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Abstract. One of the main security mechanisms in Android is the
permission system. Previous research has pointed out that this system is too
coarse-grained. Hence, several mechanisms have been proposed to address
this issue. However, to date, the impact of changes in the current permission
system on both end users and software developers has not been studied,
and no significant work has been done to determine whether adopting a
finer-grained permission system would be feasible in practice.
In this work, we perform the first study to explore the practicality of the
adoption of finer-grained system for the Internet permission. In particular,
we have developed several analysis tools that we used to perform an empirical
study on 1,227 real-world Android applications. The results of this study
provide useful insights to answer the following three conceptual questions: 1)
Is it practical to apply fine-grained access control mechanisms to real-world
Android applications? 2) How can a system for fine-grained permission
enforcement be integrated into the application development and distribution
life-cycle with minimal additional required effort? 3) What are the incentives
and practical benefits for both developers and end users to adopt a
fine-grained permission model? Our preliminary results show that, in general,
finer-grained permissions could be practical and desirable for Android
applications. In addition, we show how the tools we have developed can be
used to automatically generate and enforce security policies, and thus could
be used to lower the burden of adoption of finer-grained permission systems.

1 Introduction

Smartphones and tablets have become an important part of our everyday lives. We use
these devices to make phone calls, read emails, surf the web, make payments, and man-
age our schedules. As these devices have access to sensitive user information, they have
become attractive targets for attackers, as is evident from the continuous increase in
the number and sophistication of the malware that targets these mobile devices [22,36].
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The primary security mechanism on the Android platform is the permission
system. The purpose of the permission system is to provide user-verifiable and
OS-enforced constraints upon the runtime behavior of Android applications. All
sensitive operations an application may perform (e.g., accessing the Internet,
reading or sending text messages, using the NFC interface) are protected by specific
permissions. An application must declare the set of permissions that it requires and
these permissions must be approved by a user prior to its installation. At runtime, the
Android OS acts as a reference monitor and ensures that the application cannot access
resources that would require more permissions than those granted at installation time.

While the Android permission model is useful, it is affected by few weaknesses,
one of the most important being that it is too coarse-grained. For example, Android’s
permission model for Internet access follows an all-or-nothing approach: Either an ap-
plication can access the entire Internet (including any possible domain, IP, or port) or
nothing at all. In many cases, however, Android applications only need to communicate
with a much smaller set of endpoints. As an example, consider an online banking appli-
cation that requires Internet access to connect to the bank server for checking the user’s
balance or making transactions. In this case, it would be sufficient for the application to
be able to connect to a small set of domains that are under the control of the bank. An-
other example is constituted by applications that implement games or simple utilities
(e.g., a flashlight): In this scenario, the applications would likely require internet access
just to contact an online scoreboard, or for advertisement-related reasons. Hence, also
in this scenario, they would need to access to only a small number of network endpoints.

In principle, a coarse-grained permission system does not support secure software
development, as it prevents the developers from writing code that adheres to the
principle of least privilege [28]: This makes an exploit against a vulnerable application
more powerful, as it would have permission to access more resources. Moreover,
a coarse-grained permission also makes malicious applications stealthier, as these
applications would not need to reveal all the network endpoints at installation time.
For these reasons, recent research works proposed a variety of approaches through
which a finer-grained permission system can be implemented [21,34,10,9,27,31,33,18].
Even if all these works rely on technically-different solutions, they all share the same
high-level goal: enabling developers and end users to specify and enforce fine-grained
security policies.

While the technical aspects of finer-grained permission systems have been the
focus of much research, the impact of such a modified permission system on users
and developers has not been thoroughly studied: To the best of our knowledge,
no significant work has been conducted to understand whether the adoption of
a finer-grained permission model would be feasible in practice. Motivated by this
observation, in this work we investigate on the security and engineering implications
of finer-grained access control mechanisms and policies in Android. To this end, we
developed several analysis tools and we used them to perform an empirical study
on how real-world applications make use of their permissions. In particular, we focus
on the Internet permission, as it is the most widely used and studied permission,
and it can be easily adapted to allow finer-grained permission specification.

Our study aims to shed light on the following three conceptual aspects:
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– Is it practical to apply fine-grained access control mechanisms to real-world
Android applications? (§4)

– Since specifying finer-grained permissions might be more laborious, how can a sys-
tem for fine-grained permission enforcement be integrated into the application de-
velopment and distribution life-cycle with minimal additional required effort? (§5)

– What are the incentives and practical benefits for both developers and end users
to adopt a finer-grained permission model? (§6)

To perform this study, we first developed a symbolic executor (§3.1) to automat-
ically analyze how applications access network resources. Our tool operates directly
on Dalvik bytecode and determines, for each resource access (e.g., opening a network
connection), the inputs that influence the resource identifier (e.g., domain names).
Using the symbolic executor, we analyzed 1,227 Android applications to study how
real-world applications access external resources. We find that a large fraction of
the applications in our dataset use a limited set of resources, and that the identifiers
of these resources are specified in the application code or in configuration files. This
suggests that fine-grained permissions could be a practical mechanism, as application
bundles contain the necessary information to extract tight security policies.

