network-based approaches.
Compared with existing detection solutions, it is fast, reli-
able, and scalable in its detection scope. Furthermore, it can
be applicable to more than just P2P malware, such as many
Trojan/backdoor malware. We develop a prototype system,
PeerPress, and evaluate it on many representative real-world
P2P malware (including Storm, Conficker, and more recent
Sality). The results show that it can effectively detect the
existence of malware when MCBs are extracted, and the
detection occurs in an early stage during which other tools
(e.g., BotHunter) typically do not have sufficient informa-
tion to detect. We further discuss its limitations and impli-
cations and we believe it is a great complement to existing
passive detection solutions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
P2P, Malware analysis, Malware detection

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$10.00.

Malicious software (malware) is a serious threat to Inter-
net security. While many early botnets use centralized C&C
architecture, botmasters have realized its limitations and be-
gun to use more advanced and robust peer-to-peer (P2P)
architectures for C&C [27]. For example, several contempo-
rary successful botnets such as Storm/Peacomm and Con-
ficker have infected millions of computers and adopted P2P
techniques in their C&C coordination [2,48]. As stated in a
recent report [26], the Kaspersky Security Network detected
more than 2.5 million P2P malware incidents per month in
March 2010, a high water mark reached for the first time
in its monitoring history. A recent P2P botnet, Sality, is
still alive as of the writing of this paper and becoming more
complex [12]. In short, P2P malware is widely believed to
be a promising direction for future malware [27,43,50].

Unfortunately, to date, there is relatively little research
available on detecting this important threat. Network-level
detection techniques have been proposed to perform clus-
tering/correlation analysis to identify suspicious botnet in-
fection/behavior patterns [29, 31, 32, 41] or to analyze the
network traffic graph/structure to detect possible P2P bot-
nets [33, 34, 43]. However, suspicious pattern identification
may fail in front of traffic encryption, traffic randomiza-
tion and timing pattern manipulation [49]. Structure/graph
analysis can only detect P2P structure regardless whether
the traffic is actually malicious or not, and it typically re-
quires tremendous resources (e.g., global ISP-level view) for
acceptable results (a conclusion also mentioned in [34]), mak-
ing it a less attractive solution to Enterprise networks. In an-
other direction, host-based detection techniques such as tra-
ditional signature-based approaches (e.g., anti-virus tools)
and more recent behavior-based approaches (e.g., [35, 36])
have also been proposed. However, due to the widely used
advanced obfuscation/polymorphism [46] and the require-
ment of client-side installation, the solutions are not attrac-
tive for large scale P2P malware detection. Finally, it is
worth noting that both host-based techniques and the above-
mentioned network-based approaches have one common lim-
itation because of their passive monitoring mechanism: they
tend to be slow in terms of detection, e.g., they need to wait
until some (or many) actual (suspicious/malicious) activi-
ties/communications occur to be able to detect the malware
existence.

In this paper, we focus on answering the following ques-
tion: is it possible to combine both the robustness of host-
based approaches and the efficiency of network-based ap-

proaches to provide fast, reliable, and scalable detection of
P2P malware? We believe that while P2P provides more
flexible and robust coordination for the enemy, we can utilize
the enemy’s strength against him. A key insight is that P2P
malware has to have built-in remotely-accessible/controllable
mechanisms. That is, P2P malware has to open some port(s)
for peer-to-peer communication, which is required for pro-
viding binary downloading services to new infected machines
(i.e., egg downloading [31]), or for easier later access/control
by remote attackers. If we can determine the port number(s)
in use and further know the access/control conversation logic
through that port (we refer to this information as Malware
Control Birthmarks, or MCBs, as defined in detail later), we
could uniquely identify that P2P malware.

Our key insight motivates us to design a novel two-phase
detection framework: (i) first, we automatically extract MCBs
through host-level dynamic malware analysis; (ii) then, with
the MCB information, we perform network-level, active, in-
formed probing to identify infected machines. Thus, a P2P
malware sample will expose itself if it opens specific port(s)
or/and it responds in a predicted way to a specific probing
packet. It is worth noting that our new detection scheme ap-
plies in general to any malware that has MCBs, not just to
P2P malware. For example, Trojan/backdoors also belong
to the detection scope of this scheme and they are among
the current most popular malware in the wild as shown in a
recent Symantec Internet security threat report [8].

Our new design naturally bridges host-based dynamic bi-
nary analysis and network-based informed probing. Com-
pared with existing solutions, it has several unique advan-
tages. First, it is fast and active compared to existing passive
detection mechanisms. Instead of waiting for actual attack-
s/control to happen, we can proactively detect the existence
of malware. Second, it is very reliable in detecting the mal-
ware. While attackers can generate very different binaries
for samples in a malware family, the underlying MCBs are
still the same and they are typically unique for different
malware families. This is because the attackers still want
to control all the malware (in the same family) in the same
way to make them easily manageable. The accuracy and ro-
bustness of using MCB in detection are comparable to tra-
ditional host-based approaches (they both use fine-grained
binary analysis techniques), and it avoids a lot of network
evasions. Finally, our approach is scalable to large network
deployments. Since we only need one scanner for the whole
network instead of installing detectors on every machine,
the deployment, management, and MCB updating are rela-
tively easy. It even provides the possibility of Internet-scale
scanning/detection when necessary.

Specifically, our paper makes the following contributions:

• We propose a new detection strategy combining host-
level dynamic malware binary analysis and network-
level informed probing techniques. To the best of our
knowledge, it is the first work to discuss (P2P) mal-
ware detection based on automated MCB (Malware
Control Birthmark) extraction and informed network
probing. It demonstrates a novel combination of strengths
(fast, reliable and scalable) from both host- and network-
based detection approaches.

• We develop PeerPress, a prototype system that imple-
ments the proposed framework. We design new tech-
niques to determine if given malware opens a specific

port and automatically extract the port generation al-
gorithm/logic. Furthermore, we design new techniques
to craft a specific/special MCB probing packet that
can let MCB-enabled malware expose itself (from net-
work observation perspective), much more efficient and
effective than existing network software fuzzing tech-
niques [7]. In particular, we develop ICE (Informed
forCed Executing), a new technique to quickly identify
possible MCB execution paths that can be used later
in stitched dynamic symbolic execution to derive sat-
isfiable packet contents to trigger MCB logic. In eval-
uation, ICE can save up to 80% overhead compared to
traditional multi-path exploration schemes.

• We evaluate PeerPress with multiple representative
and complex real-world malware families (including
Storm/Peacomm, Conficker and more recently Sality).
PeerPress successfully extracts their MCBs and demon-
strates that using MCB-informed active probing, we
can detect those malware infected machines with 100%
accuracy and 0 false positive (in three /24 networks).
It is able to detect these malware in an early stage
when other tools (e.g., BotHunter) can not.

• We extensively discuss the limitations and implica-
tions of our approach (Section 7). While not perfect,
PeerPress works great when MCBs are successfully ex-
tracted. Furthermore, even in the worst case (not able
to penetrate into some malware binary), PeerPress can
still use several special types of MCBs (e.g., “no re-
sponse”) to help recognize suspicious malware infec-
tions. We consider PeerPress as an important further
step toward proactive malware detection and a great
complement to existing passive detection techniques.

2. APPROACH OVERVIEW

2.1 Problem Definition
Assumption. We assume that a captured malware binary
P is available, and we analyze it in our host-based analysis
phase without source code access. With the wide deploy-
ment of honeypots to collect malware samples, this is a very
basic assumption for most malware analysis and defense re-
search [16, 36, 37, 42, 54]. Furthermore, since most malware
binaries are now protected against static analysis (e.g., us-
ing obfuscation/polymorphic techniques), we mainly employ
dynamic analysis techniques in this work.1

Since we target P2P malware, without loss of generality,
we assume the malware sample P contains two independent
program logics:

• P1, which opens a network service port ψ.

