Peering Through the iFrame

Brett Stone-Gross$, Marco Cova?, Christopher Kruegel®, and Giovanni Vigna®

SUniversity of California, Santa Barbara
{bstone, chris,vigna}@cs.ucsb.edu

Abstract—Drive-by-download attacks have become the method
of choice for cyber-criminals to infect machines with malware.
Previous research has focused on developing techniques to detect
web sites involved in drive-by-download attacks, and on measur-
ing their prevalence by crawling large portions of the Internet.
In this paper, we take a different approach at analyzing and
understanding drive-by-download attacks. Instead of horizontally
searching the Internet for malicious pages, we examine in depth
one drive-by-download campaign, that is, the coordinated efforts
used to spread malware. In particular, we focus on the Mebroot
campaign, which we periodically monitored and infiltrated over
several months, by hijacking parts of its infrastructure and
obtaining network traces at an exploit server.

By studying the Mebroot drive-by-download campaign from
the inside, we could obtain an in-depth and comprehensive view
into the entire life-cycle of this campaign and the involved
parties. More precisely, we could study the security posture of the
victims of drive-by attacks (e.g., by measuring the prevalence of
vulnerable software components and the effectiveness of software
updating mechanisms), the characteristics of legitimate web sites
infected during the campaign (e.g., the infection duration), and
the modus operandi of the miscreants controlling the campaign.

I. INTRODUCTION

Drive-by-download attacks [11], [12] exploit vulnerabilities
in web browsers and web browser components. These attacks
are triggered when a victim uses her browser to load a web
page that contains malicious code. To attract potential victims,
attackers can prepare malicious web pages and distribute their
URLs (e.g., by including links in spam mails). Alternatively,
attackers can compromise existing web sites and inject mali-
cious code into legitimate pages (e.g., by embedding iframes).
Typically, the exploit code used in a drive-by-download attack
is written in a client-side scripting language, such as JavaScript
or ActionScript (as part of an Adobe Flash file). This code
is directly run by the browser or executed with the help of
a browser extension. When the exploit is successful, it down-
loads and installs malware on the victim’s machine, frequently
in an effort to recruit additional members for a botnet [10].

Over the last few years, drive-by-download attacks have
become the most popular means used by cyber-criminals to
compromise and infect hosts. The reason for the popularity
of this type of attack is that direct attacks against hosts and
their operating systems have become more difficult. This is
in part due to the growing efforts by Microsoft to improve
the security of its Windows products [8], but also due to the
fact that users are increasingly shielded by firewalls and NAT
devices (such as home routers).

Given the importance of drive-by-download attacks, re-
searchers have recently proposed first steps to harden browsers

I University of Birmingham, United Kingdom
m.covalcs.bham.ac.uk

against these exploits [5], [13]. Moreover, a number of papers
have presented approaches to detect malicious web pages [7],
[15] and to study their prevalence by crawling large por-
tions of the Internet [11], [12]. Finally, follow-up work has
studied the behavior of web-based malware once a machine
is compromised [10]. However, malicious web pages and
web-based malware do not live in isolation. Someone has to
develop the code used for drive-by-download attacks, infect
web sites, and set up exploit servers to which victims are
redirected, so that they can download the latest malware
instances. Also, malicious sites rely on visitors with vulnerable
software components to carry out successful attacks. These
aspects are all important pieces of a drive-by campaign, which
we characterize as a coordinated effort of a group of cyber-
criminals to propagate malware via drive-by-download attacks.

So far, researchers have focused on malicious web sites
and their prevalence, mostly neglecting other aspects of
drive-by-download campaigns. However, we believe that a
more comprehensive study of these campaigns is important
and has the potential of revealing a number of interesting facts
about the various parties that are involved. In particular, we
would like to understand in more detail the modus operandi
of cyber-criminals, the ways in which they craft and update
their exploit code, and the infrastructure they use to host
their attacks. In addition, it is interesting to see how the
exploit code is distributed and which web sites are targeted
as part of a single campaign. Finally, it is important to study
the (potential) victims of drive-by-download attacks on the
Internet and determine the software they are using and the
corresponding vulnerability surface.

