
Prison: Tracking Process Interactions to Contain Malware

∗Benjamin Caillat, Bob Gilbert,
Richard Kemmerer, ∗Christopher Kruegel, and ∗Giovanni Vigna

University of California, Santa Barbara
{benjamin, rgilbert, kemm, chris, vigna}@cs.ucsb.edu

and
∗Lastline, Inc.

www.lastline.com

Abstract—Modern operating systems provide a number of
different mechanisms that allow processes to interact. These
interactions can generally be divided into two classes: inter-
process communication techniques, which a process supports
to provide services to its clients, and injection methods, which
allow a process to inject code or data directly into another
process’ address space. Operating systems support these mech-
anisms to enable better performance and to provide simple and
elegant software development APIs that promote cooperation
between processes.

Unfortunately, process interaction channels introduce prob-
lems at the end-host that are related to malware containment
and the attribution of malicious actions. In particular, host-
based security systems rely on process isolation to detect
and contain malware. However, interaction mechanisms allow
malware to manipulate a trusted process to carry out malicious
actions on its behalf. In this case, existing security products will
typically either ignore the actions or mistakenly attribute them
to the trusted process. For example, a host-based security tool
might be configured to deny untrusted processes from accessing
the network, but malware could circumvent this policy by
abusing a (trusted) web browser to get access to the Internet.
In short, an effective host-based security solution must monitor
and take into account interactions between processes.

In this paper, we present PRISON, a system that tracks
process interactions and prevents malware from leveraging
benign programs to fulfill its malicious intent. To this end,
an operating system kernel extension monitors the various
system services that enable processes to interact, and the system
analyzes the calls to determine whether or not the interaction
should be allowed. PRISON can be deployed as an online system
for tracking and containing malicious process interactions to
effectively mitigate the threat of malware. The system can
also be used as a dynamic analysis tool to aid an analyst in
understanding a malware sample’s effect on its environment.

I. INTRODUCTION

Contemporary operating systems are designed to offer a
flexible platform that supports a diverse set of applications.
As such, performance and ease of software development are
primary design considerations. These design goals influence
an important system trade-off between two diametrically
opposed features: process isolation and inter-process com-
munication. Process isolation ensures that a process cannot

corrupt the data or code of another process. Inter-process
communication provides a channel over which data, code,
and commands can be exchanged. If a system isolates
processes weakly, then communication is straightforward,
for example, by allowing processes to directly read from
and write to each other’s memory. In contrast, strongly
isolated processes may only communicate in ways that are
more complicated and performance-intensive, for example,
by using remote procedure calls (RPCs).

Completely isolated processes are secure against external
tampering, but they are not very useful in and of themselves.
Inter-process communication features provide a mechanism
by which processes can share data and, perhaps, influence
each other’s execution in a controlled manner. Thus, process
isolation suffers as inter-process communication becomes
more flexible and easy to use. Due to the design goals
mentioned above, modern systems tend to favor diverse
and flexible inter-process communication mechanisms over
strong process isolation. Unfortunately, an overly permissive
security model combines with weak process isolation to
provide an environment in which malware can abuse its
ability to freely interact with other processes.

For instance, consider a personal firewall that limits
outgoing network traffic to a few trusted applications, such
as Internet Explorer for web traffic and Outlook for email.
If a malicious process directly attempts to make an Internet
connection, the firewall can successfully block the attempt,
as it represents a violation of the policy. However, the
malicious process can send inputs to the Internet Explorer
application in order to drive the browser to execute the
request on behalf of the malware. For example, the malware
might utilize a COM interface that Internet Explorer exposes
or, more generically, it may directly write code into the
browser’s address space and execute it. In this case, the
firewall sees a network request coming from the trusted
Internet Explorer process, so it allows the traffic to pass
through unabated. This is an example of the confused deputy
problem [5], and it is characteristic of the access control
systems that contemporary operating systems use.



In this paper, we propose PRISON, a system that monitors
process interactions to detect and mitigate malicious inter-
process communication and code or data injection. In par-
ticular, we developed a host-based component that monitors
the system calls that enable process interactions. PRISON can
detect when a system call is used by one process to interact
with another. When such an interaction is found, the system
can automatically invoke one of several responses to mitigate
the impact of malicious code: block the communication, alert
the user, or update the privileges of the target process. Our
focus in this paper is on demonstrating the practical impact
on end-host security when inter-process communication is
not properly taken into account. In addition, we describe
the variety and complexity of different inter-process com-
munication channels on a real-world operating system such
as Microsoft Windows, and we discuss the challenges that
need to be overcome to monitor these channels. Finally,
we show how PRISON can be used as the basis for a
containment system that prevents malware from abusing
trusted processes.

Tracking process interactions in a comprehensive manner
is difficult, because operating systems provide a diverse set
of communication interfaces using protocols that are often
undocumented. As evidence of this difficulty, we evaluated
a number of host-based security products, and we showed
that these systems fail to capture all process interactions
(these experiments are described in Section IV-C). This
failure implies that malware is able to effectively “launder”
its malicious actions through trusted processes to avoid
detection and containment.

We implemented our system as a Windows XP kernel
extension. PRISON hooks a variety of kernel system services
(system calls) to monitor a diverse set of interaction chan-
nels. Our experiments demonstrate that PRISON is effective
at blocking unauthorized process interactions over all the
mechanisms that we are aware of. Furthermore, we show that
our efficient technique offered finer granularity and better
coverage than commercial tools. We also verified that the
lack of process isolation is a security problem on more
recent versions of Windows (in particular, Windows 7), and
we ported a subset of PRISON as a proof-of-concept to
demonstrate that our proposed approach remains valid.

