
BTLab: A System-Centric, Data-Driven
Analysis and Measurement Platform

for BitTorrent Clients
Martin Szydlowski∗, Ben Y. Zhao†, Engin Kirda‡ and Christopher Kruegel†

msz@seclab.tuwien.ac.at,ravenben@cs.ucsb.edu,ek@ccs.neu.edu,chris@cs.ucsb.edu
∗Vienna University of Technology, 1040 Vienna, Austria
†University of California, Santa Barbara, CA 93106, USA

‡Northeastern University, Boston, MA 02115, USA

Abstract—We present BTLab, a distributed platform to mea-
sure and analyze the differences between BitTorrent clients.
Due to extensibility, and a certain vagueness in the BitTorrent
specification, many clients diverge in some aspects from each
other. Most research to date disregarded the effects of these
differences. BTLab allows us to create and control BitTorrent
swarms, composed of hundreds of clients of our choice. We
use captured network traffic to measure the performance and
uncover the reasons for observed differences. For our experi-
ments, we deployed BTLab on a cluster and on Planetlab and
selected four popular BitTorrent clients. Our analysis reveals
flaws in piece selection and connection management algorithms
that adversely affect the performance of some clients.

I. INTRODUCTION

BitTorrent (BT) is a peer-to-peer file transmission protocol,
designed to efficiently distribute large files over the Internet.
Since its inception, it has experienced tremendous success, and
currently makes up a significant fraction of Internet traffic (a
2009 study estimates 25 to 60% [10]). BitTorrent was created
and introduced (as a freely available open source client) in
2001 by a single individual, Bram Cohen. Only in 2003,
after it gained popularity (and other developers started creating
alternative implementations), a semi-formal BitTorrent specifi-
cation [5] was published by Cohen. However, the protocol and
its key algorithms never underwent a rigorous standardization
process, and parts of it remain vague to this day. As a
consequence, developers have much leeway in implementing
the specification and adding (often incompatible) extensions.

We have created BTLab to study the effects these different
interpretations and improvements have on the performance
(download speed) of BT clients. BTLab allows us to configure
and launch hundreds of instances of real-world BT clients
to carry out experiments with realistic peer numbers (swarm
sizes). In addition, we have developed a set of tools that
allow us to record and analyze the network-level activity and
behavior of these clients. We argue that this system-centric
approach has certain advantages over studies which rely on
modeling and simulation and, inherently, require simplification
and abstraction. A large part of BT research belongs to that
category, and may overlook side effects or emergent properties
that only appear in real systems. The main contribution of

BTLab is the possibility to study the entire system (all peers
in a swarm) with an unprecedented level of detail (individual
protocol messages). This allows us to measure and analyze
properties (e.g., global distribution of pieces) that cannot be
examined by looking at a single (or a few) peers alone. By
making our analysis data-driven, that is, based solely on data
the clients emit in the course of regular operation, we can
analyze a wide range of implementations, including closed-
source ones.

We have deployed BTLab on a cluster of 32 machines
connected with fast network links (an easily controllable
environment), and on Planetlab, a global network of hosts
frequently used by researchers (offering realistic network con-
ditions), and used it to study four popular BitTorrent clients:
Azureus (Java), µTorrent (closed-source), Transmission (C++)
and Mainline (Python). Our results show that Azureus has the
best overall performance and that clients exhibit (sometimes
wildly) diverging behavior depending on the experimental
conditions. The analysis tools we developed allowed us to
investigate the root causes of the observed behavior.

II. BTLAB INFRASTRUCTURE

The BTLab infrastructure has two parts: The controller,
responsible for preparing, executing and monitoring the ex-
periments and recording the network traffic, and the analysis
toolbox, used to process the data and extract information.

BTLab Controller. We have developed a distributed plat-
form that allows us to configure and control BitTorrent clients,
and to record all network traffic. The platform is modular and
can be deployed on any number of hosts running Linux. The
platform is split in a set of global components that manage
the experiments and local components that are deployed on
each physical host that participates in an experiment. The
global components include a BT tracker and scripts that
control the configuration, the collection of network dumps, and
monitoring of the experiment progress. The local components
configure and control individual BT clients (several clients
can run on one physical host), network traffic capturing, and
auxiliary services needed by some clients (e.g., X, wine).