In this paper, we present the results of an in-depth study
of the Mebroot drive-by-download campaign. Our study was
carried out over one year, covering different time periods from
May to September 2009, and one week in April 2010. During
the four months starting in mid 2009, we seized control of
parts of the infrastructure used by the cyber-criminals to
spread Mebroot. In April 2010, we obtained direct network-
level access (via a mirror port) to one of the exploit servers
used by the Mebroot gang to serve drive-by download attacks.
This allowed us to examine infected web sites, analyze the
clients who visit these sites, and obtain a behind-the-scenes
view of the infrastructure used by these criminals. The main
contribution of the paper is the analysis of a large-scale,
successful, long-lasting drive-by campaign from unique
vantage points. By studying the operations of the miscreants
running the Mebroot campaign, we can answer questions



Infected web site Mebroot exploit sites

-

=1/ DGA

\ :\cri pt>

@) () 4)

5
@ exploit dxtrbc.exe
<script>
- - D-

(becomes a bot)

GET

Victim client

Figure 1. The Mebroot drive-by-download infrastructure.

about the actors and victims of drive-by-download attacks and
the infrastructure that is used to carry out these attacks. We
argue that our results are relevant to most existing drive-by
campaigns. Therefore, a more thorough understanding of the
processes and the lessons learned during our analysis will help
to develop more effective mechanisms to combat these threats.

II. BACKGROUND

The measurements described in this paper are performed on
the Mebroot drive-by-download campaign. While a detailed
description of Mebroot is outside the scope of this paper,
we review here its key mechanisms and organizational units.
Mebroot is a sophisticated piece of malware that infects the
Master Boot Record (MBR) of victim machines to hide itself
and download and bootstrap additional malware plugins [6].
One such plugin is Torpig, a bot that, in the recent past, has
been very successful in harvesting sensitive data (e.g., credit
card and banking information) from its victims [14].

Mebroot spreads through drive-by-download attacks, which
start when a victim visits a legitimate web site that has been
compromised by the Mebroot gang (Step 1 in Figure 1). We
call these sites infected web sites. Pages on the infected site
have been modified to contain JavaScript code that redirects
the client to a site controlled by the Mebroot gang. This site,
which we call the exploit site, then launches a number of
exploits against vulnerabilities in the browser or its plugins.

In typical drive-by campaigns, the malicious code injected
into infected web sites directly encodes the domain name of
the site used to launch the exploits. For example, the injected
code may be a static string that creates an iframe tag
pointing to a page on a particular site (domain). In these cases,
until the injected code is removed or otherwise modified,
all visitors will be redirected to the same site referenced by
the iframe tag. Mebroot follows a different, and more robust
strategy, where the exploit site is not encoded in a static,
fixed string, but it is dynamically computed by using a domain
generation algorithm (DGA). This computation is carried out
in the web browser of the victim (the DGA is implemented in
JavaScript) when the infected page is retrieved (Step 2). With
this scheme, different visits to the same infected page may
trigger the generation of different domain names, and thus,
cause the redirection to different exploit sites.

From the malware authors’ perspective, it is more desirable
to use DGAs for the domain names of exploit sites rather

than relying on a fixed domain name, because this potentially
improves the resilience of the drive-by-download campaign
to take-down and blacklisting efforts. In fact, while these
efforts may successfully block the current exploit site, they
do not have the effect of permanently stopping the campaign
or forcing the campaign authors to update the infected sites
with a new version of the malicious code (redirecting to a
fresh exploit site).

Mebroot’s DGAs are seeded with the current date and,
optionally, additional parameters such as Twitter trends.
These inputs are hashed using simple, custom hash functions
to produce as output a domain name. The victim is then
automatically redirected to this domain, where the exploit
site is hosted (Step 3). The exploit site employs Neosploit,
a popular exploit pack, to fingerprint the victim’s system,
identify vulnerable applications on her machine, and serve the
most appropriate exploits (Step 4). If any exploit is successful,
the Mebroot malware is automatically downloaded from the
exploit site and is executed on the victim’s machine (Step 5).