To summarize, we make the following contributions:

• We perform a comprehensive analysis of the mecha-
nisms on the Windows platform that allow one pro-
cess to interact with another. This analysis drives our
evaluation of a variety of commercial malware defense
systems, and we demonstrate that each system could be
evaded by a number of attacks that are made possible
by weak process isolation.

• We propose a novel approach to malware containment
by preventing a malicious process from interacting with
another process to perform actions on its behalf. We

describe the design and implementation of PRISON, a
system that extends the Microsoft Windows XP kernel
to implement our proposed approach. Moreover, we
verified that Windows 7 faces similar security problems,
and we ported parts of PRISON to this platform to
demonstrate the validity of our system design.

• We discuss our experimental results, which show that
our system is able to efficiently defend against attacks
where process interactions are attempted in order to
carry out malicious actions. Furthermore, we validate
that our analysis is comprehensive by comparing the
process interactions we identify to those described by
an oracle that does whole-system data tracking.

II. SYSTEM OVERVIEW

Our solution to address the problem of malicious process
interaction is PRISON, a host-based system that operates
as a kernel extension to the Windows XP platform. In
order to get a detailed understanding of how inter-process
communication is implemented in Windows, we performed
a deep analysis of the communication mechanisms that are
available in the system. PRISON monitors all known kernel
interfaces to detect when processes interact. The system can
block the communication attempt if the source violates a
security policy. Alternatively, PRISON can alert the user,
asking for permission before allowing a specific interaction.

In the current implementation, PRISON only considers
processes that cannot tamper with the kernel (e.g., by loading
a driver). We therefore only consider malware running under
a non-administrator user account. The system could be
extended to processes with administrator permissions by
adding a supplementary mechanism that would protect the
kernel (and PRISON) from modification. We leave this for
future work, but we note that such protection mechanisms
have been implemented in the past [15], [20].

Nevertheless, Microsoft is aggressively moving towards
an unprivileged user account model [12]. Furthermore, re-
cent studies suggest that malware is increasingly adapting to
such an environment, and it runs properly without adminis-
trator access [2].

Modes of Operation. PRISON has two modes of operation:
logging mode and filtering mode. In logging mode, PRISON
maintains a real-time interaction log of all interactions
between processes. The system also generates an interaction
graph that depicts these interactions. For each process, the
log includes an entry that enumerates the interactions that
involve the process as a target (e.g., an RPC client request
or a write into the process’ memory space). The log also
contains related information, such as the list of LPC ports
or named memory sections that the process has opened. The
interaction graph offers a visual representation that concisely
depicts a set of interactions. Because viewing an interaction
graph of the whole system quickly becomes unmanageable,



PRISON can focus the graph on specific processes that are
of interest.

PRISON can be queried as a service by other malware
detection systems that may use the interaction information
for their real-time analysis. Our system makes this feature
available through an input and output control (IOCTL)
interface. Furthermore, PRISON can be used as a dynamic
malware analysis tool. To this end, an analyst can configure
the system to write its interaction log and graph to disk
so that they can be used for offline analysis. The interaction
log could also be included in the reports of malware analysis
sandboxes, such as Anubis [7] or CWSandbox [21].

In filtering mode, PRISON interposes on each process
interaction attempt, and it makes a policy-based decision
that determines whether or not this interaction is allowed.
If the interaction is permitted under the policy, then the
communication request passes unabated to the system ser-
vice that is responsible for fulfilling the request. However,
if the interaction attempt indicates a policy violation, then
it is blocked. In this case, the source process is returned an
error code that indicates that the target is unavailable and
the communication fails.

Interaction Filtering Policies. We have identified three
interaction filtering policies for use in PRISON’s filtering
mode. The first policy is a whitelisting approach in which
a list of system processes (e.g., Explorer.exe and
Csrss.exe) and trusted applications are granted access to
the inter-process communication facilities that they require,
and all other interactions are blocked. A straightforward
way to identify applications for such a whitelist is by
process name, similar to how the “path rule” operates in
the Windows Software Restriction Policies mechanism [13].
However, if a stronger notion of identity is required, we
could leverage existing work in the area of code identity,
including the use of a TPM [16] or a dynamic code identity
primitive [4].

An alternative filtering policy is a process tainting ap-
proach. This policy requires an additional kernel module
that augments the Windows access control mechanism with
a set of high-level system access rights, such as file system,
registry, and network. These rights are granted to a process
according to its needs when it is created, and the rights
are enforced when the process attempts the corresponding
access. Whenever a source communicates with a target, the
latter obtains the intersection of the two process’ respective
high-level rights. For example, assume that the Notepad
text editor and Internet Explorer browser are granted {file
system, registry} and {file system, registry, network} high-
level access rights, respectively. If Notepad attempts to
communicate with Internet Explorer (perhaps due to an
attack against the text editor), then the browser is left with
{file system, registry} rights, and, thus, would be unable to
use the network, since it has been “tainted” by Notepad.

Similarly, if any malicious process (that does not have the
rights to access the network) attempts to induce Internet
Explorer (IE) to perform a request on its behalf, the IE
process will be stripped of its permission to make network
connections. Thus, connection “laundering” attempts are
thwarted.

The third policy is a user-guided filtering approach. Under
this policy, the user is notified (e.g., via a dialog box) when a
suspicious interaction is attempted. The user can then make
a decision whether to allow the interaction or not. This is
similar to the way that traditional antivirus alerts operate in
the presence of detected malware. This policy is the most
conservative of the three, as it offloads the filtering decisions
to the user. Thus, the policy might be best suited to power
users who demand full control of their systems.