• P2, which parses certain network request(s) ρ and gen-
erates response(s) η through the network port ψ.

We assume all binary samples within the same malware
family/version share the same and unique P1 and P2. These
two program logics provide a remotely accessible/control-
lable mechanism that we capture as the birthmark of the
malware family, which we call Malware Control Birthmark
(MCB) in this paper.

More formally, a MCB can be defined as a pair:
1Note that combining static analysis will definitely improve
our approach.

<Portprint{P1, ψ}, MCB probing ρ and response η >

Here Portprint denotes the service port(s) ψ used by the
malware and the corresponding algorithm/logic P1 to gen-
erate such port numbers. MCB probing denotes some well-
constructed probing packet(s) ρ that trigger(s) the execution
of malware control logic P2 to reply with some (network ob-
servable) unique response η.

2.2 Approach Overview
We illustrate the overview of PeerPress in Figure 1.

Informed

Malware

Probe

Dynamic

Malware

Analysis

Automated MCB Extraction

Malware

Control

Birthmarks

Active MCB Probing/Detection

Figure 1: Our Two-phase Approach: PeerPress

The first phase is automated MCB extraction through dy-
namic malware analysis. In the phase, we analyze the mal-
ware sample and extract its MCBs (including both Portprint{P1, ψ}
and MCB Probing ρ, η) if possible.

• Portprint extraction. To identify a portprint, we first
run the malware P in a test environment and collect
the trace from the malware starting up to opening a
socket and binding this socket to a port. We capture
the network service port ψ and further reason about
the generation of such port. If the port number is envi-
ronment dependent and/or algorithmically generated,
we need to further extract its generation logic P1.

• MCB probing extraction. Using the same analysis
environment, we begin with sending random fuzzing
packets to trigger the execution of logic P2. Lever-
aging the basic execution trace, we perform directed,
informed multi-path exploration to identify interest-
ing MCB execution paths. We further employ concrete
and symbolic execution techniques to derive MCB prob-
ing packets (input) ρ and the corresponding response
η. To verify the uniqueness of MCBs, we examine ρ
and η to ensure it is not the similar benign traffic tar-
geting port ψ.

The second phase is MCB-assisted network probing. We
will use our extracted MCBs to guide probing of networked
computers to quickly and reliably identify malware infected
victims. More specifically, targeting the P1-generated port
ψ, we employ a network scanner S to probe each host. If we
observe the desired ρ and η pair from probing, we report the
machine as compromised (by the specific P2P malware).

As we can see, the MCB-assisted network probing is rela-
tively straightforward once MCBs are generated. In the rest
of the paper, we will focus on the automated extraction of
MCBs.

2.3 Key Challenges and Basic Ideas
Challenge 1: Extracting and reasoning about the
dynamic portprint {P1, ψ}. It is worth noting that the
port number ψ that we might observe in the analysis envi-
ronment may not represent the actual port number that will
be opened on compromised machines. This is because the
malware instance P interacts with different environments on
different machines, which could influence the generation of
ψ. One real-world example is the Conficker worm [45], which
binds to different ports based on different IP addresses. Al-
though we know that P generates ψ in the analysis environ-
ment Et, we still need to derive the corresponding port ψi

in the probing environment Ei when infected by the same
malware. The dynamic attribution of the listening port on
targeted machines represents a challenge.

We find that malware generates its listening port in three
ways:

• Static. In this case, the malware always opens a fixed
port number, which might be defined in a configura-
tion file or is embedded in the binary. For example,
Nugache [50] always listens on TCP port 8.

• Algorithmically deterministic. In this case, the mal-
ware uses some algorithm to generate a host-specific
port number. This algorithm can take various param-
eters, e.g., IP address and time. Conficker.C belongs to
this type [2]. We envision that more future malware
might use this advanced feature because it removes
the need of some central servers or super peers to col-
lect port information and then coordinate/distribute
among other nodes for bootstraping peer discovery in
traditional P2P malware.

• Random. The malware listens on some randomly gen-
erated port. In this case, our probing scanner will have
to utilize existing network traffic monitoring or port
scanners to identify the opened ports on end hosts.
With the widely deployed network monitoring and scan-
ning tools already available to network administrators,
this should not be a significant issue.

Thus, an effective solution should tell us the portprint
type of a given malware program (static, random, or algo-
rithmically deterministic). Furthermore, it should provide
the port generation logic/algorithm P1 (particularly when
it is algorithmically deterministic) and the knowledge of the
environment it depends on (e.g., IP/Mac address, machine
name, or system time). In this case, given a new target
machine i to scan, we can run the same portprint logic P1,
simulating environment ei on machine i as the input param-
eters to generate the target port.

The problem of determining the type of portprints and
the sources of portprints can be solved by using well-known
taint analysis techniques [13,51,56]. However, different from
most traditional forward taint analysis work [13,56] to solve
known-sources-to-unknown-sinks problems, our problem is
essentially many-unknown-sources-to-one-known-sink. Thus,
we start from the port number and perform offline backward
taint analysis to obtain the complete data dependence flow
for the port generation. Based on the semantic meaning of
the sources, we can determine the portprint type, and the
necessary environment parameters that will contribute to
the port generation. Furthermore, to extract the portprint

generation logic P1 as an independent program, we apply
classic backward program slicing techniques [40] in a similar
way to related work [16, 36, 37]. In short, since our tech-
niques on extracting portprint are mostly on top of existing
work [13,16,36,37,51,56], we put some detailed description
in our extended technical report [55] and the rest of the
paper will mainly focus on the second challenge.

Challenge 2: Efficiently Exploring and Extracting
MCB Paths Inside P2. Regarding the packet parsing
logic P2 inside P , we aim to find all possible execution paths
that start from packet receiving routines (e.g., recv()) to
packet transmitting routines (e.g, send()). This is a basic
requirement for candidate MCB paths, because as we men-
tioned before, we assume a well-constructed MCB probing
packet ρ can trigger a specific response η along a MCB path.

Thus, the problem becomes how to efficiently find all pos-
sible MCB paths in P? It seems that existing multipath ex-
ploration approaches [15,42] could be applied directly. How-
ever, these approaches typically follow a depth-first search
scheme and randomly choose a path when reaching any
branch point. As a result, if they are used in our applica-
tion, they will blindly explore all possible (although mostly
unnecessary) paths to find desired MCB paths. Compared
with these traditional trigger-to-unknown-behaviour explo-
ration model, our problem is better defined as trigger-to-
one-response model. Essentially, the goal of traditional mul-
tipath exploration approaches is mainly to excavate dormant
behaviour, which is quite different from our goal.

Our proposed solution, Informed enforCed Execution (ICE),
combines both forced execution [54] and concrete/symbolic
execution [15,42,51] techniques to improve the effectiveness
and efficiency in finding MCB paths. During execution,
ICE first takes a breadth-first search approach to quickly
obtain an overview on the packet processing procedure be-
fore going into any depth (sub-functions). Furthermore, ICE
employs directed search when exploring paths at branch
points with the intuition that some paths containing cer-
tain functions/calls are more likely MCB paths. Examples
of these functions include those that directly call send(),
or indirectly call functions that wrap send() (several lay-
ers of wrapping is possible here). We specifically define
function containers (FC) to refer to such functions that
when called they will reach our desired network routines
such as send(). A code block leading to those FCs that end
with valid network transmission such as send() are preferred
when exploring paths. Moreover, a special type of FCs will
denote functions that lead to network/process termination
such as closesocket() and exitprocess() without send-
ing out network information. Code blocks leading to these
FCs should be given lower priority. Basically, ICE auto-
matically creates and maintains the list of different FCs and
uses them to make the best possible decision at any branch
point. When exploring new paths at a branch point, ICE
has a Foreseeing step to analyze the next k code blocks to
decide the priority of branches to take. Generally speaking,
ICE will prefer the branch containing high priority FCs and
then force the execution towards that path. We discuss the
detailed exploration algorithm in Section 3.