IIT. DATA COLLECTION

Our approach for carrying out parts of our study relies on
sinkholing some of the components used in this campaign (in
particular, the exploit sites), passively monitoring the traffic
directed to these sites, and actively fingerprinting the clients
issuing these requests. The factor enabling our sinkholing is
the existence of domains, generated by DGAs, that have not
been registered by the Mebroot gang. We reverse-engineered
the DGAs and found several domains names that were to serve
as exploit sites and were still available. Of these, we registered
22 domain names. These domains were active on 56 distinct
days over the 4-month interval, between May and September
2009. As a consequence of our sinkholing, when users visited
an infected web site containing the Mebroot JavaScript code,
instead of being redirected to an exploit server, they were
redirected to a domain (and host) that was under our control.

As part of our experiments, we recorded all the requests
directed at our sites. Furthermore, we served to visitors of
our domains JavaScript code that fingerprinted the clients’
machines to identify vulnerable software components. Finally,
from the Referer header contained in client requests, we
were able to identify infected web sites, and leveraging this
knowledge, were able to monitor and track site infections.
Hence, we built two data sets. The first contains the requests
issued by the victims of Mebroot attacks that connected to
the sites under our control, and the results of the active
fingerprinting we performed on them. In total, this data set
includes data from 354,360 distinct IP addresses. The second
data set includes data about 6,541 distinct infected web sites.
For each of these web sites, we recorded name, address, and
the content of the pages that redirected clients to our sinkhole.

IV. MEBROOT INFILTRATION

In this section, we discuss the results of our infiltration
of the Mebroot infrastructure. We begin our analysis by
studying the visitors of Mebroot-infected web sites. We will



then examine the information that we obtained through our
active measurement infrastructure, in particular, the vulnerable
software run by these hosts.

Data Collection Methodology. After registering the Mebroot
domain names, we pointed the corresponding DNS records at
our servers. We then set up a web page to perform a number of
measurements of the visitors to these sites. For convenience,
we will refer to these visitors as victims because these users are
involuntarily redirected to our site, and had we not purchased
the exploit domain, may have been infected with malware.

In addition to counting the number of Mebroot victims, we
also wanted to determine other characteristics of these clients,
in particular, whether they were running vulnerable software,
which could be targeted by the exploits used in the Mebroot
or other drive-by-download campaigns. To detect the client
software installed on a user’s machine, we used techniques
commonly used by web analytics services. More specifically,
our web site served to visitors JavaScript code that tested
for the presence of 45 ActiveX controls and browser plugins,
including 39 that are known to be vulnerable to remote code
execution. When possible, our script also collected the version
of each tested plugin, by reading an appropriate property or
method exposed by the component under review.

Since ActiveX controls only work in Microsoft Internet Ex-
plorer, we detected other browser plugins via the navigator
browser plugin array. This array exposes a convenient inter-
face to iterate through and detect various plugins using only
JavaScript, and it exists in most popular browsers including
Firefox, Safari, Chrome, and Opera.

Victim Characteristics. During the four-month monitoring
period from May to September 2009, our server received
1,245,348 requests from 354,360 unique IP addresses. Of
these, 559,627 requests from 339,150 distinct IP addresses
were in a format consistent with the requests generated by
Mebroot’s JavaScript code. We attribute the remaining requests
to web crawlers, and security researchers. In the following
paragraphs, we will consider only those requests that were
compatible with Mebroot’s JavaScript code and that reported
the results from our host fingerprinting script.

Geographic Locations. We mapped each client IP to its re-
spective country, using an IP-based geolocation database from
ip2location.com. Visitors from the top 5 countries are shown in
the rightmost column of Table I. Overall, we observed visitors
from 201 countries all over the world.

Operating System IPs | Browser IPs | Country IPs

(%) (%) (%)
Windows XP 63.8% | IE7 304% | US 27.2%
Windows Vista 23.1% | Firefox 3  25.6% | IT 8.55%
Mac OSX 10.5 4.56% | IE 6 17.3% | IN 5.29%
Mac OSX 104 2.01% | IE 8 8.94% | UK 4.75%
Linux 0.94% | Firefox 2 2.80% | ES 4.70%

Table I

TOP-5 OPERATING SYSTEMS, BROWSERS, AND COUNTRIES OF VICTIMS.