However, increasing the granularity of the permission system would require
developers to invest more effort in permission selection and policy creation, as,
currently, the developer is in charge of manually specifying the permissions needed
by her application. Additionally, the task of manually generating a security policy is
non-trivial, in the general case. For example, if an application contains a closed-source
third-party component, it can be prohibitively difficult for a developer to manually
specify an accurate, tight security policy. Thus, another aspect that we studied is
if automatic tools (such as the one we developed) can be used to assist developers
by automatically generating security policies. To this end, we developed a policy
extractor component (§3.2), which processes the results from the symbolic executor
into a set of fine-grained permissions required by the application. Our preliminary
results are encouraging. In fact, we show that, for the applications in our dataset, the
generated policies are small and accurate, and this suggests that the adoption of a
finer-grained permission system might be practical for both developers and end users.

Finally, to lower the burden of adoption even more, we developed an application
rewriter component (§3.3), which allows both developers and end users to rewrite an
Android application (even when its source code is not available) to enforce a given
security policy.

In summary, this paper makes the following contributions:

– We developed three different components (namely the symbolic executor, the
policy extractor, and the application rewriter) to shed light on important
security and engineering implications of finer-grained access controls for Android
developers and users. Moreover, we make these tools available upon request. (§3)

– We performed an empirical study on how real-world Android applications make
use of the Internet permission. We used our tool to statically analyze 1,227
applications, and, for 67.5% of them, it was possible to extract a non-trivial
constraint (i.e., a constraint different from .*) for all their network accesses. We
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Fig. 1: Overview of the developed components, how they interact, and the insights they
provide.

also performed several additional experiments that show how it is possible to
automatically extract high-quality, initial security policies. In fact, we show that
these policies are often precise (in 81.6% of the cases, no refinement is necessary),
and small (for 87.8% of the applications, the respective policy is constituted by
at most two domain names). (§4)

– We present how the three components we developed can be used in tandem
to assist developers and end users, and to lower the burden of adoption of a
finer-grained access control model. (§5)

– We provide a thorough discussion on the impact and the practical benefits that
a finer-grained permission system would bring to all the actors in the Android
ecosystem—developers and end users. (§6)

2 Overview

For this paper, we developed three different components, which we then used to gain
insights related to the practicality of adopting a finer-grained permission system for
the Internet permission. In this section, we provide an overview of these components
and we describe their role within the context of this work. Figure 1 shows how the
different components work together, and which insights are provided by each of them.
Symbolic Executor. The first component is a static analysis tool for Android
applications that performs symbolic execution on Dalvik bytecode. This component
computes, at each call site of an API method of interest (that we will refer to as
a sink), an over-approximation of the possible values for this method’s arguments. In
particular, we explore how Android applications access different sites on the Internet,
and we study whether it is feasible to restrict their Internet access without breaking
their functionality. We used this tool to perform an empirical study on how real-world
applications use network resources. In particular, one of the goals of this experiment
is to assess whether network endpoint identifiers are usually statically embedded
in the application, or whether they are generated at runtime. This insight directly
helps us understanding whether a fine-grained permission system would be practical
for real-world deployment. In fact, if in most cases it would be possible to determine
these resources only at runtime, it would not be feasible to meaningfully refine a
given permission. The technical details of this component are discussed in Section 3.1.
Policy Extractor. The second component is a security policy extractor. Intuitively,
this component takes as input the information extracted by the symbolic executor,

4



and analyzes them to extract an initial security policy for a given Android application.
For the Internet permission, a security policy consists of a set of possible network
endpoints associated with their respective call sites. We then performed a series of
analyses on these automatically-generated policies to first determine their quality
(i.e., how well they “cover” the resources that are accessed at runtime) and their size
(i.e., how many entries each policy contains). The technical details of this component
are described in Section 3.2.

Application Rewriter. The third component we developed is a generic framework
to rewrite Android applications. This tool modifies the application’s Dalvik bytecode
directly, and thus does not need access to source code of the application or any
included third party libraries. This component is used to study the feasibility of
automatically enforcing a security policy on an Android application by means of
bytecode rewriting. In particular, this tool allowed us to understand whether it would
be possible to retrofit off-the-shelf Android applications with finer-grained policies.
Note how, ideally, the security policies should be enforced by the operating system
itself, and hence this component would not be useful. However, in a practical sense,
transitioning to finer-grained permissions might be performed incrementally, and
hence our tool could be used to lower the burden of adoption. The details of this
component are discussed in Section 3.3.

3 System Details

In this section, we discuss the technical implementation details of the main
components we developed. First, we describe the implementation details of our
symbolic executor, and the information it returns. Then, we present the details of the
policy extractor component, which automatically extracts (initial) security policies.
Finally, we discuss the application rewriter component, which is useful to enforce
a security policy on a given Android application.

3.1 Symbolic Executor

Our symbolic execution engine takes an Android APK package as input, unpacks
it, and extracts from it a number of artifacts. These include the DEX file with the
application code, the application’s resources (e.g., localized strings, image files, and UI
layouts), and the manifest, which contains information such as the requested permis-
sions as well as the entry points into the application (the main Activity, for example).