The policy-based filtering mode makes PRISON a power-
ful tool for detecting and mitigating the threat of malicious
process interactions. This is important because malware au-
thors have a variety of options at their disposal for leveraging
a benign process to perform actions on their behalf. We
describe the design and implementation of PRISON next.

III. SYSTEM IMPLEMENTATION

In this section, we describe how PRISON is implemented
to detect and mitigate malicious process interactions. To
interpose on all communication attempts, PRISON must
intercept the function calls that implement the interaction
techniques. PRISON accomplishes this by hooking the rel-
evant system services in the Windows XP kernel. A few
techniques can be used to hook system services [6]. We
opted for a standard approach that is used by many security
products that target the Windows XP platform ; we patch the
System Service Dispatch Table (SSDT). This table is used
by the operating system to dispatch system call requests to
the corresponding system services.

We opted to implement our prototype system on the
Windows XP platform, for several reasons: First, more
recent kernels integrate some protections that would make
the integration of Prison more difficult. Second, it remains
a very popular OS with a large (kernel-mode) software de-
velopment community. Lots of companies are still reluctant
to upgrade from Windows XP [8], [9]. Furthermore, we
had access to the Windows Research Kernel (WRK). This
provided us with some of the Windows XP kernel source
code, which aided our analysis and development efforts.
Finally, we decided to evaluate the completness of PRISON
with a process interaction Oracle based on the project
Anubis [7]. The versatility of Anubis considerably eased this
development. Unfortunately, this project is only compatible
with the 32-bit version of Windows XP. We discuss our
efforts to port PRISON to Windows 7 in Section III-C.



A. The Interaction Filtering Policy

PRISON utilizes a whitelisting interaction filtering policy
to allow a set of system processes and trusted applications to
interact with other processes. The policy limits these trusted
processes to only use the mechanisms that are necessary for
them to operate. The whitelist is essentially a file that lists
the full path and name of the trusted process and a set of
interaction techniques that the process is known to utilize
during normal operation. We could automatically generate a
whitelist by defining a training period in which we track all
normal interactions that occur between trusted processes on
the host and then add them to the whitelist. This is similar to
the policy generation mechanisms that exist in other systems,
for example, [14]. This filtering policy provides a simple
mechanism by which PRISON can prevent malware from
interacting with other processes on the host.

B. Monitoring Relevant System Services

We performed a detailed analysis of the techniques that
enable processes to interact on the Windows platform.
Overviews of many of these techniques are readily avail-
able [10]. Fundamentally, each interaction method is imple-
mented by one or more system services. In this section, we
describe the services that PRISON must hook to successfully
monitor all of these interaction techniques.

Interposing on most of the interaction mechanisms is a
straightforward process of identifying and hooking a single
corresponding system service. Unfortunately, handling other
techniques is more difficult. In particular, some interaction
channels require a deep understanding of undocumented
structures and interfaces to map relevant objects to the
corresponding source and target processes. It is important to
capture this mapping, because PRISON requires the identity
of the communicating processes for its analysis. In the
following, we describe our engineering challenges and our
methods of solving them.

Windows Messages. Windows exposes a set of functions
that can be used to send Windows messages, includ-
ing SendMessage, PostMessage, and PostThread-
Message. These functions resolve to calls to a matching
set of system services: NtUserMessageCall, NtUser-
PostMessage, and NtUserPostThreadMessage, re-
spectively. To intercept the exchange of Windows messages,
PRISON hooks these three system services. For each service,
PRISON analyzes the message type parameter to detect the
type of interaction (e.g., a WM_COPY message indicates a
clipboard copy operation). The target process is determined
from another parameter that specifies a handle to the window
that the message is meant for.

Another way in which malware can abuse Windows
messages is to attach to the input processing mechanism of
another thread. This technique is often used by keyloggers
to capture the keystrokes of the user. A user-mode process

can call AttachThreadInput to accomplish this task.
PRISON hooks the corresponding system service, NtUser-
AttachThreadInput, and identifies the target process
as described above.

A particular problem arises when attempting to hook user
interface (USER) or Graphics Device Interface (GDI) system
services, like the ones described above. While most NT
services are handled by the kernel itself, USER and GDI
services are implemented by the kernel-mode part of the
Windows subsystem (in an extension called Win32k.sys).
For this reason, USER and GDI functions are exported
by a secondary shadow SSDT. This additional SSDT is
only mapped into the calling process when one of the
corresponding services is first requested. This is problematic
in cases where PRISON attempts to hook the USER services
in the context of a process that has not mapped the shadow
SSDT. PRISON solves this as follows: First, it attaches to a
process that is known to have already mapped the shadow
SSDT (by calling KeStackAttachProcess). Second,
PRISON locates the physical address of the table. Third, it
reverts to the original process context and uses a memory
descriptor list (MDL) to map the table into that context.
Finally, PRISON can safely patch the shadow SSDT.

Dynamic Data Exchange. The Win32 API provides an
interface to the Dynamic Data Exchange (DDE) message
passing protocol through functions such as DdeConnect
and DdeGetData. Fundamentally, DDE relies on Windows
messages to implement the protocol. In particular, a set
of messages, delimited by WM_DDE_FIRST and WM_-
DDE_LAST, are sent from the source to the target. Thus,
monitoring DDE communication reduces to the handling of
Windows messages, as we described above.

Shared Memory. Shared memory functionality in Windows
is implemented over the file mapping mechanism. In par-
ticular, the provider of a shared memory region will first
call CreateFileMapping, specifying a name for the
shared memory region and a special value, INVALID_-
HANDLE_VALUE, in place of the file handle. Next, the
provider calls MapViewOfFile to actually map the shared
memory into the process’ virtual address space. Consumers
typically request access to the shared memory by calling
OpenFileMapping.