Operating Systems. There were 39 different operating systems
that we observed. Many of these were mobile phone devices
running embedded operating systems and game consoles.
Overall, Windows XP was by far the most common operating
system, accounting for more than 63% of the visitors, with
Windows Vista and Mac OSX Leopard being the second and
third most prevalent operating systems, as shown in Table I.
Note that the Mebroot malware is written only for Windows.
However, web browsers and plugins may be vulnerable regard-
less of the operating system, and platform specific shellcode
and malware could be delivered in future drive-by-download
attacks.

Web Browsers. To determine a visitor’'s web browser, we
analyzed the User-Agent field that is part of the HTTP headers
and the navigator array (when supported by the browser).
Overall, we observed 79 different web browser versions with
40,326 unique User-Agent strings. The large number of User-
Agent strings is the result of modifications done by other
software applications installed on visitors’ systems.

The most common browsers were Internet Explorer, Firefox,
Safari, Google Chrome, and Opera. For each of these browsers,
we examined the percentage of visitors using the latest web
browser versions. More specifically, we aimed to determine
how long it takes for users to update their web browser when
a new version is released. Note that we did not have daily
statistics for browser updates during the entire four-month
interval, but in many cases, we could clearly see when updates
occurred by comparing trends before and after an update was
released. Our results, shown in Figure 2, demonstrate that users
of particular web browsers such as Internet Explorer and Safari
take significantly longer to update than other browsers. This
is likely due to the update mechanisms used by Microsoft and
Apple, where browser updates are done as part of operating
system updates. In contrast, the Chrome web browser auto-
matically updates to the latest browser version regardless of
whether the browser is being used at the moment, and the
updates run silently in the background. As a result, more than
92% of users were running the latest version of Chrome at all
times. In comparison, visitors using Firefox were running the
latest version an average of 70.8% of the time. While Firefox
automatically downloads updates by default, it prompts users
to install these updates at their convenience. This is evident
in Figure 2. Only about 43.9% of Opera users were using the
latest version at any time even though it was released in early
March 2009. This is likely due to the fact that Opera did not
have a built-in update mechanism and consequently was the
most cumbersome to update (users had to go to Opera’s web
site and manually download and install the latest version [4]).

Vulnerable Applications. In the next step, we examined the
vulnerable applications installed on the computers of users
who visited Mebroot-infected domains. That is, we focus on
the potential number of victims that the Mebroot drive-by-
download exploits would likely compromise, and the likeli-
hood that a potential victim is running at least one vulnerable
application that could potentially compromise her system.



Latest Web Browsers Versions

100

. I
o e fieiox
Firefox 3.012 | 5 ¢ St
A A Ope
80k PR S it T +—+ chrom
N ‘ T T N -
.ﬁ&. safari3.23 2o
de 0
3 Firefox 3.0.13_ ¢  /Safari4.03
e 60 0 &0 q
d 68 2 ) K
£ f e SN A
- A A £ u y
S 40P 3 Safari 4.0 : : 4 ‘ .
A y Ps
0 000 |
) W’J/J%e » ‘ »

ol—i i ; ; i ;
q)(—)\“" 0(’,\'7}’ 0@\0‘& 0@\\% N o N oo N »° Qe,\'\:b 0?,\7:‘
Date

Figure 2. Percentage of victims with latest web browser versions.

During the four-month monitoring period, the Mebroot
exploits targeted Adobe Acrobat and Reader, Apple
QuickTime, AOL’s SuperBuddy, MDAC, and DirectShow.
Figure 3 displays the number of victims per day who had one
or more browser plugins that were vulnerable to the Mebroot
exploits. The Adobe Acrobat/Reader component, targeted by
the Mebroot exploit toolkit, was by far the most dangerous,
since 32.1% of all visitors had a vulnerable version installed.
Over these four months, between 25% and 42% of visitors
were vulnerable to at least one of the Mebroot exploits at
any given time. Thus, if we consider the maximum number
of users that we observed during a single day, this particular
drive-by-download campaign could have infected between
9,500 and 12,700 machines per day (assuming these users had
not been previously infected and the exploits were reliable).
We will show the actual effectiveness of Mebroot’s exploits
in Section V.