Analysis Toolbox. We have developed a set of tools that al-
lows us to analyze all data exchanged over the network in a BT
swarm from different perspectives, and at different granularity
levels. In a preprocessing step, we use Bro (http://bro-ids.org)
with a customized BT protocol parser to extract individual
protocol messages from captured network traffic. Using this as
raw data, we reconstruct higher level views from the bottom
up. On the lowest level, we analyze the types, frequency, order
and content of messages from individual connections. We are
able to reconstruct the connection state, which the peers keep
internally, and we can verify the validity of all exchanged
messages. In particular, while the flow of messages should
follow the protocol rules, we noticed that, occasionally, clients
both violate the rules and gloss over violations from peers.

On the next level, we group individual connections to
examine the mechanisms that a client uses to select peers,
and how it downloads the parts of a file from other nodes. We
can follow the download progress, by counting the complete
unique pieces of the file that the client has received, to compute
net throughput and completion time. Additionally, we can see
if clients send unsolicited pieces or request redundant pieces
(both actions break the rules governing piece exchange). The
announcements a client receives from its peers allow us to
reconstruct the client’s view of the availability of individual
pieces, and reason about the criteria a client uses to choose
which pieces to download next. Finally, by looking at the state,
throughput and timing of all connections from one client, we
can draw conclusions about how it manages the connections
with other peers.

On the highest level, we aggregate individual peers to a
swarm-wide view. This allows us to examine the evolution of
the swarm population (seeders/downloaders, fast/slow peers)
and a detailed global view of the piece distribution over the
course of an experiment. Apart from the traffic between peers,
we also look at peer-to-tracker communications. This data is
coarse-grained, but accurate enough to quickly compute basic
statistics like swarm size and download times.

III. EXPERIMENTAL SETUP

Deployment. We installed BTLab in two environments.
The first installation was on a cluster of 32 (28 available
to us) physical hosts with 2.4GHz CPUs and 2GB RAM,
linked via 1Gbps Ethernet connections. This allowed us to
run experiments with up to 580 peers in a controlled envi-
ronment. To study the BT clients in a globally distributed,
heterogeneous environment, we also deployed BTLab on
Planetlab. We obtained a slice (virtual server) on 512 nodes
and performed experiments with one peer per node. This
facilitated swarm sizes of the same magnitude as on the cluster,
and comparable to medium-sized swarms on the Internet. As
the focus of our analysis, we chose three highly popular
(according to several Internet surveys) BitTorrent applications:
Azureus (ver. 3.0.4.2), µTorrent (ver. 1.8.0), and Transmission
(ver. 1.51). In addition, we decided to include the original
BitTorrent client developed by Bram Cohen (referred to as

Mainline) as baseline comparison. We used the oldest version
(ver. 3.9.1) available from the bittorrent.com archives.

Limitations. Due to the nature of the BT protocol, the
Bro parser (and subsequent analysis) is sensitive to packets
dropped during capture. In general, it is impossible to extract
the messages from a connection after the point where a packet
is missing. Therefore, dropped packets degrade the precision
of the analysis. On the cluster, we were able to empirically
determine the maximum number (15-20) of peers per node
that could run simultaneously without interfering with lossless
packet capture. On Planetlab, the resources of a single physical
machine are shared between many virtual machines. Therefore,
we ran one peer per node at a time, but even with that
restriction, lossless capture was not guaranteed. We observed
a median packet loss ratio of 0.3% with 20% of the nodes
having a packet loss ratio higher than 1%. This translated to,
on average, 4% of connections in each experiment to be not
recoverable in their entirety. Additionally, we were unable to
run µTorrent on Planetlab because of an anti-scam warning
that the client displays in a modal dialog. The circumvention
of this dialog required a single manual interaction for each
host which we intended to use, therefore it was feasible on
the 28 cluster hosts but not feasible on 500+ Planetlab hosts.
Despite the downsides, the more realistic network topology of
Planetlab still provided interesting insights. Another limitation
of the Bro parser is the inability to process obfuscated BT
traffic that many clients support in an attempt to avoid ISP
throttling. Since the use of protocol obfuscation is configurable
in every client, we disable it for our experiments.