To disassemble application bytecode, we leverage dexlib, a library that is part
of the open-source tool apktool. Then, the application’s Dalvik bytecode is lifted
to a custom intermediate representation, on top of which all the subsequent analysis
passes operate. Our prototype is entirely written in the Scala language, and consists
of a total of 10K LOC. The next paragraphs describe the technical details of each
of the main phase. Note that we do not consider the development of a symbolic
execution engine for Dalvik bytecode as a research contribution. In fact, it is not
novel (e.g., [20]), and, at least in principle, it would have been possible to re-use
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public void foo () {
String url = "http :// my.example.com";
Response res = loadFromUrl (url );
String newUrl = extractUrl (res );
Response newRes = loadFromUrl (newUrl );

}

Fig. 2: Example of a method that performs multiple “chained” network connections.

existing codebases. However, there are a number of aspects that are peculiar to our
analysis. We describe these aspects in the remainder of this section.

Preliminary Steps. As the first step, the tool performs class hierarchy analysis to
reconstruct the inheritance relations among the classes defined in the application and
in the Android framework. Then, the tool computes the intra-procedural control flow
graphs (CFG) of all methods comprising an application, and, finally, it reconstructs the
application’s super control flow graph (sCFG) by superimposing the inter-procedural
call graph over the intra-procedural control flow graphs of each application method.

Forward Symbolic Execution. Our static analyzer performs forward symbolic exe-
cution as the basis for the discovery of constraints at privileged API invocations. This
analysis step is performed directly on the Dalvik bytecode. Our symbolic execution
engine models the semantics of all individual Dalvik virtual machine instructions over
an abstract representation of program states, including the current program counter,
abstract store, and local environment. Moreover, the invocation of the numerous
entry points into the application that are exercised by the Android framework is
modeled according to the rules of the various Android components’ lifecycles.

Our tool performs a context-sensitive, inter-procedural data flow analysis. In partic-
ular, our analysis engine implements a generic framework for generating and merging
program contexts. For this work, we opted to implement 2type+1H type-sensitivity,
an approach that has been shown to provide an excellent combination of precision and
scalability, especially when analyzing object-oriented programming languages [30].

In addition to characterize which values can reach a specific API method, our
static analyzer keeps track of the sources of values. That is, for each argument of an
API method of interest, the analysis determines the source method (i.e., a method
that reads values from other resources, such as files, network, intents) that “produced”
the input value. This kind of information plays a key role when attempting to
automatically generate precise security policies.

As an example, consider the snippet of code reported in Figure 2. In this example,
the method foo first uses the static string url to load a web page, and it stores
the content of this web page in res. Then, the extractUrl method parses res

to extract a new URL, which is stored in the newUrl variable. This new URL is
subsequently used as a parameter to the second call to loadFromUrl, from which
a second web page is downloaded. Intuitively, for the first network access, the
application requires some initial information, taken from a string embedded in the
program or read from a configuration file. After that, results read from the network
are used to construct additional destinations (URLs, domains, etc.).

In this example, the static analysis will easily be able to infer the static value
http://my.example.com as the input argument to the first Internet access. However,
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the analysis will not be able to determine the possible values for the second call to
loadFromUrl. Nonetheless, the analysis will correctly identify that the result of the
first call to loadFromUrl is the source that produces this input. In fact, even if the
value of the second argument is statically unknown, it is ultimately derived from
an access to the http://my.example.com URL. In other words, the information
about the sources that are responsible for input values allows us to go back to the
“root” of an access, thus providing useful information when characterizing even those
sinks that cannot be statically constrained.

Symbolic Expressions. The result of the static analysis is a set of symbolic
expressions that represent an over-approximation of all the possible concrete values
that could be used by Android API sources (e.g., the path of a file read by the
application) and sinks (e.g., the network domain names contacted by the application),
as well as symbolic expressions that denote the origin and the destination of the
corresponding values.

Symbolic expressions are essentially constraints (expressed as regular expressions)
that represent sets of possible concrete values. One of the most critical objects to model
with high fidelity are strings, as they are pervasively used to identify file system paths,
network endpoints, or URLs. Our tool tracks not only concrete string values, but also
symbolically models string expressions by recognizing string operations performed
using well-known Java classes such as StringBuffer and StringBuilder. In case
our analyzer cannot statically determine a constraint over the possible values that
reach a given sink, then it conservatively returns the most generic constraint, i.e., .*.

Another object of key importance is the Intent object, which is extensively used
by Android applications to perform inter-component communication, potentially
across application boundaries. For example, the startActivity API method
specifies an intent argument that contains information necessary for the system
to determine which Activity should be launched in response to this service request.
To correctly model this mechanism, the analysis takes into account how the intent
resolution process operates. Moreover, it also models several other complex objects,
such as the Bundle object, a key-value store used to pass auxiliary data along with
intent-based service requests. Finally, our analysis models accessory objects such as
the Resource object, which controls access to static values defined in XML-based
resource files packaged with the application.

Android Framework Modeling. Since our tool analyzes applications in isolation
from the Android framework codebase, proper models of important Android API
methods are required. Mainly, these models allow the static analyzer to identify
and track API methods corresponding to information sources and sinks, and to
precisely associate origin and destination information. As a starting point to compile
a list of API models, we consulted the resources provided by prior work [3,12,25],
and we selected all those API that are relevant to our analysis. In total, our list is
constituted by 174 API models.