3. MCB PROBING EXTRACTION

3.1 ICE: Efficient Path Exploration

As stated earlier, the problem of finding candidate MCB
paths is different from the problem of traditional multi-
path exploration. In particular, as discussed in previous
work [21], path exploration without any high-level seman-
tic guidance is inefficient. In our context, we introduce
three novel exploration guidelines to efficiently identify MCB
paths: (1) Enlarge the sinkhole hit range using Function
Containers; (2) Make wise decision on branch points by
Foreseeing; (3) Complete the MCB path through stitched
Concrete and Symbolic Execution.

Collecting Function Containers Inside Malware. Blindly
(randomly) exploring paths inside malware is not efficient
in our context. Thus, we employ directed path exploration
techniques for finding candidate MCB paths. Since a MCB
path has some desired patterns, e.g., typically containing a
sinkhole point of network transmission routines such as a
send library call, it makes sense to choose paths that likely
reach these sinkholing routines. In particular, to expand
such limited small number of sinkholing routines to a larger
hit surface, we introduce the concept of Function Containers
to assist directed exploration.

Definition A function container is a function satisfying
any of the following conditions:
(I) Any desired sinkholing system/library calls are automat-
ically function containers, i.e., SysCalldesired ∈ FC;
(II) The function directly or indirectly contains/wraps an ex-
isting function container. Furthermore, the call of this FC
will lead to the call of SysCalldesired.

In this definition, SysCalldesired refers to interesting, crit-
ical system/library calls that will be typical sinkhole points,
e.g., send() and closesocket(). Condition II implies that
one FC can be wrapped by another FC, i.e., FCs can have
multiple levels. One example of Conficker’s send-out rou-
tine is shown in Figure 2(a), which illustrates four separate
FCs (at different levels). Condition II also implies that the
call of a FC will invoke the desired system call. Although
this is very hard to verify without source code or full static
analysis, in this paper, we approximate this condition if it
holds in all our recorded dynamic traces.

Function containers can be analyzed with current static
analysis techniques but are harder to completely construct
based on dynamic analysis only. To initialize our FC ta-
ble, we take advantage of the malware execution traces that
our malware analysis environment generates. Often, we find
that malware sends out packets to contact peers and initial-
ize its membership in the P2P network. This initial activ-
ity is valuable, because the networking code used for these
packets is typically the same that is used by the P2P service
logic. Thus, these initial traces typically allow us to deter-
mine which functions are used for network traffic. Conficker
is one typical example. For each trace, we collect both con-
trol and data flow information to conduct the automatic
offline analysis. If we find our desired system/library calls,
we trace back the call frames and extract a set of n level
containers and record them into our initial FC hashtable.

During the online path exploration, we follow a breadth-
first principle and enforce the execution towards code blocks
containing high priority FCs (e.g., those will lead to network
transmission routines). At the same time, we also update
our FC hashtable if our initial FCs collection is not correct
or not complete. We use two policies to update the FC

(a) Different Levels of Functional Containers (b) Path Foreseeing

Figure 2: ICE Illustration

hashtable: (1) If one trace shows that after entering a certain
FC the trace does not lead to the desired system/library call,
we delete it and its upper level FCs from the FC list (since
it violates condition II);2 (2) If we find one critical system
call executed but not yet defined in the FC hashtable, we
create a new set of level-n containers for this system call.

Foreseeing. As shown in Figure 2(b), our dynamic analy-
sis needs to make decisions at each branch point to determine
which path to take/prefer. We leverage Foreseeing for this
purpose.

In detail, we foresee (statically look forward) k code blocks
to search for the calls to any recorded function container.
As seen in Figure 2(b), if a high priority FC is contained
in a code block, ICE assigns a priority score of +1 for the
block. Similarly, it assigns −1 in the case of encountering a
low priority FC. Then, ICE simply sums up the total prior-
ity scores Λ among all code blocks in the Left and Right
branches and gives preference to the branch with the overall
higher priority score. We enforce the branch decision [54] at
such branches and repeat the foreseeing till we hit a target
FC. To prevent exploring the same path again, we set the
code block that we have explored as low priority. For the
case that priority score Λr = Λl, the exploration follows the
natural execution choice. However, ICE will remember the
decision point and go back to explore the other branch later.

When trying to find a new MCB path (a path from a re-
ceive to a send function), ICE starts from the snapshot at
the recv() call and obtains the unexplored path information
from a decision queue, which saves all the explored and un-
explored branch information. ICE continues until (1) the
queue is empty, (2) or a user-defined threshold θ of maxi-
mum MCB candidate paths is reached.

Loops and Indirect Jumps. One challenging issue of
ICE is to handle control flow constructs such as loops and
indirect jumps. For indirect jumps, our foreseeing operation
may fail to predict the possible target. For loops, the pri-
ority score may be inappropriately set, which might lead to
incorrect MCB paths. Thus, we need to detect such con-
trol flow logic and take special handling. Whenever our on-
line execution module detects that one possible branch goes
back to recorded address (loop) or jumps to certain vari-

2Note that the program execution after entering the FC is
nature (i.e., not enforced) because we need to update the FC
tables based on whether the natural execution of FC directs
to the target system call or not.

able addresses, e.g., jmp eax, we stop foreseeing and let the
program execute naturally.

However, the basic execution may not work properly at
all if the target address of an indirect jump or the number
of loop iterations is incorrect (inconsistent) due to previous
forced execution. Thus, we have to perform special handling
for loops and indirect jumps in ICE. For indirect jumps, we
need to determine whether the probing packets contribute
to the generation of the jump target. To do that, we perform
concrete and symbolic execution. More specifically, we treat
each byte of the probing packets as a symbol and track its
propagation. If these bytes are used in indirect jumps, e.g.,
propagating to eip, we deduce symbolic equations at the
point of indirect jumps. We will try to solve the symbolic
equation and enumerate the possible target addresses. Then,
we switch back to our online execution mode, analyze these
possible target addresses, filter out impossible branches (if
disassembled instructions at these address are invalid), and
continue the execution to explore further paths. Similarly,
for loops, we try to figure out whether symbolic input bytes
are propagated to the loop counter. If so, we adopt a similar
idea introduced in [47] to perform symbolic execution.

Stitched Dynamic Symbolic Execution. Because of
our breadth-first exploration scheme, some MCB paths re-
turned by ICE are probably not complete, with some func-
tions not fully explored (in depth). Our next step is to com-
plete the full MCB path by adding (or stitching) back these
unexplored sub-paths. It turns out to be not a straightfor-
ward issue. This is because when entering these sub-paths,
there might be again multiple different paths to explore (as
illustrated in Fig. 3), and it is likely that only one (or some)
execution path can correctly (consistently) stitch back to the
main upper layer MCB path (others will lead to other paths
that deviate from the MCB one).

Another issue we need to handle is to filter invalid MCB
paths returned in the previous step. These paths will never
be actually executed by receiving probing packets but they
are generated as artifacts due to the enforced execution.
Thus, we need to filter them.