Experiments. For our experiments, we decided to simulate
flash crowds, a common and challenging scenario, where a sin-
gle initial seed has to face many downloaders joining in short
intervals. To model the inter-arrival times, we used a Poisson
process (as suggested by [19]) with a rate parameter of 10 new
peers per minute. To reflect observed user behavior, a fraction
of clients remains connected after completing the download,
that is, these clients become additional seeds. We chose that
fraction to be 30%. We repeated every experiment for each
of the applications, using identical settings, to gather directly
comparable data. Between experiments, we varied several
client parameters: upload bandwidth, number of connections
and file size. Since altering the file size while other parameters
remained fixed did not reveal additional insights, we used it
rather to control the duration of the experiment, that is, we
chose small files for experiments with low bandwidth and large
files for experiments with high bandwidth. The files we used
were 64, 128 and 512 MiB in size for upload bandwidths
of 35, 92 and 512 kB/s, respectively, and contained only
null bytes. Because BitTorrent does not employ compression,
these provided identical results as files containing random
bytes but with the advantage that the network traffic we
captured was highly compressible. The upload bandwidths
were chosen to approximate upload bandwidths available to
DSL/Cable subscribers. The number of connections ranges
from 5 (the minimum number suggested in BitTorrent’s tit-
for-tat algorithm description) to 100 (more than the default

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

uTorrent

(a) CL-35-5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

uTorrent

(b) CL-35-50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

uTorrent

(c) CL-92-5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

uTorrent

(d) CL-92-50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

(e) PL-35-5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

(f) PL-35-50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

(g) PL-92-5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

(h) PL-92-50

Fig. 1. Download time CDFs for different experiments. [x = time in seconds; y = fraction of clients]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

uTorrent

(i) CL-512-50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

(j) PL-512-50

Fig. 1. Download time CDFs for different experiments. (cont.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Azureus

MainLine3

Transmission

(a) PL-92-50

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

Azureus
MainLine3

Transmission
optimal piece upload

(b) PL-95-50

Fig. 2. (a) Experiment repeated 5 times with identical settings. [x = time in
seconds; y = fraction of clients] (b) Unique pieces uploaded by initial seed.
[x = time in seconds; y = MiB]

setting in all clients used). For the following evaluation, we
used the data from 10 experiments (40 swarms) performed on
the Cluster and 16 experiments (48 swarms) on Planetlab. We
will refer to individual experiments by a combination of their
defining parameters: Platform (PL or CL), upload speed limit
(in kB/s) and connection limit (for example, CL-92-50).

IV. EXPERIMENTAL RESULTS

In this section, we present the results of the experiments
outlined in the previous section. First, we compare download
completion times as a basic metric for performance. Then, we
use our analysis tools to find explanations (reasons) for the
observed differences.

Completion Time. Since the purpose of BitTorrent is to
distribute files over the network as fast as possible, the basic
measure for the performance of a client (and the entire swarm)
is the download completion time (tdl). Intuitively, shorter
download times are considered better. For each experiment,
we plot a cumulative distribution function (CDF) that captures
tdl for all clients from that experiment. The CDF plots from
selected experiments are shown in Figure 1. Note that some
lines are cut off before they reach 1; this means that only this
fraction of clients was able to complete the entire download.

Comparing the CDF plots of all performed experiments, the
first observation we can make is that there is a clear difference
between the results of experiments performed on the cluster
(top row - Figures 1(a)- (d),(i)) and experiments on Planetlab
(bottom row - Figures 1 (e)-(h), (j)). The homogeneous envi-
ronment of the cluster reduces the variance in tdl for each
client. In contrast, the tdl observed on Planetlab are more
wide-spread. Moreover, the results on Planetlab exhibit a long
tail, where the slowest 20% of clients are much slower than
the average, and, typically, a non-negligible number of clients
never finish at all. We have to mention that, as a consequence
of the fluctuating conditions on Planetlab hosts, there is, for
each experiment, a small percentage of nodes where clients
fail to start. We exclude the data (if we were able to obtain
any) from these nodes from the evaluation for that particular
experiment. To ascertain that these limitations, and also the
packet loss mentioned in Section III, do not impede the pre-
cision of our analysis too much, we performed a repeatability
test: We conducted five experiments with identical settings and
plotted the CDFs in one graph. As we can see in Figure 2(a),
the results are consistent within a reasonable margin of error.
Comparing the results for the different clients, we can draw
the following conclusions:

(a) PL-92-50 (Azureus) (b) PL-92-50 (Mainline) (c) PL-92-50 (Transmission)

Fig. 3. Global distribution of piece copies in swarm. [x = time in seconds; y = piece id; z (grayscale) = number of piece copies]

• Azureus has most consistent performance under all con-
ditions, both on the cluster and on Planetlab. It is always
among the better-performing clients (Fig. 1).

• Mainline has a performance comparable to Azureus
under most conditions, sometimes even outperforming
it (Fig. 1(f),(h),(j)). This is somewhat surprising, but
it demonstrates that enhancements in the more modern
clients did not improve the basic functionality, that is
downloading files as quickly as possible. The only scenar-
ios where Mainline is outperformed is when the number
of connections is limited (Fig. 1(a),(e),(d),(g)).

• µTorrent shows performance similar to Azureus, and it
is hardly affected by various parameter settings. µTorrent
seems to have a slight advantage over other clients in ex-
periments where available bandwidth was high (Fig. 1(i)),
but we could not confirm that result on Planetlab.

• Transmission consistently displays the poorest perfor-
mance. It is adversely affected by low bandwidth and
a low connection limit. With strictly limited resources,
most Transmission peers are unable to to complete the
download in the allotted time (Fig. 1(e)), whereas high
bandwidth (Fig. 1(j)) allows Transmission almost to com-
pete with Azureus.

Global Piece Distribution. Having detailed records of all
protocol messages exchanged by all clients in a swarm allows
us to precisely reconstruct the distribution of piece copies
(∆pcs) over the course of each experiment. We performed a
systematic comparison of the distributions for all experiments,
using different ways to visualize and quantify the data. As
an example, Figure 3 shows a graphical representation of the
piece distribution for each run from experiment PL-92-50. In
these plots, we can observe that Mainline and Azureus achieve
a balanced piece distribution much quicker (uniform gray area)
than Transmission, where many pieces remain very rare for a
long time (white horizontal bands). As a result, clients have to
wait for these pieces before they can complete the download,
leading to longer download times for all peers.

To effectively compare all experiments, we devised a more
concise and quantitative representation for ∆pcs. Intuitively,
in a uniform distribution (where all pieces have roughly the
same number of copies), the standard deviation from the
mean number of copies (σ∆pcs) is small, whereas in a non-
uniform distribution, the standard deviation is large. As σ∆pcs

is changing over the lifetime of the swarm, we integrate
over that curve to obtain a single number that captures the
uniformity of ∆pcs for that experiment. Analogously, we use
the median of the download times CDF (P50(tdl)) as a single
value to quantify client performance.

We compare both scores for all clients in every experi-
ment (Table I) to find correlations. We can see a correlation
for PlanetLab experiments:

∫
σ∆pcs(ci) <

∫
σ∆pcs(cj) ⇔

P50(tdl(ci)) < P50(tdl(cj)) where ci, cj are different clients
from the same experiment. We cannot observe the same
regularity on the cluster. Because the median download speeds
of the faster clients are close together, the best client cannot
be determined unambiguously. However, we can still see that
faster clients tend to have lower scores than slower clients.

Our results allow us to quantify the relationship between
download times and piece distribution. In particular, they
support the thesis that a uniform distribution of pieces is an
important factor affecting client performance.

Seeding. In the previous section, we have established that a
uniform ∆pcs indicates higher overall download speeds. The
initial seed (peer having the only copy of the file) has great
influence over the development of ∆pcs, as each piece of the
file has to be uploaded by the seed at least once before it can
start spreading in the swarm. This implies that the seed should
avoid uploading redundant pieces when there are still pieces
that have not been shared yet. However, the original BitTorrent
specification includes no mechanism that would allow the seed
to prioritize pieces. Instead, it is the piece selection strategy
employed by the downloaders that determines how well the
file pieces get distributed initially.