Another key challenge is the proper modeling of implicit control flow transfers
through the Android framework. Callbacks pertaining to the lifecycle of individual com-
ponents (e.g., Activities) are well documented, and, therefore, it is possible to precisely
model them through manual annotations (the authors of FlowDroid [2] followed a sim-
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ilar approach). For the remaining implicit control flow transfers, we used as a starting
point the results obtained by EdgeMiner [7] – a system designed to extract a summary
of all implicit control flows through the analysis of the Android framework itself.

3.2 Policy Extractor

The policy extractor generates an initial security policy based on the information
generated by the symbolic execution engine. For the Internet permission, a security
policy consists of a set of possible network endpoints, associated with their respective
call sites. This section describes how this process works in detail.

The policy extractor first identifies the network endpoints that an application
can contact, by analyzing, for all methods that connect to the Internet, the input
parameters that specify the destinations of these connections. When the analysis finds
that a parameter is one of a set of concrete string values, we extract the domain(s) from
these strings, and add them to a set of permissible destinations. When the value is read
from a file, we go back to the method that accesses the file, and we try to determine
the file name. If a file name can be obtained statically, our component checks whether
this file is bundled with the application (and statically exists on disk). If so, the file
is parsed for domain names, which are then added to our set. When the destination
value used in a network connection is read from the network (as in the example in
Figure 2), we go back to the method that performs the read and try to find the
destination for that earlier read (my.example.com for the method foo in Figure 2).

We then use this information to generate an initial security policy. In particular,
the results from the symbolic execution engine allow us to generate a policy that
not only indicates which resources are accessed (e.g., a set of network endpoints),
but also where they are used (e.g., the call site of such sensitive methods). The
precision of this information enables the specification of different permission sets
for each component of the application. As we discuss in Section 6, this has several
advantages with respect to the current permission system, which grants the same
set of permissions to an application as a whole.

3.3 Application Rewriter

The last component we developed is a tool, called application rewriter, that mod-
ifies Android applications to enforce fine-grained security policies. The enforc-
ing tool takes as input an APK file and a policy, and it returns as output a
modified, self-contained APK where the given policy is enforced. In our con-
text, a security policy specifies a constraint over argument values of a method
sink at a given program location. Concretely, a policy is specified by a list of
tuples in the format <package name>:<class name>:<method name>:<offset>:<param-

idx>:<constraint>, where the first four parameters uniquely identify a location within
the application’s code, <param-idx> defines the position of the argument for which the
constraint is enforced, and <constraint> is the value (for example, a domain name)
that should be allowed to be contacted by the method invocation at the specified
location. Note that all parameters (except <offset> and <param-idx>) are regular ex-
pressions, and hence provide a high-degree of flexibility. Note also that our tool does not
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need to modify the permissions specified in the application’s manifest. Hence, the per-
mission set of the rewritten application is, by design, a strict subset of the original one.

The application rewriter is implemented on top of a generic, low-level API filtering
engine. This engine works by disassembling a given application (by using apktool),
and by modifying its bytecode so that a custom enforcing method is invoked just before
every invoke instruction that could potentially reach a network sink. In particular, for
APIs that accept values representing a URL, the enforcing method matches the actual
argument value observed during runtime against any constraints that are specified for
this call. If the observed value does not match the constraint, the enforcing method
raises an exception, or, if possible, it modifies the values of the parameters that will be
used by the subsequent call to the framework API. Moreover, since it is not always pos-
sible to precisely model the behavior of specific Android features (e.g., Java classload-
ing, reflection, native code), we provide a choice to selectively disable these functionality
at runtime, by placing enforcing code that throws proper Java exceptions when such
features are used. We measured the overhead introduced by our instrumentation mech-
anism, and we determined it to be about 70 µs per API invocation, which is negligible.

We note that the technique we used is similar to the ones proposed in
concurrently-developed works [4,9,10]. For this reason, in the interest of space, we
omit the technical details related to this component, and we prioritize the description
of the truly novel aspects of our work. We invite the interested reader to consult
these already-published works for more technical details.

4 Practicality Evaluation

In this section, we describe the results we obtained by running our tool over more
than a thousand Android applications. We first evaluate the correctness of our
approach and its usefulness in supporting the adoption of a finer-grained Internet
permission system in Android. Then, we discuss the quality and the correctness
of the static analysis results, we show that these results are useful as a starting
point for automatically generating security policies, and, finally, we show how, in
practice, these policies are often small, suggesting that the adoption of a finer-grained
permission system would be practical for both developers and end users.

As a dataset, we selected a corpus of 1,983 applications from a previous random
crawl of the official Google Play Store performed in 2012. As our study mainly
focuses on the Internet permission, we only considered applications that required
such permission. These applications belong to several different categories (e.g., games,
entrainment, productivity, shopping, tools), and they are constituted, on average, by
hundreds of methods. Their average APK size is about 830 KB, and their bytecode
size varies from a few hundreds bytes to about 160 KB, representing small- and
medium-sized applications on the market.

We analyzed all these applications with our symbolic execution engine. The
experiment was performed on 15 virtual machines with 2 CPUs and 4 GB of memory
each, and we set a one hour timeout for the analysis of each application.We successfully
completed the analysis for 1,227 applications before the timeout was reached. The
average static analysis time was 114.40 seconds. For these apps, Figure 3 shows the
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Fig. 3: Relation between DEX bytecode size
(in bytes) and analysis time.