PRISON hooks both the NtCreateSection and Nt-
OpenSection system services to analyze creation and
access requests to shared memory, respectively. Determining
the identity of the target (producer) process is not entirely
straightforward since this information is not available when
the consumer calls NtOpenSection. We devised a novel
solution to this problem as follows: First, when the producer
invokes NtCreateSection, PRISON logs the name of the
region and the process ID of the producer in an identity
cache. Later, when the consumer requests access to the
shared memory, PRISON uses the identity cache to match



the name of the region to the producer’s ID to identify the
target.

Another subtlety is that the consumer may sometimes
invoke CreateFileMapping (and, thus, NtCreate-
Section) to access the shared memory region. In this case,
PRISON distinguishes between create and open operations by
intercepting the call and first attempting to open the section
itself. If the attempt succeeds, then PRISON interprets the
call as an open request by a consumer.

Named Pipe and Mailslot Communication. The opera-
tional semantics of named pipe and mailslot communica-
tion are nearly identical. Thus, we will only discuss the
monitoring of the former here. A server process initializes
a named pipe by calling the CreateNamedPipe API,
providing a unique name to identify the endpoint (e.g.,
\\.\Pipe\SomeNamedPipe). The client subsequently
connects to the server by specifying the pipe name in a
call to CreateFile or CallNamedPipe. If successful,
the client receives a handle that represents the connection,
which it uses to send and receive data over the pipe (by
calling WriteFile and ReadFile, respectively).

It is straightforward to identify the client process of a
named pipe communication attempt, because the call is
made in the client’s context. Determining the identity of
the target (i.e., the server) is more challenging, for two
reasons. First, the client sends and receives data over the pipe
using the generic WriteFile and ReadFile APIs. These
functions take a file handle as a parameter. The Windows
Object Manager uses this handle to identify the client side
of the pipe connection, but the handle offers PRISON no
information that identifies the server. Second, the data that
is sent over the pipe represents a custom protocol between
the client and server, so no identifying information can be
gleaned from the messages themselves. Our solution is sim-
ilar to how we handle the identification of the endpoints that
communicate over shared memory. In particular, PRISON
hooks NtCreateNamedPipe to capture the name of the
pipe that the server creates along with the process ID of the
server. This information is stored in PRISON’s identity cache.
Later, a client invokes the NtCreateFile system service
to establish a connection with the server. By hooking this
service, PRISON can acquire the pipe name from a parameter
and then use the identity cache to match the name to its
corresponding server ID.

Local Procedure Call. The Local Procedure Call (LPC)
mechanism is designed to be used only by system processes.
However, its API is exposed by Ntdll.dll, so it is
possible for malware to leverage the protocol for inter-
process communication. A server creates an LPC port by
invoking the NtCreatePort or NtCreateWaitable-
Port system service, supplying a name for the port. A
client later connects to the port by calling NtConnect-
Port or NtSecureConnectPort. Once a connection is

established, both client and server communicate by using
handles to their respective communication port objects.

PRISON analyzes LPC communication by applying the
same strategy that is used for named pipes and mailslots. In
particular, PRISON stores (in the identity cache) a mapping
between the name of the LPC connection port and the
corresponding process ID of the server that created it. When
a client connects to the port (e.g., by calling NtConnect-
Port), PRISON extracts the port name and matches it to the
process ID that it previously stored to identify the server.

Remote Procedure Call. Remote Procedure Call (RPC)
is a flexible inter-process communication mechanism that
operates over Winsock (i.e., the TCP/IP protocol stack),
named pipes, or LPC. Since PRISON is a host-based system,
it ignores RPCs that use TCP/IP network communication.
The other two cases are handled by the internal mecha-
nisms themselves, as discussed in the corresponding sections
above. PRISON is able to distinguish RPC communications
that operate over LPCs from other LPCs due to the naming
convention that the RPC framework uses when creating
its ports. This is beneficial for logging purposes, but it is
not strictly necessary for analysis. Unfortunately, no such
convention seems to exist for RPCs that operate over named
pipes.

Component Object Model. The Component Object Model
(COM) is built upon a communication stack that includes
RPC operating over the LPC protocol (for local COM
components) or TCP/IP (for remote components). Correctly
handling communication over COM is particularly challeng-
ing, for the following two reasons. The first difficulty is that
detecting the target process that hosts one or more COM ob-
jects does not offer enough granularity for PRISON to decide
whether or not to block the interaction. The reason is that
one process can support multiple COM objects, and we need
to distinguish between them. For example, the Background
Intelligent Transfer Service (BITS) exposes a COM interface
through which a client may transfer files over the Internet.
BITS is typically hosted in a shared service process (a
Service Host process, Svchost.exe) along with a number
of other components. In this case, identifying the target
process does not allow PRISON to meaningfully analyze
the interaction endpoint. Instead, PRISON must identify the
particular COM object itself. The second issue is that local
COM components dynamically create LPC communication
ports with names that do not infer the identity of the
endpoint. This makes it exceedingly difficult for PRISON
to determine which COM component a particular request is
destined for.

We invested a substantial engineering effort to distinguish
the COM server endpoint in a given communication attempt.
This included intercepting requests to the Endpoint Mapper
component to obtain the names of dynamic LPC ports and
reverse engineering the payloads of various COM-related



LPC messages. In particular, we needed to decode custom
marshaled object references to obtain the identities of the
requested interface and endpoint. With this information,
PRISON is able to effectively analyze COM interactions.
Unfortunately, due to space constraints, we cannot provide
all of the details of our implementation here.