Both issues mentioned above are related to identifying cor-
rect MCB (sub-)paths and discarding irrelevant ones. We
solve both issues using a combination of concrete and sym-
bolic execution. One important assumption is that we con-
sider the probing packet ρ as the only causal factor to drive
P2 to generate the response packet η along MCB paths.
Thus, we consider a (sub-)path of MCB as valid when the

Figure 3: Stitch sub-paths along MCBs

relevant branches have control flow dependences on symbol
variables in ρ. Specifically, for each MCB main path, we
mark the size and each byte of the received buffer as symbol
values. Then, we monitor the propagation of these symbols
along the path. If we encounter an enforced path with no
control dependence on the symbol variables, we discard this
MCB candidate because its execution may not be dependent
on probing packets.

When we encounter any function call in unexplored sub-
paths, we provide the call with the current symbol context
and create a snapshot at the entrance point. Thus, after
we enter the function, we repeat the procedure mentioned
before to keep track of the control flow with symbolic vari-
ables. When we encounter a branch possibly affected by
some symbol variable, we record this address into a queue.
It tells us that this branch has two possible choices and we
need go back to the snapshot and explore another branch
later. This step recursively occurs (in some cases, we need
to go even deeper into sub-functions) until we find out all
possible sub-paths along the main MCB path.

Handling Encoding Function. One special case needs
to be further mentioned: the encoding function such as
encryption, hash and checksum. Thanks to previous re-
search [18,51,53], we can prevent infinite symbolic execution
for such functions that possibly exist along the MCB path.
We build an automatic tool to identify and bypass encoding
functions using similar heuristics mentioned in [18,28,39,56].
To actually reverse such functions, we leverage partially au-
tomatic techniques similar to previous work [18]. We skip
details here as they are not our major contributions, and we
will discuss some limitations of current design in Section 7.

Solving the MCB path. When we obtain a complete
MCB path (including sub-paths), the final step is to solve
the constraints along this entire MCB path. The complete
MCB path includes the information about symbol propaga-
tion. We construct the symbolic equations and input the
resulting equation into a solver. If the equations are solv-
able, we can construct a MCB probing packet ρ that follows
the MCB from the receive function to the send function and
generates a response η.

Safe MCB Probing. Among all MCB probing packets,
there is one type we refer to as Safe MCB Probing. Simple
examples of this kind of packets include error messages that
are mainly triggered when there are wrong commands/oper-

ations. A safe probing packet implies that the malware does
not execute any problematic (dangerous) operation along
this path but already exposes itself in a unique way. In our
implementation, we simply identify the length of the cor-
responding trace and system calls recorded in the trace. If
these traces contain no dangerous system calls and the trace
length is shorter than others, we consider this corresponding
packet as potential safe MCB probing.

Limitations. ICE suffers from some of the problems in
existing multipath explorations approaches [15,42,44] due to
the dynamic analysis nature. For example, one issue lead-
ing to some undiscovered control flow is shown in Fig. 4. If
malware has different functions (A and B) to parse packets,
based on different system configurations, e.g., configure_A
and configure_B, ICE may only generate one possible MCB
path that is observed during the execution and thus fail to
probe machines with the other configuration. This prob-
lem could be solved by taking into account environment-
sensitive/implicit control flows, which we leave for future
work.

1 I f con f igure A==TRUE:
2 process A (r e c e i v e d p a c k e t b u f f e r)
3 I f con f i gure B==TRUE:
4 process B (r e c e i v e d p a c k e t b u f f e r)

Figure 4: Example of Undiscovered Control Flow

3.2 Verifier: Filtering False Positive Cases
After the dynamic analysis of the malware sample, we

need to verify whether our generated MCB can actually be
used for probing. That is, we have to ensure that the probing
packet can actually trigger the malware to reply uniquely.
We run the malware sample again in another clean envi-
ronment without any instrumentation and check whether it
responds to the probing packet with the expected reply or
not. If so, we go to the second round verification.

Second round verification is to verify whether the reply
is unique or not. We need to ensure that the response is
not the same as a response from some normal well-known
(P2P) software. For that purpose, we need to manually
build a whitelist database of multiple, well-known benign
services/applications/protocols, including most well-known
P2P software, for their normal request-response patterns.
Such patterns include identifying the protocol specification
and marking all the fixed/variable fields inside the response.
In this way, we can search the whitelist and find whether
our extracted MCB is a unique evidence or not.

Limitations. In reality, it is very challenging and almost
impossible to construct a complete and precise whitelist database.
In our preliminary implementation, we simply collect around
50 benign P2P/FTP/HTTP software including Apache, FileZilla,
eDonkey, eMule, Morpheus, Limewire, Kazaa, which we in-
tend to expand over time. We test each MCB probing on
these benign software and make sure they will not gener-
ate the same response as the malware does. For each be-
nign software, we carefully read the related protocol docu-
ments (e.g., eDonkey P2P, FTP) and extract the patterns
mentioned before. Clearly, this manual work is tedious and
may not work for benign software using unknown or undoc-
umented protocol. In this case, existing automatic protocol

reverse engineering techniques [17,20,23,24] could help us to
build models for legitimate protocols, and we can then use
these models to improve our whitelist. This is especially im-
portant to find minor differences between MCBs and benign
protocols. We also note that false positive cases are pos-
sible due to the incompleteness of the whitelist. However,
the incompleteness will mainly cause possible false possibles
but not false negatives. Nevertheless, we did not see false
positives in our experiments. We discuss more implications
in Section 7 and leave it as future work to construct a better
whitelist database.

4. IMPLEMENTATION
Our PeerPress implementation combines both (online) dy-

namic analysis and offline processing. For online analysis
and recording, we implement two versions based on toolset
DynamoRIO [3] (which is lightweight but may fail on some
malware) and TEMU [9] (which is more robust to run mal-
ware but is also more heavyweight). Online modules take
charge of generating instruction traces and performing in-
formed, forced execution. As an illustration, for our TEMU-
based implementation, we have developed three new inde-
pendent plug-ins. The first is to record fine-grained (for
port generation logic and probing packet parsing analysis)
and coarse-grained (for FC extraction/update) traces. The
second is to enforce certain branch decisions based on the
input of the offline analysis components. It executes the
foreseeing operations by disassembling code blocks follow-
ing undecided branches and searching for the calls of FCs.
The last plug-in is for general execution control. It helps us
to start execution at specific addresses, dump/modify mem-
ory/registry values, create execution snapshots and perform
system/library hooking. Furthermore, we enhance TEMU’s
taint analysis to support tainting the input/output of spe-
cific calls.

Our main implementation effort concentrates on offline
modules. Our offline modules are mainly built using Python,
and they include program dataflow analysis, program slice
generation, and ICE input generation. For example, in port-
print extraction, we perform backward taint analysis and
program slicing on fine-grained traces. At the same time,
our offline module collects semantic information to derive
the portprint type and to extract the program slice for on-
line replaying. In ICE, to support multi-round exploration,
our offline module first fully analyzes the trace we generated
in the previous round. Then, it provides our online module
with a concrete specification of the path exploration. It
includes where to start execution, whether to create snap-
shot or not, what branch decision chain for our online en-
forced execution to follow first, and how to modify the mem-
ory/register value. Furthermore, for symbolic execution, we
developed a module to translate the instruction traces into
the VEX intermediate language using libVex [4]. We devel-
oped our own symbolic execution engine and an interface to
Z3 [11] constraint solver.