Category Frequency

String 1,864

Prefix 209

Complex 620

Low 2,878

Total 5,571

Table 1: Constraints for network-related
API methods in the analyzed apps.

relation between the size of the application and the analysis time required. As expected,
analysis time and size are (loosely) correlated, although there are many outliers.

4.1 Results and Quality of Static Analysis

We first assess the quality of the symbolic expressions that our approach produces
for the input arguments of network-related method calls. In the 1,227 apps of our
dataset, we identified a total of 5,571 calls to sink methods. Table 1 shows a detailed
breakdown of the results. The String, Prefix, Complex, and Low labels indicate
the quality of the constraint associated to a given sink. In particular, String denotes
a set of constant string values; Prefix corresponds to a regular expression that
represents a prefix (e.g., a URL without parameters); Complex refers to more complex
regular expressions; and Low indicates the most generic (hence less precise) constraint,
i.e., .*. Our static analyzer was able to determine a non-trivial constraint for 48.3%
of the sinks (2,693 out of 5,571). Moreover, many of the extracted constraints provide
useful insights into the application’s behavior. For example, our analysis is able to
extract complex constraints such as "http://maps.google.com/?lat=\d+&lon=\d+".

As an additional experiment, we computed the number of sinks that are either
constrained or whose source is meaningfully constrained (the source value is retrieved
by following backward the data flow chains outputted by the symbolic execution
engine, as described in Section 3.2). This condition is satisfied for 4,538 of the 5,571
Internet sinks. That is, in 81.4% of the cases, it was possible to characterize the
origin of the value (either directly or indirectly) that reaches the security-sensitive
API. This indicates that even if it is sometimes challenging to statically constrain
a network sink, it is often possible to at least statically characterize the value of
its source (as in the example provided in Figure 2). This observation highlights an
interesting pattern adopted by real-world applications: for the first network access,
the application requires some initial information (taken from a string embedded in
the program or read from a configuration file), and this information is then used
as a starting point for determining the target of the other network sinks.

If we cluster these statistics in terms of number of applications (instead of number
of sinks), we obtain similar results: our tool was able to completely constrain 483 appli-
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cations (39.4%), while this number grows to 828 (67.5%) if the source information is
taken into account. These results support the idea that it is often feasible to automat-
ically refine the set of permissions requested by a given app, and that the automatic
generation of policies is practical (as we will discuss in more detail in the next section).
Comparison with Dynamic Traces. To check the correctness of our static
analysis, we first executed all the 1,227 applications in an instrumented emulator
(we used the Google Monkey [15] to interact with the application under test, and we
set a timeout of two minutes), and we extracted the dynamic traces, which consist
in the list of methods that are invoked during the dynamic analysis, accompanied
by detailed information about their arguments.

We first assessed the accuracy and the coverage of our static analysis tool by
comparing the edges of the call graph generated by the static analysis with the call
sequences contained in the dynamic traces. The rationale behind this experiment
is that, since the static analysis is designed to produce an over-approximation of
the actual program runs, we expect that all the code that is run dynamically was
also analyzed statically. We found that ∼97% of the edges in the dynamic call graph
are correctly covered by the static analysis. The sole reason for the missing edges
is that some Dalvik instructions can implicitly throw an exception (for example, the
check-cast instruction throws an exception at runtime in case of a type mismatch)
for which our symbolic execution engine currently lacks support. However, since the
static code coverage is high (as discussed in the Code Coverage paragraph below)
and only very few edges are missing, we believe that these minor imprecisions do
not undermine the validity of our analysis.

In a second step, we evaluated the correctness of the constraints that are statically
extracted. To this end, we compared the statically-extracted Internet constraints with
the actual argument values recorded in the dynamic traces. In total, we observed
6,259 dynamic invocations of 1,311 distinct sinks that are related to the Internet
permission. The static analysis produced expressions for 1,307 of these sinks (4
sinks are not reached due to missing exception support). In all 1,307 instances the
constraints returned by the static analysis covered all observed values, as expected.
Code Coverage. We estimated the static code coverage by counting the number
of methods that are reached by the static analyzer. On average, our approach has a
static code coverage of ∼95%. Similarly, we extracted the dynamic method coverage
from the execution traces, and it resulted to be ∼25%.

Ideally, the dynamic code coverage would have been higher. As a future step, we
could use more powerful GUI exploration techniques [26,35] to increase the dynamic
code coverage. However, we do not expect significant differences in the results, as
state-of-the art dynamic exploration techniques achieve only slightly-higher coverage
(e.g., 27% – 33%). Moreover, to the best of our knowledge, this is the first static
analysis work targeting the Android platform that extensively evaluates the static
analysis results with dynamically-generated execution traces.