While Mebroot exploits targeted six vulnerabilities in our

first monitoring period, there are considerably more browser
plugins that were vulnerable. Thus, we checked a total of
39 ActiveX and browser plugins that are commonly found
in exploit toolkits to determine what the potential success
rate could be if a drive-by campaign had attempted a larger
number of exploits. The potential success rates per day are
shown in Figure 3. A large contributing factor behind the
high percentage of vulnerable users is due to the ubiquity and
vulnerability of the Adobe Flash Player, which in our data set
was installed on 86% of all victims. Notice that when Flash
version 10.0.32 was released at the end of July, there was an
almost immediate reduction in about 10% of the vulnerable
population.
Infected Web Sites. By analyzing the requests sent to our
sinkholed domains, we were also able to identify infected web
sites. More precisely, we inspected the value of the Referer
header sent by clients to the sinkholed sites under our control.
The assumption we make is that referrer URLs identify pages
on (presumably) legitimate sites that have been compromised
to redirect their visitors to the exploit-serving domains.

Vulnerable Browser Plugins
i " ! AT Vaherabiies

Flash 10.0.32 Released

o
=)
T

[
o
T

% of IPs Per Day

IS
S
T
-
—o!
$.
o
o
B

u“-.\\ o N oW .‘U V"“'

S

w
o
T

0 ‘ ‘ ‘ ‘ ‘ ‘
1% ] ] v © Q Y 31 A% O
A @ @ @™ @ ™ g @ @ o
Date

N

Figure 3. Percentage of victims with vulnerable browser plugins.

There are two potential issues with relying on the Referer
header to identify infected sites. More specifically, the
Referer header may be suppressed [1], or may be spoofed
and set to arbitrary values. To assess the impact of missing
or fake headers in our data set, we monitored a number of
malware feeds and online forums for reports of Mebroot-
infected sites. We found no site from these sources that was not
also present in the data we collected. We also removed invalid
URLSs and used Wepawet, our tool to detect and analyze web-
based malware [3], to discard URLs that were not infected.

Prevalence and Distribution of Infected Sites. In total, we
received 381,768 requests that were Mebroot-compatible and
that specified a referring page (contained a Referer entry).
From the Referer data (after validation with Wepawet), we
obtained 33,195 distinct URLs from 6,541 sites.

We wanted to determine the distribution of all sites across
different functional categories (types of web sites). Unfortu-
nately, we found that online directories, such as dmoz.org [9],
only contained a minimal fraction of the domains we observed.
Therefore, we randomly sampled 100 sites and classified
them using a classification service [2]. Most sites (22%) were
classified as business-related, 15% as technology-related, 10%
as adult, 9% as travel, and 5% as sports related. In our
experience, the classifier worked accurately, and these results
resemble those of previous studies on the impact of browsing
habits on the exposure to drive-by-download attacks [11].

Infection and Cleanup Dynamics. The last stage in the
infection of a web site is when the malicious code is finally
detected by web masters and removed. Cleaning up infected
sites takes a long time. Indeed, in the worst case, infected sites
are never cleaned up. In fact, 900 sites out of the 4,927 that
we monitored were still infected at the end of our monitoring
period. Figure 4 focuses on the web sites that were infected
and cleaned up. We see that after roughly 25 days, only 50%
of these web sites had been cleaned up. A cleanup rate of
80% is achieved only after 45 days. Remediating an infection,
rather than identifying its root cause, does not lead to a lasting



Number of web sites (%)

10 20 30 40 50 60 70 80 90
Days until an infected site is cleaned up

Figure 4. Infection duration for web sites that were infected and cleaned up.

cleanup. We found 467 sites where the Mebroot code was
removed and injected again.

V. NETWORK-LEVEL MONITORING

We were able to gain even more insight into the effective-
ness of the Mebroot drive-by campaign when we were given
access to a mirror port of a switch connected to an exploit
server for one week in April 2010. Using this mirror port, we
could monitor all requests sent and received by this server. In
total, we collected over 300GB of data.