5. EVALUATION
In this section, we evaluate PeerPress on several real-

world malware families, which are listed in Table 1. This
includes representative and complex modern P2P bots such
as the infamous Nugache malware [50], Phatbot, Storm/Pea-
comm [48], Conficker C [2], and more recent Sality [12](still

active in the wild as the writing of this paper). We also in-
clude several Trojan horse/backoor malware, because they
also contain MCBs (many of them could also be considered
as bots). This is to further demonstrate that PeerPress can
detect more than just P2P malware, as long as PeerPress
can extract MCBs from the malware. These malware sam-
ples were collected from multiple online malware repositories
such as [1, 5] and diverse security researchers. We verified
the ground truth labels of these malware with multiple on-
line malware analysis services such as [1, 10] and manual
examination on binaries and network traffic.

5.1 Effectiveness of Portprint Extraction
We extracted portprints for each malware family and we

summarize them in Table 2. To verify their correctness, we
run these malware multiple times in a clean environment and
each time compare our extracted portprint with the actual
port the malware bound to. The detailed result is shown in
Table 2.

Among all the malware we have examined, Conficker C
has a complex and unique port generation logic, which was
previously manually analyzed in [45]. Now with PeerPress,
we can automatically extract this logic within a few minutes.
Furthermore, PeerPress provides a clear function interface
with parameters and their semantic meanings because it cap-
tures system calls such as getpeername that parse the buffer
related to the slice arguments. It is worth noting that algo-
rithmically deterministic portprints are a strong evidence of
the malware existence. That is, with only portprints (even
without further MCB probing packets/response), we can al-
ready detect this kind of malware with very high confidence.

We find that many portprints are static in our tested
malware. Most of such malware embeds the port number
in the binary, such as NuclearRAT and NuCrypt, or reads
from some configuration file, such as the case of Peacom-
m/Storm. Only a few malware samples (Phabot and Nu-
gache) listen on totally random ports. In our tests, the
ports were used for FTP services in both cases (to pro-
vide egg downloading service for newly infected malware).
This inspired us to probe suspicious random ports just us-
ing an FTP packet and monitor their reply. In Section 5.3,
we further demonstrate even though the malware may use
the standard FTP protocol, the slight implementation dif-
ferences may still expose themselves. One very interesting
case is the algorithmically deterministic portprint of Sal-
ity (UDP port), because previous reports have claimed that
the port is selected pseudo-randomly [12]. We carefully ex-
amine our generated portprint and find that there are two
source bytes that are the result of system call GetComput-
erName(). These two bytes are multiplied, and the result
is added to a constant number 0x438. Meanwhile, through
tracking the control dependences, PeerPress also successfully
extracts another path which forces the malware to bind to
a static port, 9674. We deduce that the reason why secu-
rity reports such as [25] claim the port is psedo-randomly
generated may be because: (1) The computer name can be
considered as a random value. (2) It is possible for mal-
ware authors to reconfigure the constant number 0x438 to
other constant value. PeerPress declares that the portprint
of Sality is algorithmically deterministic, and it extracts the
program slice with the target computer name as the param-
eter. Once provided with computer names (which should be

Name Type Name Type

Conficker C [2] P2P Bot Nugache [50] P2P bot & Trojan Horse
Phabot [6] P2P Bot Sality [12] P2P Bot

Storm/Peacomm [48] P2P bot BackOrfice Trojan horse/backdoor
NuclearRAT Trojan horse/Spyware WinEggDrop Keylogger/Spyware
Penumbra Backdoor WinCrash Backdoor
NuCrypt Trojan horse/worm Wopla Trojan horse

Table 1: 12 malware families in our evaluation

Malware Type detmined by MProbe Observed Port Number Description Correctness

Conficker C algorithmically determined 46523/TCP and 18849/UDP Program Slice with IP and time X
Nugache static/randomly generated 8/TCP, 3722/TCP Open Multiple (fixed/random) Ports X

Sality algorithmically determined 6162/UDP Generated based on Computer Name X
Phabot randomly generated 1999/TCP X

Peacomm static 7871,11217/UDP Read from spooldr.ini X
BackOrfice static 31337/TCP In binary X

NuclearRAT static 190/TCP In binary X
WinEggDrop static 12345/TCP In binary X

Penumbra static 2046/TCP In binary X
NuCrypt static 3133/TCP In binary X
Wopla static 8080/TCP, 25099/TCP In binary/file X

WinCrash static 1596/TCP In binary X

Table 2: Portprint details of different malware families

available to most network administrators), PeerPress can
probe target machines to detect Sality infected victims.

5.2 Effectiveness of ICE
In this section, we evaluate the effectiveness of ICE. First,

we conduct an experiment to verify that there are multiple
function containers in each malware binary, which supports
our assumption that function-level abstraction is feasible in
dynamic analysis. Second, we verify that it can significantly
reduce the overhead of path exploration compared to exist-
ing exploration scheme.

Function Containers in Malware Binary. In our evalu-
ation, we set the maximum call depth level as 4, and locate
on average 28 function containers per malware sample us-
ing this level. In our tests, all containers eventually lead
to desired system calls. More interestingly, throughout all
our test cases, malware calls these containers if they want
to execute specific tasks.

Overhead Comparison. To evaluate whether our informed
execution can efficiently locate desired MCB logic, we com-
pare the performance of ICE with the traditional approach
that randomly chooses a path to explore next [54]. Here, the
performance is measured using the number of rounds to find
all MCB paths (that the system succeeds in finding using
a brute-force approach), and each round is defined as one
path exploration attempt from the sink (receiving the prob-
ing packet) to the end of the execution run for this path.
Note that we do not claim to be able to explore all execu-
tion paths in the program. Instead, our baseline of all MCB
paths is determined by brute-force exploration of all possible
paths that can be directed/triggered by one single probing
packet (i.e., we may miss MCB paths that can only be trig-
gered by multiple probing packets). All these paths start
from packet receiving till (i) the malware sends out some
response, or (ii) the communication/process terminates. In
this test, it is not very important whether we obtain accu-
rately all MCB paths or not. Instead, more importantly we

want to see which technique is quicker to locate these MCB
paths given as the baseline. The result is shown in Figure
5. We can clearly see that our ICE significantly outperforms
the traditional forced executions [54]. Our method requires
much fewer exploration rounds to find MCB paths. In many
cases, our system reduces the overhead up to 80%.

5.3 Overall MCB Extraction
PeerPress successfully extracts on average about 6 MCB

probing/response pairs per sample from all the tested mal-
ware, as shown in Table 4. In terms of running time, we
select three most complex, representative malware samples
and report the performance for different components of our
system in Table 3 (performance of other samples are sim-
ilar or better, omitted here due to space limitation). We
acknowledge that some steps, such as semantic derivation
and symbolic execution are relatively slow, which is not
surprising considering that we are analyzing very complex
real-world P2P malware in a fine-grained way with some
known expensive operations. Compared with existing state-
of-the-art work (e.g., [17, 18]) that also uses expensive dy-
namic analysis and symbolic execution techniques, our per-
formance is on par with those studies, and we believe it is
reasonable and tolerable for offline analysis of malware fam-
ilies (recall that the analysis does not need to be repeated
for each individual sample). It can certainly be improved
by optimizing our code, parallelizing some operations, and
using more powerful hardware.

Among all MCBs that PeerPress extracted, the simple
case is represented by certain Trojan horses/backdoors that
provide some unique“Welcome”information in their response.
It is actually a very effective and safe MCB without much
effort to generate. We can initiate connections to the sus-
pected host and verify whether it welcomes us in the specific
way or not. This welcome message is most common in old
fashion Trojan horses, because an adversary may use any re-
mote client to control the bots. We find this in Nugache FTP
logic and some other malware, e.g., WinCrash and Wopla.