Code and Data Injection. There are a number of ways
for malware to inject code or data into a target pro-
cess. These methods result in invocations of the follow-
ing system services: NtWriteVirtualMemory, NtMap-
ViewOfSection, NtCreateRemoteThread, NtSet-
ContextThread, and NtQueueAPCThread. PRISON
hooks all of these services and analyzes them to obtain the
source and target processes of the interaction attempt in a
straightforward manner.

Windows Hook Injection. A process can install a Windows
hook by calling the SetWindowsHookEx API. PRISON
interposes on the corresponding system service, NtUser-
SetWindowsHookEx. The service takes a thread ID as a
parameter, which designates the thread that the hook targets.
PRISON uses the thread ID to determine which process the
hook is meant to target. However, it is possible for the source
to pass a value of zero as the thread ID when invoking the
system service. In this case, the hook is to be installed in all
threads that are running within the active desktop. PRISON
handles this situation by simply blocking the hook request.

C. PRISON on Recent Windows Systems

The problems concerning malicious process interactions
still exist on more recent versions of the Windows operating
system. This is largely because a primary design goal of
these systems is to maintain backward compatibility with
legacy software, which has prevented a substantial change
to the system architecture. To demonstrate that PRISON
also operates on more recent versions of Windows, we
ported our system to the (32-bit) Windows 7 platform.
This was accomplished using the same SSDT hooking
approach that we previously used for XP. In doing so,
we discovered that a number of kernel system services
have been augmented with newer versions. For example,
a new system call, NtCreateThreadEx, supersedes the
NtCreateRemoteThread service, and a family of func-
tions, NtAlpcXxx, implements the new ALPC mechanism.
It would be straightforward to extend PRISON’s monitoring
capabilities to account for these services as well, but we did
not find much value in reengineering our system to simply
account for all of these new functions.

The 64-bit versions of Windows operating systems intro-
duce the Kernel Patch Protection (KPP) feature to prevent
SSDT hooking (and other modification of kernel structures)
on these platforms [11]. Since we leverage SSDT hooking
to intercept kernel functions, KPP renders our current imple-
mentation inoperable on this architecture. We could leverage

existing work on KPP bypassing techniques [17]–[19] to
implement our system on 64-bit Windows as well. However,
this is not an ideal solution. Rather, we note that if Microsoft
were interested in adopting our system, the company would
do so by implementing PRISON in the kernel itself (instead
of as an extension). This could be accomplished by inlining
our checks into the relevant system services.

IV. EVALUATION

In this section, we discuss the results of our evaluation
of PRISON in five areas. First, we demonstrate that our
system can monitor process interactions while maintaining
compatibility with benign applications. Second, we show
that PRISON can be used to effectively contain malware
that attempts to interact with trusted processes. Third, we
describe how our system compares to host-based security
products. Fourth, we show that our system comprehensively
monitors interactions that occur between processes on the
host. Finally, we demonstrate that PRISON introduces only
a negligible performance overhead.

A. Effect on Application Compatibility

As we described in Section III, PRISON is implemented
as a kernel extension to the Windows XP operating system.
Since our system operates at a low level in the host, it is
given unfettered access to all executing processes. We need
to ensure that PRISON does not adversely affect the standard
operation of these applications while our system interposes
on all process interactions. We devised three experiments to
evaluate this.

First, we executed a ten-step representative workflow: (1)
launch Internet Explorer (IE), (2) navigate to the Google
search engine, (3) search for “windows filetype:pdf”, (4)
click the first search result to open a PDF document in the
Adobe Reader IE plug-in, (5) copy text from the document
onto the clipboard, (6) start Notepad, (7) paste the text into
the text editor, (8) enter a number into Notepad and copy it
onto the clipboard, (9) start Calculator, (10) paste the number
into Calculator. This workflow represents a typical user’s
interaction with the system and provides a good measure
to determine PRISON’s effect on normal system operation.
Our system was able to effectively monitor all process
interactions without a compatibility break in any applications
in the workflow.

Second, we wanted to ensure that PRISON does not
adversely affect the operation of popular applications with
varying functionality. To this end, we gathered a set of
16 programs, including a debugger (OllyDbg), IDE (Visual
Studio), text editor (Wordpad), set of media players (GOM
Player, RealPlayer, and VLC), browser (Chrome), game
(Mario Forever), toolbars (uTorrentBar and Google Toolbar),
and various system utilities (Partition Master, ARO 2011,
7Zip, Wireshark, TrueCrypt, and Process Explorer). We
manually ran each application in order to exercise its core



functionality. For example, we wrote a simple program in
Visual Studio and then debugged it in OllyDbg, and we
(legally) downloaded a video file with uTorrentBar and
viewed it in RealPlayer. All of the applications ran without
issue under PRISON.

Finally, we wanted to determine PRISON’s effect on
benign programs that do not have explicit entries in the
interaction whitelist. For this purpose, we created a test suite
of 560 executables taken from the Windows directory. We
ran each program for five seconds and logged the resulting
interaction attempts. In total, we identified 10,903 distinct
interaction events. Of these interactions, 80 were blocked by
PRISON. We analyzed the cause of the blocked interactions
and found that 73 were due to memory read operations and
7 were DDE communication attempts. For example, 26 read
requests were made by blastcln.exe, a tool that checks
for Blaster and Nachi infections in memory. Furthermore,
the Windows Presentation Foundation Host process and XPS
Viewer attempted to communicate with Internet Explorer
over DDE. Since the number of blocked interactions was
quite small (0.7% of the total), it would be easy to update
the interaction whitelist to accommodate these interactions.
Alternatively, we could augment the whitelist with the user-
guided filtering approach (discussed in Section II) to handle
these few interactions on a case-by-case basis.