Based on the exploit and download requests, we can
determine the number of machines that were actually
infected, the exploits that were successful in compromising a
host, and the versions of the vulnerable browser components.
The Mebroot JavaScript code sets a cookie on the targeted
machine to identify and avoid re-attacking victims that have
already been compromised. The cookie is active for one week
on a targeted machine. Since this monitoring period spanned
one week, we make the assumption that there is approximately
a one-to-one correlation between an IP address and a victim
machine. Overall, we observed requests from 202,879 unique
IP addresses. Of these, 45,816 hosts were exploited, and we
observed the download of the malware binary. That is, the
exploits compromised more than 22.6% of the machines (as-
suming antivirus/firewall software did not subsequently block
the execution of the malware). We would like to point out
that during our monitoring, the Mebroot controllers used two
different servers, and hence, we had only visibility into roughly
half of the campaign. If we assume that the other server
received a similar number of visitors and the exploit success
rates are comparable, we can estimate that more than 91,000
machines were infected in a single week from this drive-by-
download campaign alone. These results are consistent with
our estimations from the previous monitoring periods.

Overall, exploits that targeted Java applets compromised
the most machines, accounting for 40.5% of the infections,
followed by an IE exploit (33.9%), multiple Adobe Reader
exploits (24.7%), and a DirectShow (7.5%) exploit. Notice that
these percentages add up to more than 100% because roughly
6% of the compromised machines were exploited multiple
times through multiples vulnerabilities.

VI. CONCLUSIONS

In this paper, we have performed an in-depth analysis
of the drive-by-download campaign used to distribute the
Mebroot malware. Our approach was based on infiltrating the
campaign by sinkholing the web sites used by the Mebroot
authors to launch exploits against their victims, and by directly
monitoring the network traffic on an exploit server. From
these internal vantage points, we had direct visibility of the
victims of the campaign and of the infected web sites that
were unwittingly redirecting their visitors to the exploit sites.

We performed a number of measurements to improve our
understanding of drive-by-download campaigns. On the client-
side, we found that drive-by-download campaigns affect a
significant number of web users and that an alarming fraction
of these users rely on vulnerable systems, such as old versions
of the browser or vulnerable additional components. Similarly,
on the server-side, we found that web masters of infected sites
are slow at removing malicious code injected in their pages
and often, when they do, they are prone to be infected again.

REFERENCES

[1] A. Barth, C. Jackson, and J. Mitchell. Robust Defenses for Cross-Site
Request Forgery. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2008.

[2] CONTEXTin.com. URLclassifier — Classify a Web Page Us-
ing Advanced Semantic Analysis. http://www.urlclassifier.com/
URLClassifierWS.

[3] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-
by-Download Attacks and Malicious JavaScript Code. In Proceedings
of the World Wide Web Conference (WWW), 2010.

[4] T. Duebendorfer and S. Frei. Why Silent Updates Boost Security.
Technical report, ETH Zurich, 2009.

[5] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending Browsers
against Drive-by Downloads: Mitigating Heap-Spraying Code Injection
Attacks. In Proceedings of the Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA), 2009.

[6] P. Kleissner. Analysis of Sinowal. http://webl7.webbpro.de/index.php?
page=analysis-of-sinowal, 2008.

[7]1 J. Ma, L. Saul, S. Savage, and G. Voelker. Beyond Blacklists: Learning
to Detect Malicious Web Sites from Suspicious URLs. In ACM SIGKDD
Conference, 2009.

[8] Microsoft Corporation. Security Development Lifecycle (SDL). http:
//msdn.microsoft.com/en-us/security/cc448177.aspx, 2009.

[9] Netscape. ODP — Open Directory Project. http://www.dmoz.org.

[10] M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost Turns Zom-
bie: Exploring the Life Cycle of Web-based Malware. In Proceedings of
the USENIX Workshop on Large-Scale Exploits and Emergent Threats,
2008.

[11] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose. All Your
iFRAMEs Point to Us. In Proceedings of the USENIX Security
Symposium, 2008.

[12] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu.
The Ghost in the Browser: Analysis of Web-based Malware. In
Proceedings of the USENIX Workshop on Hot Topics in Understanding
Botnet, 2007.

[13] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A Defense Against
Heap-spraying Code Injection Attacks. In Proceedings of the USENIX
Security Symposium, 2009.

[14] B. Stone-Gross, M. Cova, L. Cavallaro, R. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your Botnet is My Botnet:
Analysis of a Botnet Takeover. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2009.

[15] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated Web Patrol with Strider HoneyMonkeys: Finding
Web Sites That Exploit Browser Vulnerabilities. In Proceedings of the
Symposium on Network and Distributed System Security (NDSS), 2006.