Figure 5: Performance comparison of ICE and Random Exploration

Conficker
C

Nugache Peacomm

Fine-grained Recording
(min)

38 21 37

Backward Taint (sec) 243 549 780
Program Slicing (sec) 180 363 173
Semantic Derivation (sec) 2813 489 541
ICE engine (sec/trace) 54.4 38.9 40.3
Symbolic execution (sec/-
trace)

6863 1602 2711

Table 3: Running time of MCB extraction

Malware # MCB Malware # MCB

Conficker C 3/3 Peacom 6/3
Sality 1/1 BackOrifice 16/14
Phabot 13/9 NuclearRAT 17/12
WinEggDrop 11/8 Penumbra 16/13
Nugache 21/7 WinCrash 1/1
NuCrypt 2/2 Wopla 2/2

Table 4: Statistics on extracted malware MCBs.
(Here X/Y in Column # MCB means there are X
candidate MCBs and Y final MCBs after verifica-
tion.)

For example, Nugache uses the following welcome message:
220-220-Welcome 220.

We find that many MCB probing packets are easy to
craft because there are no (or not many) encoding routines.
More precisely, we found cleartext FTP logic inside Nu-
gache, Wopla and Phatbot, peer synchronization logic inside
Peacomm, and command and control logic inside traditional
Trojan horses. Even though there are only a limited num-
ber of samples, our system is robust and fast to obtain MCB
probing in a fully automatic way. In detail, we find one sim-
ple FTP service logic hosted by Nugache on a high-order
port. After traversing the MCB paths, we extract 21 com-
mand and response pairs. After further verification, 14 are
filtered (e.g., command ls and pwd) because they are not
be considered as unique evidence. As an interesting MCB
example among the rest, we find that the Nugache FTP
service needs users to provide Username and Port for vali-
dation, which are quite different from normal FTP services
we see.

For Peacomm/Storm case, PeerPress extracts six MCB
probing candidates. We test these MCBs on the benign
eDonkey clients and filter out three. One filtered example
is a 509-byte probing packets (with the first two bytes as
0xe3 0x13) that will receive a 18-byte response packet be-
ginning with 0xe3 0x14. This is actually used for regular
peer recognition in the eDonkey protocol. The remaining

three are interesting MCBs, include a probing packet begin-
ning with the first two bytes 0xe3 0x0d and the correspond-
ing response packet beginning with 0xe3 0x0a.

For the most sophisticated cases, we have to bypass the
encoding function before the symbolic execution. As de-
scribed before, we apply a semi-automatic approach to ex-
tract the encoding function inside of the traces. We auto-
matically locate the RC4 encryption and checksum routine
inside Conficker and Sality, using the heuristic of highly-
mixed receiving buffer [18]. We also successfully identify
two double-word decryption keys inside the Conficker and
Sality packet (with payload offset 2 and 0). Thus, we can
recover the encrypted probing packet after the symbolic ex-
ecution. Examining the cleartext payload, we find one key
data field containing the payload version inside both Con-
ficker and Sality. Both malware programs generate replies
if the received payload version is lower or equal to its own
binary version. It seems that the P2P logic implements a
self-updating procedure, and the only way to trigger its re-
ply is to provide a payload with a suitable version number.
Another interesting finding about the Sality botnet is the
double replies. When we feed our probing packet, Sality se-
quentially replies with two packets. One packet attempts to
start a new UDP session while the other one is a reply to
our MCB probing.

Although PeerPress extracts MCBs from all tested mal-
ware, we note that it does not mean PeerPress can extract all
MCBs inside malware. We actually encounter some issues
due to some complex control logic inside some malware pro-
grams. For example, PeerPress failed to extract MCBs from
Nugache’s port 8. We find multiple WaitForSingleObject
calls in the traces, waiting for some (asynchronous) event
from other threads/process. ICE failed to correctly explore
the paths in that situation. In the case of Conficker, Peer-
Press is not able to automatically crack the multi-round ad-
vanced encoding routines, thus failed to extract MCBs on
some ports. The fact that PeerPress failed in several cases
is not surprising, as we are dealing with real-world complex
malware. However, our results are still encouraging because
PeerPress could extract at least one meaningful MCB for all
families that we examined.

5.4 Detection Results through Active Probing
In this section, we conduct the experiments to verify that

our MCB-informed active probing can detect our targeted
malware in a reliable, robust, fast and scalable way.

Test in Virtual Networks. We built one virtual envi-
ronment with six virtual machines. All virtual machines
installed Windows XP SP1 without new patches. We ran-
domly selected two different malware samples (from Table

1) to install on each machine (and eventually cover all ten
malware samples in six VMs). Meanwhile, we installed some
well-known benign services, such as Apache web server, P2P
clients (e.g., edonkey), and FTP servers (e.g., Filezilla). Our
probing engine uses extracted MCBs to actively probe the
entire virtual network. PeerPress correctly detected all the
existing malware in the virtual network without false posi-
tives. In terms of detection speed, it only took on average
1.103 seconds to detect each malware. This demonstrates
that the informed active probing is an effective approach to
detect malware in the network.

To further verify the robustness of PeerPress to detect dif-
ferent variants in the same malware family, we further col-
lected three additional (but different) binaries of the same
malware for Conficker, Storm/Peacomm, and NuclearRAT,
and Nugache, respectively3. Our test environment is the
same as mentioned before. PeerPress can not only detect all
the variants but also correctly classified all variants into its
original families. This again verifies that MCBs are unique
for the same malware family and PeerPress is robust in de-
tecting different malware variants in the same family.

False Positive Test in Real Networks. Next, we scanned
our campus network (we randomly choose three /24 net-
works with no firewall to filter our scans) to test the real-
world performance of PeerPress using the above extracted
MCBs. We did not find any false positive during the scan,
because most hosts do not have the corresponding (malware
portprint specific) ports open. This is not surprising because
our campus networks/computers are well managed/secured.
We then intentionally scanned other open ports on these
machines in order to further test the false positive of using
MCB probing/response. We chose to scan port 80 (web)
and all ports above 1025 in these three networks in hope to
find some P2P applications. We found 58 hosts opened port
80 and 110 hosts opened higher ports, varying from sev-
eral well-known P2P ports such as 6881 (BitTorrent) and
49153-49156 (uTorrent/Azureus) to some unknown ports.
Our MCB-informed probing again did not yield any false
positive. The detection speed for each host is about 6.58
seconds on average per malware (including the first TCP
port scanning interaction and the following MCB probing
packet/response). Considering that it is easy to perform
parallel scanning using multiple threads, PeerPress demon-
strates good detection speed/scalability.

Comparisons with State-of-the-Art Detection Sys-
tems. In terms of an efficiency comparison with some state-
of-the-art malware detection systems, we can mainly do a
paper-and-pencil case study here because we could not ob-
tain most of these tools. AccessMiner [38] is one relevant
host-based detection system. It has high accuracy and cov-
ers a lot of malware families. However, it may not be good
enough at the stage where a P2P bot is waiting to receive
commands from the botmaster, because it has not triggered
its malicious logic yet. Meanwhile, it may also consume con-
siderable resources on each end-host, so it is less scalable for
deployment on large networks.

We further deploy another state-of-the-art network-based
detection system, BotHunter [31], in our test (virtual) net-
work and no malware (on six machines) is detected. This is

3For these four malware we could find different binaries/-
variants.

reasonable because BotHunter needs to accumulate actual
evidence related to multiple phases in the malware infection
life cycle. In our cases, most of malware does not exhibit ma-
licious network activity because the samples did not receive
any commands. This also exposes one common limitation
of many existing detection systems: they are passive and
could be slow in terms of detection speed. On the contrary,
PeerPress can actively detect those malware, even before
those infected machine are accessed/controlled by remote
peers/botmasters.