The detailed message information we have available allows
us to determine (and plot) the unique pieces uploaded by the
initial seed for each experiment. Figure 2(b) compares plots
for the seeds from experiment PL-92-50. The point where the
curve turns horizontal indicates the time at which the seed
has uploaded one complete copy of the file. The line for
the optimal piece upload represents the case where the seed
uploads each unique piece only once until the first copy of the
entire file has been distributed in the swarm.

Figure 2(b) shows that Mainline achieves the best seed
behavior, and it is able to upload one complete copy of the
file in 682s. Azureus is able to upload 99.4% of the file in
990s, however, it needs additional 615s for the remaining

TABLE I
RELATION BETWEEN MEDIAN DOWNLOAD TIME (P50(tdl)) AND A PIECE DISTRIBUTION SCORE (

∫
σ∆pcs). MINIMUM VALUES HIGHLIGHTED IN BOLD.

Experiment Azureus Mainline Transmission µTorrent
P50(tdl)

∫
σ∆pcs P50(tdl)

∫
σ∆pcs P50(tdl)

∫
σ∆pcs P50(tdl)

∫
σ∆pcs

PL-35-5 2,003 78,261 2,253 206,849 N/A 365,579 - -
PL-35-10 1,863 63,398 1,943 156,239 N/A 889,041 - -
PL-35-50 1,861 128,833 1,825 128,412 5,519 789,100 - -
PL-35-100 1,836 144,245 1,779 109,507 5,769 822,405 - -
PL-92-5 1,680 55,930 1,895 117,739 4,300 481,036 - -
PL-92-10 1,460 38,822 1,598 82,335 4,441 554,816 - -
PL-92-50 1,435 60,637 1,379 58,158 3,351 355,816 - -
PL-92-100 1,434 70,252 1,363 41,032 3,261 331,415 - -
PL-512-5 2,026 51,473 2,228 100,490 2,748 133,273 - -
PL-512-10 1,635 38,492 1,712 58,923 3,380 209,479 - -
PL-512-50 1,799 57,813 1,136 39,209 1,933 140,731 - -
PL-512-100 1,687 57,721 1,127 31,567 1,995 150,112 - -
CL-35-5 1,818 87,070 2,049 258,910 N/A 14,950 1,851 134,087
CL-35-10 1,805 82,963 1,858 232,627 2,475 483,748 1,808 66,052
CL-35-50 1,773 73,611 1,704 170,325 2,444 461,583 1,777 101,240
CL-35-100 1,739 78,728 1,713 128,471 2,469 457,726 1,717 154,923
CL-92-5 1,444 44,488 1,554 92,738 1,861 166,858 1,386 68,538
CL-92-10 1,313 43,166 1,308 87,425 1,562 212,273 1,425 65,451
CL-92-50 1,255 41,862 1,245 65,210 1,481 191,311 1,340 45,678
CL-92-100 1,234 43,207 1,224 44,204 1,530 204,571 1,344 45,445
CL-512-50 1,061 12,210 1,090 28,525 N/A 103,044 951 18,849

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

requested
cancelled

downloaded
verified
file size

(a) CL-35-50 (Azureus)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

requested
cancelled

downloaded
verified
file size

(b) CL-35-50 (Mainline)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

requested
cancelled

downloaded
verified
file size

(c) CL-35-50 (Transmission)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

requested
cancelled

downloaded
verified
file size

(d) CL-35-50 (µTorrent)

Fig. 4. Pieces requested, downloaded and verified by one peer. [x = time in seconds; y = MiB]

pieces. Transmission requires 3, 535s to complete the upload.
This correlates with the scores from Table I. Interestingly,
we found that Mainline has always the fastest seed behavior
on Planetlab, but it is not always the fastest client. As the
reduced performance is correlated with low connections, we
analyzed the connection management of the different clients in
more detail. One significant difference between Mainline and
the other clients is the fact that Mainline has separate pools
for managing outgoing and incoming connections, while other
clients assign these dynamically from a single pool.