4.2 Quality of the Security Policies

In the next step, we wanted to determine whether the static values extracted by
our approach are useful to automatically generate security policies. To this end,
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Number of Required Explicit Authorizations Frequency Percentage

No interaction required 1,002 81.66%
One explicit authorization 180 14.67%
Two explicit authorizations 42 3.43%
Three explicit authorizations 2 0.16%
Four explicit authorizations 1 0.08%
More than four explicit authorizations 0 0%

Total 1,227 100%

Table 2: Number of explicit authorizations required when enforcing the automatically-
generated security policies.

we used the output from the static analysis to automatically build (initial) security
policies for all of them. For this experiment, the policies are automatically built by
our policy extractor component (described in Section 3.2), and by considering the set
of second-level DNS names for each statically-determined network endpoint. We then
used the previously-collected dynamic traces to check what would have happened
if we had used our rewriting tool to enforce the policies.

We found that for 1,002 (81.6%) of the applications, our security policies would
allow all network accesses that these applications attempt during runtime. In other
words, in all these cases, it was possible to statically infer the set of domain names
that the application would contact during runtime. In 972 cases, the domain names
could be extracted from information contained in the application code base. This
indicates that most developers hard-code all domain names into their programs. In
30 cases, it was necessary to get the domains from a configuration file, but the name
of this configuration file was specified in the binary. Note that there are a handful
of cases in which the dynamic trace shows that a piece of JavaScript is dynamically
evaluated by the application. We assume that these scripts do not contact any domain
outside our policies, and a quick manual investigation confirmed this assumption.

Note how this property holds not only for sinks contained in the main
core application, but also for third-party libraries such as the popular AdMob
advertisement library from Google. This might be surprising at a first glance, but
we found that these Ad libraries actually only contact a few Google-related domain
names (such as admob.com and googleadservices.com) to fetch their content.
This makes sense because it allows Google to easily control the content that is
displayed on millions of Android devices.
Policy Violations. We also investigated the 225 cases where our automatically-
extracted policy was violated. We manually analyzed a random sample of 10% of these
applications (23 in total) to have a better understanding of the reasons. We found
that in 7 cases, the domains are actually present in the bytecode, but the analysis is
not precise enough to extract the proper values. In 12 additional cases, the domains
are in configuration files, but again, our approach is not precise enough to extract the
values (and related file names) automatically. Only in 4 cases do applications load
destination domains from the network, and these domains are not present anywhere
in the program or resources. This confirms that, in most cases, the developer seems
to have a clear understanding of the Internet resources that should be accessed, and
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Policy Size Frequency Percentage

At most one domain name 956 77.91%
At most two domain names 1,077 87.78%
At most three domain names 1,151 93.81%
At most four domain names 1,175 95,76%
More than four domain names 52 4.24%

Total 1,227 100%

Table 3: Size of the automatically-extracted security policies.

our approach is a useful system to automatically infer initial policies. In the 19 cases
above, a developer could easily add the missing domains to the policy manually.

Alternatively, an application could be modified to be paused if a policy violation
is detected. During the pause, the user would be prompted whether she wants
to permit the violating access. Existing research has established that frequent
authorization prompts lead to warning fatigue [6]. That is, users tend to ignore and
blindly grant authorization requests if such requests are too frequent.

To evaluate how often the user would be prompted for authorization due to a policy
violation, we analyzed, once again, the dynamic execution traces from Section 4.1.
Table 2 reports the breakdown of the results: user interaction would be required only
for 18.4% of the applications; for 96.3% of the applications, the user would be prompted
at most once; and no application would require more than four distinct authorizations.
Because the user only makes these authorization decisions once per application lifetime,
we believe that the number of authorization prompts is well within reasonable bounds.

As a final consideration, we note that even if automatically enforcing the security
policies extracted by our approach works in a surprisingly-high number of cases, such
an approach does not always makes sense. Consider, for example, a web browser
application: in this case, the application would need to be able to access arbitrary
domain names specified by the user, which means that it would be impossible to
extract all the network endpoints through static analysis only.

4.3 Size of the Security Policies

As a final step, we investigated whether the adoption of the proposed fine-grained
permission system would be practical. The intuition is that most of the applications
access a limited set of resources (hence this approach would make sense), but what
if, in practice, these policies are prohibitively large and cause too much overhead
for developers to maintain or end users to review?

To answer this question, we analyzed the policies extracted for the 1,227
applications. Table 3, which reports the breakdown of the results, shows how the
majority of the applications (87.8%) access at most two domain names. Frequently,
one domain name is usually linked to a domain controlled by the owner of the
application, while the other one is related to an advertisement framework. A prolific
source for additional domains are widgets from popular social networks. This
observation becomes apparent when we look at the most frequently accessed domain
names. In fact, the domain name that is accessed the most is related to the AdMob
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advertisement framework, while the other most frequently-accessed domain names
are related to well-known social platforms, such as Facebook, Google, and Twitter.

4.4 Discussion and Limitations

In the previous sections, we discussed the results we obtained by using our tools to
analyze over a thousand Android applications. We believe that our preliminary results
are encouraging, as they suggest that it would be possible to adopt a finer-grained
permission system. In fact, the size of the extracted policies is often small, and the
domain names that are accessed the most are easily linkable to known companies.
As a possible additional step to lower the burden of adoption even further, it might
make sense to integrate our system with an approach based on whitelisting, so
that trusted domain names (such as the ones related to well-known advertisement
frameworks and popular social platforms) could be automatically approved.