Note that compared with existing systems, PeerPress does
have a limitation regarding to its detection scope. As clearly
mentioned, PeerPress only targets malware that has MCBs,
instead of general malware. However, we still consider it a
valuable addition to our arsenal, because P2P malware and
Trojan/backdoors are serious and emerging threats that we
need to address. PeerPress greatly complements existing
passive malware detection approaches.

6. RELATED WORK
We now review additional related work previously not men-
tioned.

Multiple-path Exploration. One related research is the
exploration of dormant functionalities [15,42,44,54] in mal-
ware binary. In [42], the authors take snapshots at each
branch point and reset when an additional branch needs
to be explored. Wilhelm et al. [54] present a forced sam-
pled execution approach to explore multiple rootkit execu-
tion paths. However, both exploration schemes still depend
on random choice because they cannot correctly define what
is the target function they want to explore. Our goal is to
explore the MCB paths, so the exploration can be effectively
accelerated and the overhead is significantly reduced. Mean-
while, ICE solves the problem of exploring the sub-paths
along one explored MCB main path, which is different from
the problem solved by previous work.

Protocol Reverse Engineering. Automatic protocol re-
verse engineering (PRE) research [17,20,23,24] discovers the
semantic meanings of network protocols. However, these
studies were mostly focused on analyzing legitimate net-
work protocols. In such cases, it is easy to elicit a response
from the application, simply by using a legitimate client that
sends a valid request. We do not know how a valid request
looks like; in fact, one key aspect of our work is to efficiently
locate MCB execution paths, which determine the format of
probe packets that can be used to obtain responses. More-
over, PRE systems are broader in the sense that they at-
tempt to reverse engineer entire packet formats and state
machines. This is fine for legitimate applications, but might
be too brittle when applied to malicious binary code. Our
technique, on the other hand, focuses on a specific problem
(the extraction of inputs that trigger responses), and hence,
can be more robust. In addition, we introduce the idea of
dynamic portprints, a concept that is not considered by PRE
systems. Finally, we note that better protocol knowledge is
certainly helpful in both crafting better MCB packets and
verifying/filtering false positive cases, as mentioned before.
Thus, we consider these PRE techniques to be complemen-
tary to our work.

Network-based (P2P) malware detection. Network-
based detection approaches [22,29,31,33,34,41,43] attempt

to inspect network traffic to detect some anomalous activi-
ties, patterns, or structures. Their weaknesses were already
discussed earlier. In [30], Gu et al. present BotProbe that
actively sends probing packs through IRC channels to sepa-
rate botnet C&C dialogs from human-human conversations
to detect IRC bots. PeerPress differs in that we accurately
extract MCBs from malware binaries to probe them.

Code Reuse. Previous work [16, 36, 37] applies forward
taint analysis and backward program slicing to extract in-
teresting, relevant instructions as a stand-alone program.
Our portprint extraction uses similar techniques to solve a
specific problem. Different from [16], PeerPress extracts a
virtual function from the whole program level instead of
single function level, and the way of reusing/replaying of
the code is different. Different from [36, 37], PeerPress uses
backward taint analysis instead of forward analysis because
in our context, we have a clear sinkholing point (the port
binding event) but many unknown source points.

7. LIMITATIONS AND DISCUSSION
In this section, we discuss the limitations and implications

of our solution.
A notable limitation of PeerPress is that it cannot craft

correct MCB probing packets in the case of advanced en-
cryption or certificate-based authentication, even though it
could identify/bypass these routines. However, this is a com-
mon problem for all malware analysis tools that aim to pro-
vide meaningful (network) input to malware samples [18].
Malware could use this to verify/authenticate our incorrect
probing packets and refuse providing any future response.
However, even in this worst case, we argue that this kind of
“no response” is indeed a special, recognizable response that
could be used in MCB probing. Furthermore, we note that
our technique can still successfully extract portprints, and
in many cases, the portprint itself is enough to detect/con-
firm the malware (without actually sending MCB probing
content).

To evade portprint extraction, malware authors may in-
tentionally delay the port binding until some conditions are
satisfied, e.g., the time reaches some specific date. Indeed,
it prevents PeerPress from discovering the port binding at
first sight with the cost of decreasing the utility (in terms of
accessibility) of the malware. This issue could be solved if
we skip all the sleep() related functions in the monitoring
and analysis.

To slow down the analysis of ICE, malware authors may
intentionally include many (bogus) branches directly after
the packet receiving. Even in such case, ICE is still faster
than random path explorations.

Another possible evasion is to faithfully mimic a benign
normal protocol behavior. First, this will increase the work-
load of malware authors. Second, if not implemented faith-
fully, the malware still could be fingerprinted due to the
subtle differences from normal protocols, as studies in this
domain have shown [14, 19]. If the malware authors choose
to copy code from existing open source software in order to
avoid differences in implementation, the code replication/-
copy [52] could become another possible point of detection.

Finally, we note that within its detection scope (when
MCBs can be successfully extracted), PeerPress is fast, re-
liable, robust, and scalable. We believe it is a great comple-

ment to existing passive detection techniques even though
it is not perfect (just as any intrusion detection technique).

8. CONCLUSION
P2P malware is an important direction for future malware.

Current P2P malware detection remains insufficient. In this
paper, we propose a novel, two-phased detection framework
that seamlessly brides host-level dynamic binary analysis
and network-level informed active probing techniques. It
can detect P2P malware and beyond, as long as the mal-
ware has MCBs. We developed new techniques such as ICE
to tackle our research challenges, and we implemented a
prototype system, PeerPress, to demonstrate the real-world
utility. Our initial results are very encouraging. Although
not perfect, PeerPress demonstrates an important step to-
ward proactive malware detection and defense (instead of
passive monitoring), a direction worth more attention from
the security research community.

9. ACKNOWLEDGMENTS
This material is based upon work supported in part by

the National Science Foundation under Grant CNS-0954096
and the Texas Higher Education Coordinating Board under
NHARP Grant no. 01909. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation and the Texas Higher
Education Coordinating Board.

10. REFERENCES
[1] Anubis: Analyzing Unknown Binaries.

https://anubis.iseclab.org.

[2] Conficker C Analysis Report .
http://mtc.sri.com/Conficker/.

[3] DynamoRIO . http://dynamorio.org/.
[4] LibVex . http://http://valgrind.org/.

[5] OffensiveComputing.
http://www.offensivecomputing.net/.

[6] Phabot. http://www.secureworks.com/research/threats/
phatbot/?threat=phatbot.

[7] Sulley. http://code.google.com/p/sulley/.

[8] Symantec Internet Security Threat Report.
http://www.symantec.com/business/theme.jsp?themeid=
threatreport.

[9] Temu . http://bitblaze.cs.berkeley.edu/temu.html.

[10] Virustotal. https://www.virustotal.com/.
[11] Z3 EMT Solver . http://research.microsoft.com/en-us/

um/redmond/projects/z3/.
[12] Cybercriminals Making Sality Virus More Complex.

http://www.spamfighter.com/Cybercriminals-Making\
\-Sality-Virus-More-Complex-16068-News.htm, 2011.

[13] Thanassis Avgerinos, Edward Schwartz, and David
Brumley. All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have
been afraid to ask). In Proc. of IEEE S&P’10, 2010.