We compared the number, duration, and inter-arrival inter-
vals of incoming and outgoing connections for the initial seed
in each experiment. For a low connection limit, we observed
the following: While Azureus, Transmission and µTorrent keep
accepting new connections and dropping established ones,
Mainline will not accept or open new connections when the
set limit is reached. That causes the first few peers, able to
connect to the seed, to monopolize it for a long time. This
is an advantage for these clients but a disadvantage for the
swarm, because it limits the total available bandwidth of the
swarm during the ramp-up phase. Because the other clients
change connections more frequently, they can distribute the

same number of pieces to more peers and, thus, boost the
available bandwidth in the swarm.

Piece Exchange. By analyzing the message flow in indi-
vidual connections, we were able to identify another cause for
the performance results of Transmission. Looking at absolute
message counts (Table II) from all experiments on the cluster,
we discovered that, compared to other clients, Transmission
uses a disproportionally large amount of request, piece, and,
in particular, cancel messages. These messages are used to re-
quest and transfer a piece of the file, and to cancel the request,
respectively. A detailed piece exchange analysis revealed that
Transmission frequently requests a chunk from more than one
peer at the same time. Upon receiving a chunk from one peer,
it sends cancel messages to the other peers. Unfortunately,
this is often too late to stop the others from sending that
chunk. Thus, the same chunk is downloaded multiple times.
The BitTorrent specification recommends to use this strategy,
dubbed endgame mode, only to quickly obtain the last few
pieces of the file. Using it all the time, as Transmission does,
wastes bandwidth, as illustrated in Figure 4(c). There, we can
see that the amount of downloaded bytes is much larger then
the amount of verified (with the SHA1 checksum from the

TABLE II
MESSAGE COUNTS (IN THOUSANDS) OVER ALL EXPERIMENTS ON THE CLUSTER

Message Azureus Mainline Transmission µTorrent
bitfield 1,478 (0.96%) 670 (0.35%) 313 (0.11%) 3,107 (1.23%)
have 28,640 (18.52%) 63,683 (33.74%) 56,822 (20.40%) 107,196 (42.36%)
request 60,014 (38.81%) 60,849 (32.24%) 99,185 (35.62%) 68,529 (27.08%)
piece 54,735 (35.39%) 55,819 (29.58%) 71,818 (25.79%) 55,800 (22.05%)
cancel 192 (0.12%) 500 (0.26%) 42,924 (15.41%) 145 (0.06%)
others 9,593 (6.20%) 7,214 (3.82%) 7,423 (2.67%) 18,254 (7.21%)
Total 154,652 (100.00%) 188,735 (100.00%) 278,485 (100.00%) 253,031 (100.00%)

.torrent file), and ultimately stored, bytes. Comparing that to
the behavior of a the other investigated clients (Figures 4(a),
(b),(d)), we see that these clients download exactly as many
bytes as necessary and do not request unnecessary pieces.

V. RELATED WORK

Pouwelse [17] was the first to study BitTorrent and its rising
popularity. Early research focused on analyzing the algorithms
used in BT through simulation and analytical models (e.g.,
[2], [14], [18]). Empirical studies with instrumented clients
were first described in [12]. [7], [13], [16] showed how
individual peers could gain from unfair behavior, while [3]
demonstrated the negative impact of such selfish behavior
and [4], [8] proposed how to prevent it. Most of the above-
mentioned research is based on flow-level simulations [2],
[8], [14], or data collected by instrumenting a tracker [17]
or a single peer [12], [16]. [11] and [15] describe small-scale
experiments, such as running tens of clients on PlanetLab.
The work most closely related to ours has been presented in
[1], [6] where a platform similar to our BTLab Controller
is introduced, however, without the rich analysis tool set we
developed. Moreover, the platform requires the direct instru-
mentation of clients, making it impossible to study closed-
source clients such as µTorrent. The only study we are aware
of, that investigates differences between implementations, was
carried out in [9]. However, we believe our approach is more
comprehensive and gives deeper insight into the root causes
of the performance results.