That being said, we acknowledge that our study suffers from few limitations. For
example, while we believe that our dataset contains a sizeable number of applications,
the current app store features many more applications (according to [32], more
than a million). Thus, it is unknown whether our results generalize to the entire
market. Another limitation relates to the fact that, for this study, we did not consider
large and complex applications (e.g., the Facebook app) due to the fact that our
analysis, at its core, uses symbolic execution, which is known to be affected by
scalability issues. Finally, a drastic change in how developers implement Android
applications (e.g., tunneling all network traffic through a single network endpoint)
could affect the applicability of the fine-grained policies extracted by our analysis.
Nonetheless, we believe that our preliminary results already offer useful insights
related to an important security aspect of the Android framework. Moreover, the
analysis primitives we developed can be used as building blocks to study further
security aspects of Android applications that extend beyond fine-grained permissions.

5 Viable Workflows

In this section, we describe how the various actors participating in the Android ecosys-
tem, namely developers and end users, would use a finer-grained permission system,
and how they could take advantage of the components we developed. Even if the two
categories of actors would use the system for different reasons, they would follow the
generic, high-level workflow depicted in Figure 1: the actor would use our components
to statically analyze her application, generate initial security policies, and enforce them.

A developer would take advantage of a fine-grained permission system by writing
a security policy to be enforced. Note that writing such a policy might not be
a trivial task if external libraries are added, especially if their source code is not
available. This is because it can be problematic to understand the full set of resources
(e.g., contacted URLs) accessed by these libraries. Moreover, a developer might
decide to enforce fine-grained permissions on a third-party component if it is not
fully trusted (not only it could be malicious, but, more likely, it could open the
main application to security vulnerabilities). In the case that the task of manually
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compiling a security policy is too burdensome, the developer could take advantage of
our symbolic executor and the policy extractor components to automatically extract
an initial security policy. Then, the developer could review it and adapt it to her own
needs, if possible. At this point, the developer could use our application rewriting
tool to rewrite the application so that the security policy is enforced.

The other actor of the system, the user, can then download the rewritten app
and review the policy before deciding whether to install the application. For instance,
a user might be comfortable installing an app that only requires the ability to contact
a single domain name managed by the application’s developer, but she might prefer
not to install an application that requires unconstrained Internet permissions. Even
in this case, the user could take advantage of the symbolic executor and the policy
extractor components to automatically determine an initial security policy, which
can be then modified and used as input to the enforcing component.

Note how, in both scenarios, the usage of the enforcing component is superfluous
on a modified version of Android that enforces fine-grained security policies. However,
on standalone Android versions, our enforcing tool will benefit the community and
lower the burden of adoption of fine-grained policies.

6 Security Implications and Benefits

A fine-grained permission system in Android would introduce a variety of significant
security improvements that affect all the actors of the Android ecosystem. This
section describes these aspects in detail.
Implications for Benign Applications. Several studies showed that Android
applications often suffer from confused deputy vulnerabilities [8,11,14,16,23]. While a
finer-grained permission system does not eradicate confused deputy vulnerabilities, it
significantly reduces the negative impacts of their exploitation. Consider, for example,
an application accompanied by a fine-grained policy that identifies all legitimate
network endpoints. Even if this application suffers from a confused deputy vulnerability,
an attacker could exploit it only to communicate with the endpoints explicitly listed
in the policy – a vast improvement over the current unrestricted system.

Another security benefit of a fine-grained permission system is that it allows the
specification of a different permission set for each component. This feature is useful
whenever the application contains third-party libraries that often require different
permissions than the core application. Consider, as an explanatory example, a gaming
application that requires the Internet permission for connecting to a game-related score-
board and to include advertisement. This application could be modified so that the
game-specific component would be able to access only the game-related network end-
point, while the advertisement library would be able to access only the advertisement-
related one. Note that this use case is currently not supported by the Android permis-
sion model. Instead, the current Android permission system grants the same set of
permissions to an application as a whole, and all components within the application
consequently enjoy the same privileges, thus violating the principle of least privilege.
Implications for Malicious Applications. A widely deployed finer-permission
system would place additional constraints on malicious applications that declare
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excessive permissions. In fact, a malicious application would need to either explicitly
specify the domain name of the server under their control, or ask for unconstrained
network access: both options would make malicious applications less stealthy, as
they would need to reveal part of their behavior. The security policy declared by
an application could also be used as an additional feature to improve the accuracy
of existing malware detection tools (e.g., [1,17,11,38]).

Moreover, this explicit mapping between applications and their network endpoints
would make information related to the domain names more useful: for example, if
a domain name is found to be part of malicious activities, it would then be trivial to
identify and flag all those applications that are somehow related to that domain name.
Implications for End Users. A finer-grained permission system would allow a
security-conscious user to make more informed decisions about whether it is safe
to install a given Android application. These users would be more aware of the risks
associated with installing an application that requests unconstrained network access,
as such permission should be required only by very specific types of applications
(e.g., web browsers). Moreover, in case the application would only require access
to well-known domain names, the user would be able to install and use the app
with greater confidence. We believe that a finer-grained permission system would
benefit non-security-conscious users as well. In fact, even if they might not be able
to take informed decisions on whether an application is suspicious or not, they would
still (indirectly) benefit from the advantages described above. One last aspect to be
considered when extending the permission system is that such extension might lead
to confusion and, therefore, misuse. However, we note that the new extension would
enforce, by design, a set of permissions that is stricter than the original one. Thus, in
this context, confusion and misusage would not have negative security repercussions.