[14] David Brumley, Juan Caballero, Zhenkai Liang, James
Newsome, and Dawn Song. Towards automatic discovery of
deviations in binary implementations with applications to
error detection and fingerprint generation. In Proc. of
USENIX Security’07, 2007.

[15] David Brumley, Cody Hartwig, Zhenkai Liang, James
Newsome, Pongsin Poosankam, Dawn Song, and Heng Yin.
Automatically identifying trigger-based behavior in
malware. In Wenke Lee, Cliff Wang, and David Dagon,
editors, Botnet Analysis and Defense, volume 36, pages
65–88. Springer, 2008.

[16] Juan Caballero, Noah M. Johnson, Stephen McCamant,
and Dawn Song. Binary code extraction and interface
identification for security applications. In Proc. of
NDSS’10, 2010.

[17] Juan Caballero, Pongsin Poosankam, Christian Kreibich,
and Dawn Song. Dispatcher: Enabling active botnet
infiltration using automatic protocol reverse-engineering. In
Proc. of ACM CCS’09, 2009.

[18] Juan Caballero, Pongsin Poosankam, Stephen McCamant,
Domagoj Babić, and Dawn Song. Input generation via
decomposition and re-stitching: Finding bugs in malware.
In Proc. of ACM CCS’10, September 2010.

[19] Juan Caballero, Shobha Venkataraman, Pongsin
Poosankam, Min Gyung Kang, Dawn Song, and Avrim
Blum. FiG: Automatic fingerprint generation. In Proc. of
NDSS’07, 2007.

[20] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song.
Polyglot: Automatic extraction of protocol message format
using dynamic binary analysis. In Proc. of ACM CCS’07,
2007.

[21] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam,
Kevin Zhijie Chen, Edward XueJun Wu, and Dawn Song.
Mace: Model-inference-assisted concolic exploration for
protocol and vulnerability discovery. In Proc. of USENIX
Security’11, 2011.

[22] Baris Coskun, Sven Dietrich, and Nasir Memon. Friends of
an enemy: Identifying local members of peer-to-peer
botnets using mutual contacts. In Proc. of ACSAC’10,
2010.

[23] W. Cui, J. Kannan, and H. J. Wang. Discoverer:
Automatic protocol description generation from network
traces. In Proceedings of USENIX Security Symposium,
Boston, MA, August 2007.

[24] W. Cui, M. Peinado, K. Chen, H. J. Wang, and
L. Irun-Briz. Tupni: Automatic reverse engineering of input
formats. In Proc. of ACM CCS’08, 2008.

[25] Nicolas Falliere. Sality: Story of a peer-to-peer viral
network. Technical report, 2011.

[26] Alexander Gostev. 2010: The year of the vulnerability .
http://www.net-security.org/article.php?id=1543,
2010.

[27] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent
Kang, and David Dagon. Peer-to-peer botnets: Overview
and case study. In Proc. of USENIX HotBots’07, 2007.

[28] Flix Grobert. Automatic identification of cryptographic
primitives in software. Master’s thesis, Ruhr-University
Bochum,Germany, 2010.

[29] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke
Lee. BotMiner: Clustering Analysis of Network Traffic for
Protocol- and Structure-Independent Botnet Detection. In
Proc. of USENIX Security’08, 2008.

[30] Guofei Gu, Vinod Yegneswaran, Phillip Porras, Jennifer
Stoll, and Wenke Lee. Active botnet probing to identify
obscure command and control channels. In Proc. of
ACSAC’09, 2009.

[31] Guofei Gu, Junjie Zhang, and Wenke Lee. BotHunter:
Detecting Malware Infection Through IDS-Driven Dialog
Correlation. In Proceedings of USENIX Security’07, 2007.

[32] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer:
Detecting Botnet Command and Control Channels in
Network Traffic. In Proc. of NDSS’08, 2008.

[33] Duc T. Ha, Guanhua Yan, Stephan Eidenbenz, and
Hung Q. Ngo. On the effectiveness of structural detection
and defense against p2p-based botnets. In Proc. of DSN’09,
2009.

[34] Márk Jelasity and Vilmos Bilicki. Towards automated
detection of peer-to-peer botnets: on the limits of local
approaches. In Proc. of LEET’09, 2009.

[35] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and
R. Kemmerer. Behavior-based spyware detection. In Proc.
of USENIX Security’06, 2006.

[36] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher
Kruegel, Engin Kirda, Xiaoyong Zhou, and Xiaofeng Wang.
Effective and efficient malware detection at the end host. In
Proc. of USENIX Security’09, 2009.

[37] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel,
and Engin Kirda. Inspector gadget: Automated extraction
of proprietary gadgets from malware binaries. In 31st IEEE
Symposium on Security and Privacy, May 2010.

[38] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel,
Mihai Christodorescu, and Engin Kirda. AccessMiner:
using system-centric models for malware protection. In
Proc. of ACM CCS’10, 2010.

[39] Felix Leder and Peter Martini. Ngbpa: Next generation
botnet protocol analysis. In SEC, pages 307–317, 2009.

[40] Andrea De Lucia. Program slicing: Methods and
applications. In 1st IEEE International Workshop on
Source Code Analysis and Manipulation, 2001.

[41] Reiter M. and Yen T. Traffic aggregation for malware
detection. In Proc. of DIMVA’08, 2008.

[42] Andreas Moser, Christopher Kruegel, and Engin Kirda.
Exploring Multiple Execution Paths for Malware Analysis.
In IEEE Symposium on Security and Privacy, 2007.

[43] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew
Caesar, and Nikita Borisov. Botgrep: finding p2p bots with
structured graph analysis. In Proc. of USENIX Security’10,
2010.

[44] P.M.Comparetti, G.Salvaneschi, E.Kirda, C. Kolbitsch,
C.Krugel, and S.Zanero. Identifying dormant functionality
in malware programs. In 31st IEEE Symposium on
Security and Privacy, May 2010.

[45] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An
Analysis of Conficker’s Logic and Rendezvous Points.
http://mtc.sri.com/Conficker/, 2009.

[46] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds,
and Wenke Lee. Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In Proc. of
ACSAC’06, 2006.

[47] Prateek Saxena, Pongsin Poosankam, Stephen McCamant,
and Dawn Song. Loop-extended symbolic execution on
binary programs. In Proc. of ISSTA’08, 2008.

[48] Joe Stewart. Inside the Storm.
http://www.blackhat.com/presentations/bh-usa-08/
Stewart/BH_US_08_Stewart_Protocols_of_the_Storm.pdf.

[49] Elizabeth Stinson and John C. Mitchell. Towards
systematic evaluation of the evadability of bot/botnet
detection methods. In WOOT’08, 2008.

[50] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich.
Analysis of the storm and nugache trojans: P2P is here. In
;login, 2007.

[51] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
Taintscope: A checksum-aware directed fuzzing tool for
automatic software vulnerability detection. In Proc. of
IEEE S&P’10, 2010.

[52] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu.
Behavior based software theft detection. In Proc. ACM
CCS’09, 2009.

[53] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang,
and Mike Grace. Reformat: Automatic reverse engineering
of encrypted messages. In Proc. of ESORICS’09, 2009.

[54] J. Wilhelm and Tcker Chiueh. A forced sampled execution
approach to kernel rootkit identification. In Proc. of
RAID’07, 2007.

[55] Zhaoyan Xu, Lingfeng Chen, and Guofei Gu. Peerpress:
Fast and reliable detection of p2p malware (and beyond).
Technical report, Texas A&M University, 2012.

[56] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow
formalware detection and analysis. In In ACM Conference
on Computer and Communication Security (CCS), 2007.