These results demonstrate that PRISON can be deployed
on a host to analyze interactions without adversely affecting
the processes that typically run. In particular, our whitelist-
ing filtering policy allows all of the interactions among
trusted processes to occur, while still being able to contain
malware. We evaluate this latter aspect next.

B. Containing Malicious Process Interactions

Malware often interacts with other processes when ex-
ploiting the host that it infiltrates. Frequently, malicious
software injects code into trusted processes so that its illicit
operations appear to come from the latter. In this way, the
malware has a greater chance of going unnoticed by the
victim or antivirus software that may be running on the
user’s behalf. We deployed PRISON in a virtual environment
and executed a number of malware instances to determine
how well our system can defend against malicious process
interactions. We ran each malware sample two times: first,
with PRISON configured in logging mode and second, with
the system in filtering mode. This way, we could use
PRISON to learn more about the samples’ operations and
then demonstrate the system’s ability to contain the malware.

We executed three malware samples that perform code
injection into the address space of other running processes.
The first malware instance was a Zeus bot that injects code
into the Winlogon process as part of its installation. The
second sample was a Korgo bot that injects a thread into the
Windows shell, Explorer.exe. The third sample was a

suspicious application called YGB Hack Time that injects a
DLL called Itrack.dll into most running processes.

PRISON successfully blocked all of the malware samples
from interacting with other processes. Zeus was contained
because it attempted to inject code into Winlogon.exe.
The logging mode graph showed us that Zeus successfully
communicated with the Winlogon process, and the injected
code created a named pipe through which the malware issued
commands to its components. By contrast, with filtering
mode enabled, PRISON blocked this interaction, thereby
preventing Zeus from completing its installation. Korgo was
blocked because a child process that it creates attempted
to inject code into Explorer.exe. YGB was mitigated
because it attempted to set a Windows hook into all run-
ning processes, and PRISON filters global Windows hook
requests. These results show that malware uses a variety of
interaction mechanisms, which underscores the importance
of our broad coverage. Furthermore, the results demonstrate
that PRISON is an effective tool for both dynamic malware
analysis and malware containment.

C. Evaluating Security Products

The previous experiment demonstrates that PRISON is
able to effectively mitigate the threat of malware that
attempts to interact with other processes. A number of
commercial host-based security products claim to feature
techniques that also accomplish such blocking. We wanted
to evaluate these tools to determine the degree to which they
are able to filter malicious process interactions, particularly
in comparison to PRISON. Furthermore, we will discuss how
two prominent academic research systems fail to cope with
malicious process interactions.

Attack Tool Suite. In order to test the commercial security
products, we developed a suite of attack tools that exercise
a number of process interaction techniques. The tools are
divided into two classes: inter-process communication tools
and injection tools. In particular, the tools that perform
inter-process communication leverage the following attacks:
One tool sends WM_SETTEXT Windows messages to an
instance of Notepad to display arbitrary text in its window.
Another tool acts as a keylogger that uses the Attach-
ThreadInput API to capture keystrokes. A third attack
tool uses the WWW_OpenURL DDE command to force
Internet Explorer (IE) to download a binary on behalf of
the attacker from a specified website. This tool also utilizes
COM to drive IE (using the Navigate method of the
IWebBrowser2 interface) or the Background Intelligent
Transfer Service (using IBackgroundCopyManager in-
terface methods) to accomplish the binary download. Finally,
a set of tools create attack scenarios to exercise commu-
nication over shared memory, named pipes, mailslots, and
RPCs, respectively. In each case, the tools launch a fictitious
(trusted) server that consumes messages that are delivered



by an attacker that uses the corresponding communication
mechanism.

The goal of the injection tool is to inject an attacker’s
code into a target process and then execute that code.
The tool attempts the actual injection in one of three
ways: First, the tool can write code into the target by
using the WriteProcessMemory API. Second, it can
map a file that contains the code into the target’s address
space (using MapViewOfFile). Finally, the tool can use
the SetWindowsHookEx API to inject a DLL into the
target. The next step is to force the target to execute the
code. The tool uses three mechanisms for this: Create-
RemoteThread, the debugging API, or an asynchronous
procedure call (APC). Note that in the case of injection via
SetWindowsHookEx, the execution occurs automatically,
since the entry point of the attacker’s DLL will be called
when the module is loaded. Otherwise, in order for the attack
to be successful, the tool must leverage at least one technique
from both stages (i.e., injection and forced execution).

Commercial Security Products. We evaluated five different
commercial security products against our attack tool suite.
We used the most recently available versions when we ran
our experiments. The products include BitDefender Total
Security 2012, Kaspersky Internet Security 2011, McAfee
Total Protection 2011, Outpost Internet Security Suite v7.5,
and ZoneAlarm Extreme Security 2012. We tested each
product in two scenarios. First, we installed the free evalua-
tion version of the products and employed their out-of-the-
box configuration. Second, we used the products’ configura-
tion options to manually harden them against attacks. While
this improved the detection of malicious interactions in some
cases, it also frequently led to many unrelated false alarms.
Using our attack tool suite, we evaluated both scenarios for
each product as well as PRISON.

Summary of Results. We found that BitDefender, Kasper-
sky, and McAfee were not offering any process interaction
protection in their default configuration. After hardening
BitDefender and Kaspersky, the detection improved some-
what, but the products still only detected 53% and 41% of
the attacks, respectively. McAfee did not provide an option
to improve its security posture. Outpost and ZoneAlarm
did have security configuration options, but the settings
had no effect on our attacks. In particular, the hardened
configuration for these products each matched their out-
of-the-box detection rates of 71% and 41%, respectively.
PRISON was able to detect and block all of the attacks
except for RPC communication over the TCP/IP transport
(a detection rate of 94%). However, as we discussed in
Section III-B, PRISON ignores communication attempts to
endpoints over the network, so we do not consider this attack
to be a problem. By contrast, each of the aforementioned
commercial tools failed to prevent against infections that
abuse interactions with trusted processes. That is, these

products are designed to prevent malware from leveraging
a “download and execute” style of attack, but they failed to
do so when such an attack is laundered through a trusted
process.