As a final consideration, it is worth noting that many of these benefits can be
enjoyed only when the finer-grained policies are enforced by the end user or by the
system. In fact, in the alternative scenario where the developer herself is in charge
of enforcing a given security policy, one would need to assume a trust relationship,
which, in most cases, is not realistic.

7 Related Work

Recent research efforts have focused on the analysis and improvement of the Android
permission system. For example, Barrera et al. [5] observed that some Android permis-
sions are overly broad (included the Internet permission). Other works aim to under-
stand how Android applications use the current permission system. For example, Felt
et al. presented Stowaway [12], and by using it, they found that many Android applica-
tions were over-privileged. Based on this observation, several research works [34,4,9,10]
developed tools to rewrite applications to enforce finer-grained security policies. Other
works proposed Apex [24], AppFence [19], and SEAndroid [29], which provide ad-
ditional privacy controls for Android through user-defined security policies, data
shadowing, and exfiltration blocking. More recently, researchers proposed ASM [18], a
framework that provides a programmable interface for defining new reference monitors,
CopperDroid [31], which relies on syscall monitoring to enforce finer-grained policies,
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and DeepDroid [33], which aims to achieve the same goal by dynamic memory instru-
mentation. Our work is complementary to all these: in fact, the main goal of this work is
to shed light on the security and practicality implications of finer-grained access control.

Several recent research works focus on discovering vulnerabilities within benign
Android applications [16,37,23]. All these works discover a variety of serious vulnera-
bilities in real-world applications. These findings indicate that Android developers are
often not aware of the many peculiarities of the Android framework, thus leading to
severe vulnerabilities in real-world applications that, in most of the cases, lead to a con-
fused deputy problem. As we discussed in Section 6, a finer-grained permission system
would greatly minimize the threat posed by such confused deputy vulnerabilities.

Felt et al. [13] evaluate two different application permission systems: the Android
permission system and the mechanism that is implemented for Chrome extensions.
As opposed to the current Internet permission on Android, the permission system
for Chrome allows the developer to narrowly define the resources (URLs specified as
regular expressions) an extension can communicate with. An analysis of 714 popular
Chrome extensions shows that for 60% of the extensions, the developers explicitly list
a narrow set of domains their extension can interact with. This study clearly shows
that developers are willing to use a finer-grained permission system, if available.

A work that is close, in principle, to ours is by Jeon et al. [21]. In their work,
the authors develop a simple analysis tool that aims to characterize how Android
applications use the Internet permission: for their work, the authors developed a
best-effort static analysis tool that first consults the application’s string pool, it
applies pattern matching on all the strings to extract those that look like URLs, and
it then performs basic constant propagation. On the one hand, their overall goal
is aligned with one of ours. In fact, as part of their experiments, the authors perform
a study to characterize how many network resources are generally contacted by each
application, with the goal of showing that this number is usually small and that,
consequently, the adoption of finer-grained security policies is practical. On the other
hand, the authors implemented an approach based on a best-effort, simple static
analysis that is affected, by design, by false negatives. In particular, the authors
specifically state that when their tool cannot statically constrain a network sink, such
sink is ignored, instead of conservatively report a .* constraint, as our tool does.

This important limitation undermines the validity of their results, and leaves the “Is
a finer-grained permission system practical?” question unanswered. In fact, consider, as
an example, a browser application, which of course cannot be statically constrained (as
the network endpoints to be contacted are chosen at runtime by the user). In this case,
their tool would ignore all the unconstrained network sinks, and their results would
suggest that it is possible to statically constrain the given application, which is incorrect.
Instead, our approach would correctly return a .* constraint, the application under
analysis would be correctly flagged as non-constrainable, and we would correctly
conclude that a finer-grained permission system would not be practical in that case.
In summary, while their results provide some interesting data, we believe they cannot
be used to understand the practicality of a finer-grained permission system.

Moreover, the authors themselves point out that, to address the limitation of
their work, one would need to perform inter-procedural analysis, modeling the heap,
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and modeling the Android Intent system. The static analysis tool implemented in our
symbolic executor component precisely models all such aspects and it is designed to
return an over-approximation of all the possible values that reach the sink methods.

8 Conclusion and Future Work

In this paper, we studied the security and engineering implications of a finer-grained
permission system in Android. In particular, we focused on the Internet permission,
and we developed several different analysis tools to shed light on the following
three aspects: 1) Is it practical to adopt fine-grained access control mechanisms to
real-world Android applications? 2) How can such a system be integrated into the
application development and distribution life-cycle with minimal additional required
effort? 3) What are the incentives and security benefits in adopting them?

Our preliminary results suggest that a finer-grained Internet permission would
be practical. In fact, we found that applications in our sample typically require
access to only a small set of resources, and these resources are explicitly referenced
in the application’s code or configuration files. Finally, our findings suggest that a
finer-grained permission model for Android would entail a series of security benefits
without overburdening developers or end users.

While our work mainly focuses on the Internet permission, it would be interesting
to explore whether the adoption of a finer-grained permission system would be
practical to protect other types of resources, such as file-system access, location
information, or the user’s contact list. We believe this constitutes a very interesting
and important direction for future work.
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