VI. CONCLUSIONS

To better understand the real-world behavior of BitTorrent
clients and different interpretations of the protocol specifica-
tion, we have developed BTLab. BTLab is a platform that
allows a system-centric, data-driven analysis of the perfor-
mance of real-world BitTorrent clients. We found that different
clients showed significantly different performance. Moreover,
particular settings or experimental parameters could result in
a drastic increase of the download times for certain clients.
Using our analysis toolbox, we were able to explain the
underlying mechanisms that lead to the measured differences.

VII. ACKNOWLEDGEMENTS

This work has been supported by the Austrian Research
Promotion Agency (FFG) under grant 820854 (TRUDIE),
by the European Commission under grant No FP7-257007

(SysSec) and under the Prevention, Preparedness and Conse-
quence Management of Terrorism and other Security-related
Risks Programme (i-Code) and by Secure Business Austria.

REFERENCES

[1] Barcellos, M.P., Mansilha, R.B., Brasileiro, F.V.: Torrentlab: Investi-
gating bittorrent through simulation and live experiments. In: IEEE
Symposium on Computers and Communications (ISCC’08). pp. 507–
512 (July 2008)

[2] Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Some observations
on bittorrent performance. In: SIGMETRICS ’05: Proceedings of the
2005 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems (2005)

[3] Carra, D., Neglia, G., Michiardi, P.: On the impact of greedy strategies in
bittorrent networks: The case of bittyrant. In: Intl. Conf. on Peer-to-Peer
Computing (2008)

[4] Chow, A.L., Golubchik, L., Misra, V.: Improving bittorrent: A simple
approach. In: International Workshop on Peer-to-Peer Systems (IPTPS)
(2008)

[5] Cohen, B.: Incentives Build Robustness in BitTorrent. Tech. rep., bittor-
rent.org (2003), http://www.bittorrent.org/bittorrentecon.pdf

[6] Deaconescu, R., Rughinis, R., Tapus, N.: A bittorrent performance
evaluation framework. Networking and Services, Intl. Conf. on pp. 354–
358 (2009)

[7] Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measure-
ments, analysis, and modeling of bittorrent-like systems. In: 5th ACM
Conference on Internet Measurement (2005)

[8] Huang, K., Wang, L., Zhang, D., Liu, Y.: Optimizing the bittorrent
performance using an adaptive peer selection strategy. Future Gener.
Comput. Syst. 24(7) (2008)

[9] Iliofotou, M., Siganos, G., Yang, X., Rodriguez, P.: Comparing bittorrent
clients in the wild: The case of download speed. In: 9th International
Workshop on Peer-to-Peer Systems (IPTPS’10) (2010)

[10] ipoque: Internet study 2008/2009. http://www.ipoque.com/resources/
internet-studies/internet-study-2008 2009 (2009)

[11] Konrath, M.A., Barcellos, M.P., Mansilha, R.B.: Attacking a swarm with
a band of liars: Evaluating the impact of attacks on bittorrent. In: IEEE
International Conference on Peer-to-Peer Computing (2007)

[12] Legout, A., Urvoy-Keller, G., Michiardi, P.: Rarest first and choke
algorithms are enough. In: IMC ’06: Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement (2006)

[13] Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting bittorrent for
fun (but not profit). In: International Workshop on Peer-to-Peer Systems
(2006)

[14] Luan, H., Tsang, D.H.K.: A simulation study of block management in
bittorrent. In: InfoScale ’06: 1st Intl. Conf. on Scalable Information
Systems (2006)

[15] Marciniak, P., Liogkas, N., Legout, A., Kohler, E.: Small is not always
beautiful. CoRR abs/0802.1015 (2008)

[16] Piatek, M., Isdal, T., Anderson, T.E., Krishnamurthy, A., Venkataramani,
A.: Do incentives build robustness in bittorrent? In: NSDI (2007)

[17] Pouwelse, J.A., Garbacki, P., Epema, D.H.J., Sips, H.J.: The bittorrent
p2p file-sharing system: Measurements and analysis. In: IPTPS (2005)

[18] Qiu, D., Srikant, R.: Modeling and performance analysis of bittorrent-
like peer-to-peer networks. In: Conference on applications, technologies,
architectures, and protocols for computer communications (2004)

[19] Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks.
In: ACM Conference on Internet Measurement (2006)