D. Completeness

A system that claims to monitor all process interactions
must ensure that a process is not able to bypass the analysis
by making use of an unknown interface that the system did
not anticipate (i.e., the system should be complete). Further-
more, such a system must not introduce false positives by
claiming that interactions have occurred that, in fact, did
not (i.e., the system should be accurate). In order to test
these properties with respect to PRISON, we implemented
an interaction oracle that does whole-system dynamic taint
tracking on the Windows XP platform.

Our oracle tracks all data flow through the operating
system. It accomplishes this by tagging all data with a
taint label that corresponds to the process to which the
data belongs. In this way, when one process interacts with
another such that the source passes data to the target, the
latter will acquire taint labels that are associated with the
former. Therefore, the propagation of taint labels through
this system demonstrates all instances in which process
interactions occur.

By running PRISON on a host that is also analyzed
by the interaction oracle, we can compare the results of
the two perspectives. Specifically, we can determine if the
taint labels that are propagated by the oracle correspond
to interactions that PRISON identifies. If so, this gives us
assurance that PRISON is an effective tool for monitoring
all of the interactions that occur on the host (given the test
cases).

Oracle Implementation. We implemented our taint tracking
system as an extension to the Anubis malware analysis
sandbox [7]. Anubis itself is built upon QEMU, a powerful
virtualization environment that performs processor emula-
tion through dynamic binary translation [3]. This gives our
oracle complete control over the guest operating system
on a per-instruction basis. To perform data tracking, the
oracle leverages the taint propagation facilities that Anubis
provides [1]. Thus, our focus was on implementing a taint
introduction policy that suits our needs.

The interaction oracle introduces taint into the system
at a byte-level granularity. The oracle analyzes each write
instruction. When a source operand is tainted, the destination
operand is tainted with the same label. If not, the oracle
determines if the address of the destination operand is within
a specially tracked memory region – namely, a stack, a heap,
or a data segment. If this is the case, the oracle taints the
destination address with the label that corresponds to the
current process. The intuition behind this taint introduction
policy is that a process will write its data into the stack,



heap, and data segment as part of its normal operation (e.g.,
when initializing local variables or writing to a dynamically
allocated buffer). Thus, the oracle taints all values that
a process writes (and that do not derive from already
tainted data) with the label that corresponds to this process.
Furthermore, taint is introduced when certain events occur.
For example, when a process initializes its read-only data
segment (.rdata) or maps a file into its address space, the
oracle taints these memory regions appropriately. This taint
policy allows the oracle to accurately track all instances in
which data flows from one process to another.

Evaluating PRISON Against the Oracle. We deployed
PRISON in a virtualized environment with the interaction
oracle running. We again performed the experiments with the
attack tool suite as we previously described in Section IV-C.
We manually compared the perspectives of the two systems
in order to evaluate the completeness of our approach.

The oracle’s log contains, on a per-process basis, a list of
virtual address ranges and the process taint labels that are
associated with each region. For each process in the log, we
extracted a list of unique taint labels that corresponded to
other processes. This list represents the oracle’s summary of
the processes that interacted with the given process.

We compared the oracle’s process interaction list to the
output from PRISON’s interaction log and attempted to find
corresponding entries that explain the interaction. In all
cases, we found that the process interaction was accounted
for. A few spurious taints were introduced into the analysis,
but we manually investigated each of these instances and
discovered that they were artifacts of residual taint propaga-
tion and should be discounted. For example, in some cases,
the oracle reported a few taint labels in a process’ address
space that corresponded to another process that terminated
before the given process began execution. These instances
can be safely ignored. Thus, we are confident that PRISON
monitors all known process interaction mechanisms.

We also investigated all of the process interactions that
were reported in PRISON’s interaction log to determine if a
corresponding set of taint labels existed in the oracle’s log.
In all cases, each interaction that was reported by PRISON
was also captured by the oracle. This gives us confidence
that PRISON does not introduce nonexistent interactions.

E. Performance Impact
PRISON is implemented as an extension to the Win-

dows XP kernel, and it must monitor a number of system
services that support process interactions. These kernel func-
tions are executed frequently, so it is important to measure
the overhead that our system introduces with respect to these
invocations.

To this end, we devised three microbenchmarks to eval-
uate PRISON’s impact on process interaction performance.
The first two experiments were designed to simulate com-
mon inter-process communication scenarios. In particular,

we launched an RPC server that listened on an LPC port
and named pipe, respectively. Then, a client connected to
each server and invoked 100,000 RPC calls. Recall that
COM operates over RPC, so these tests encompass a broad
range of inter-process communication mechanisms. In the
third experiment, we emulated a direct data injection attack.
Specifically, a source process allocated a region of memory
in the address space of a target process and then executed 1
million calls to WriteProcessMemory. Table I shows the
results. The overhead can be attributed to the additional lock-
ing and accounting that PRISON performs. This particularly
impacts LPC tracking, due to the additional analysis required
to identify potential COM endpoints. While the overhead
may seem high, we note that these microbenchmarks rep-
resent specific interaction operations that comprise a small
portion of the host’s overall activity; the measurements do
not constitute a degradation of the entire system. As such,
we believe that the overhead is acceptable.

Table I: Average execution times (in milliseconds).

Interaction mechanism Standard With PRISON Overhead

RPC over LPC 1834 4194 129%
RPC over named pipe 3098 4209 36%

WriteProcessMemory 6421 8748 36%

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
approach to monitoring malicious process interactions. The
malicious process could attempt to evade the whitelist fil-
tering policy by setting its path and name to match that of
a trusted program that is on the whitelist. For this attack
to succeed, the malware would need to overwrite a trusted
application. Clearly, this is not viable with respect to system
processes, since they reside under the privileged System32
directory. Nonetheless, it may be possible to subvert the
policy if the system administrator adds applications in un-
privileged paths to the whitelist. In this case, we could use
a stronger mechanism to establish process identity, such as
a code identity primitive [4], [16].

It may be argued that whitelisting policies in general
are difficult to maintain due to an ever changing software
ecosystem. However, we learned from our experiments
that although there are many interactions within the op-
erating system, the interactions are primarily limited to
standard, trusted system processes (such as Csrss.exe
and Explorer.exe) that are well-known and long-lived.
Furthermore, we note that global distribution mechanisms
already exist (such as Microsoft Update), which our system
could leverage to perform periodic policy maintenance.

Malware could also interact with a target process indi-
rectly. For example, a malicious process may place a DLL
on the file system and leverage the AppInit_DLLs legacy
feature to execute it. We solve this problem by only allowing
trusted processes to write to the AppInit_DLLs registry



value. Additionally, the malware could edit files on disk
that trusted processes may read for configuration. We do not
currently address this attack, but we are considering ways to
augment our system with a file system interaction tainting
approach. This is left as future work.

VI. CONCLUSIONS

In this work, we present PRISON, a system that mon-
itors and blocks all malicious process interactions on the
Windows XP platform. Our system is implemented as a
host-based kernel extension that interposes on inter-process
communication among processes and injection attempts by
which one process loads code or data into the address
space of another. By dynamically monitoring the interaction
behavior among processes on the host, PRISON can protect a
user from malware that attempts to leverage a trusted process
to carry out its malicious actions. Furthermore, PRISON can
output interaction logs and interaction graphs that provide a
malware analyst with a concise summary of the interactions
that pertain to processes of interest. We have evaluated our
approach along a number of axes. The results demonstrate
that PRISON is deployable, useful, and efficient. Future work
will investigate the handling of indirect mechanisms for
interaction (e.g, overwriting a target’s configuration file)
with a file system interaction tainting technique. Also, we
are interested in exploring how new filtering policies may
affect the flexibility of our approach.

REFERENCES

[1] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and
E. Kirda. Scalable, Behavior-Based Malware Clustering.
In Symposium on Network and Distributed System Security
(NDSS), Feb. 2009.

[2] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel.
A View on Current Malware Behaviors. In USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), Apr.
2009.

[3] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.
In USENIX Annual Technical Conference (ATC), Apr. 2005.

[4] B. Gilbert, R. Kemmerer, C. Kruegel, and G. Vigna. Dymo:
Tracking Dynamic Code Identity. In Symposium on Recent
Advances in Intrusion Detection (RAID), Sept. 2011.

[5] N. Hardy. The Confused Deputy (or why capabilities might
have been invented). ACM SIGOPS Operating Systems
Review, Oct. 1988.

[6] G. Hoglund and J. Butler. Rootkits: Subverting the Windows
Kernel. Addison Wesley Professional, 2005.

[7] International Secure Systems Lab. Anubis: Analyzing Un-
known Binaries. http://anubis.iseclab.org/.

[8] John Wenz. One Year Later, Millions of People Are
Still Using Windows XP. http://www.popularmechanics.com/
technology/a14980/still-using-windows-xp/.

[9] Lance Whitney. Windows XP clings to No. 2 spot
as Windows 10 gets closer. http://www.cnet.com/news/
windows-xp-use-continues-to-drop-but-still-in-no-2-spot/.

[10] Microsoft Corporation. Interprocess Communications.
http://msdn.microsoft.com/en-us/library/windows/desktop/
aa365574.aspx.

[11] Microsoft Corporation. Kernel Patch Protection for x64-
based Operating Systems. http://technet.microsoft.com/en-us/
library/cc759759(WS.10).aspx.

[12] Microsoft Corporation. New UAC Technologies for Windows
Vista. http://msdn.microsoft.com/en-us/library/bb756960.
aspx.

[13] Microsoft Corporation. Description of the Software Restric-
tion Policies in Windows XP. http://support.microsoft.com/
kb/310791, Sept. 2009.

[14] N. Provos. Improving Host Security with System Call
Policies. In USENIX Security Symposium, Aug. 2003.

[15] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-based Memory Shadowing.
In Symposium on Recent Advances in Intrusion Detection
(RAID), Sept. 2008.

[16] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and Implementation of a TCG-based Integrity Measurement
Architecture. In USENIX Security Symposium, Aug. 2004.

[17] skape and Skywing. Bypassing PatchGuard on Windows x64.
Uninformed, Jan. 2006.

[18] Skywing. Subverting PatchGuard Version 2. Uninformed,
Dec. 2006.

[19] Skywing. PatchGuard Reloaded: A Brief Analysis of Patch-
Guard Version 3. Uninformed, Sept. 2007.

[20] J. Wilhelm and T. Chiueh. A Forced Sampled Execution
Approach to Kernel Rootkit Identification. In Symposium on
Recent Advances in Intrusion Detection (RAID), Sept. 2007.

[21] C. Willems, T. Holz, and F. Freiling. Toward Automated Dy-
namic Malware Analysis Using CWSandbox. IEEE Security
and Privacy Magazine, Mar. 2007.


