1

Behavioral and Structural Properties of
Malicious Code

Christopher Kruegel

Secure Systems Lab
Technical University Vienna

Summary. Most current systems to detect malicious code rely on syntactic signa-
tures. More precisely, these systems use a set of byte strings that characterize known
malware instances. Unfortunately, this approach is not able to identify previously
unknown malicious code for which no signature exists. The problem gets exacerbated
when the malware is polymorphic or metamorphic. In this case, different instances
of the same malicious code have a different syntactic representation.

In this chapter, we introduce techniques to characterize behavioral and structural
properties of binary code. These techniques can be used to generate more abstract,
semantically-rich descriptions of malware, and to characterize classes of malicious
code instead of specific instances. This makes the specification more robust against
modifications of the syntactic layout of the code. Also, in some cases, it allows the
detection of novel malware instances.

1.1 Introduction

Malicious code (or malware) is defined as software that fulfills the deliberately
harmful intent of an attacker when run. Typical examples of malware include
viruses, worms, and spyware. The damage caused by malicious code has dra-
matically increased in the past few years. This is due to both the popularity
of the Internet, which leads to a significant increase in the number of available
vulnerable machines, and the sophistication of the malicious code itself.
Current systems to detect malicious code (most prominently, virus scan-
ners) are mostly based on syntactic signatures, which specify byte sequences
that are characteristic of particular malware instances. This approach has two
drawbacks. First, specifying precise, syntactic signatures makes it necessary
to update the signature database whenever a previously unknown malware
sample is found. As a result, there is always a window of vulnerability be-
tween the appearance of a new malicious code instance and the availability of
a signature that can detect it. Second, malicious code can be metamorphic.
That is, the malware code mutates while reproducing or spreading across the
network, thereby rendering detection using signatures completely ineffective.

2 C. Kruegel

In this chapter, we will discuss approaches to characterize higher-level
properties of malicious code. These properties are captured by abstract models
that describe the behavior and structure of malicious code. The key idea is
that semantic or structural properties are more difficult to change between
different malware variations. Therefore, our approach results in a more general
and robust description of malicious code that is not affected by syntactic
changes in the binary image. To demonstrate the effectiveness of our approach,
we introduce a technique to describe and detect kernel-level rootkits based
on their behavior in Section 1.2. In addition, in Section 1.3, we describe a
mechanism to capture the structure of executables and its use to identify
metamorphic worms.

1.2 Behavioral Identification of Rootkits

A rootkit is a collection of tools often used by an attacker after gaining admin-
istrative privileges on a host. This collection includes tools to hide the pres-
ence of the attacker (e.g., log editors), utilities to gather information about
the system and its environment (e.g., network sniffers), tools to ensure that
the attacker can regain access at a later time (e.g., backdoored servers), and
means of attacking other systems. Even though the idea of a rootkit is to pro-
vide all the tools that may be needed after a system has been compromised,
rootkits focus in particular on backdoored programs and tools to hide the
attacker from the system administrator. Originally, rootkits mainly included
modified versions of system auditing programs (e.g., ps or netstat for Unix
systems) [10]. These modified programs (also called Trojan horses) do not
return any information to the administrator about specific files and processes
used by the intruder, making the intruder “invisible” to the administrator’s
eyes. Such tools, however, are easily detected using file integrity checkers such
as Tripwire [3].

Recently, a new type of rootkit has emerged. These rootkits are imple-
mented as loadable kernel modules (LKMs). A loadable kernel module is an
extension to the operating system (e.g., a device driver) that can be loaded
into and unloaded from the kernel at runtime. This runtime kernel extension
is supported by many Unix-style operating systems, most notably Solaris and
Linux. When loaded, a kernel module has access to the symbols exported by
the kernel and can modify any data structure or function pointer that is acces-
sible. Typically, these kernel rootkits “hijack” entries in the system call table
and provide modified implementations of the corresponding system call func-
tions [11, 17]. These modified system calls often perform checks on the data
passed back to a user process and can thus efficiently hide information about
files and processes. An interesting variation is implemented by the adore-ng
rootkit [18, 19]. In this case, the rootkit does not modify the system call table,
but, instead, hijacks the routines used by the Virtual File System (VFS), and,
therefore, it is able to intercept (and tamper with) calls that access files in

1 Behavioral and Structural Properties of Malicious Code 3

both the /proc file system and the root file system. In any case, once the ker-
nel is infected, it is very hard to determine if a system has been compromised
without the help of hardware extensions, such as the TCPA chip [13].

1.2.1 Rootkit Detection

In the following, we introduce a technique for the detection of kernel rootkits
in the Linux operating system. The technique is based on the general spec-
ification of the behavior of a rootkit. Using static analysis (more precisely,
symbolic execution), an unknown kernel module is checked for code that ex-
hibits the malicious behavior. If such code is found, the module is classified as
rootkit. The advantage of our method compared to byte string signatures is
the fact that our specification describes a general property of a class of kernel
rootkits. As a result, our technique has the capability to identify previously
unknown instances. Also, it is robust to obfuscation techniques that change
the syntactic layout of the code but retain its semantics.

The idea for our detection approach is based on the observation that the
runtime behavior of regular kernel modules (e.g., device drivers) differs sig-
nificantly from the behavior of kernel rootkits. We note that regular modules
have different goals than rootkits, and thus implement different functionality.
Our analysis is performed in two steps. First, we have to specify undesirable
behavior. Second, each kernel module binary is statically analyzed for the
presence of instructions sequences that implement these specifications.

Currently, our specifications are given informally, and the analysis step
has to be adjusted appropriately to deal with new specifications. Although
it might be possible to introduce a formal mechanism to model behavioral
specifications, it is not necessary for our detection prototype. The reason is
that a few general specifications are sufficient to accurately capture the mali-
cious behavior of all current LKM-based rootkits. Nevertheless, the analysis
technique is powerful enough that it can be easily extended. This may be-
come necessary when rootkit authors actively attempt to evade detection by
changing the code such that it does not adhere to any of our specifications.

1.2.2 Specification of Behavior

A specification of malicious behavior has to model a sequence of instructions
that is characteristic for rootkits but that does not appear in regular modules
(at least, with a high probability). That is, we have to analyze the behavior
of rootkits to derive appropriate specifications that can be used during the
analysis step.

In general, kernel modules (e.g., device drivers) initialize their internal
data structures during startup and then interact with the kernel via function
calls, using both system calls or functions internal to the kernel. In particular,
it is not often necessary that a module directly writes to kernel memory.
Some exceptions include device drivers that read from and write to memory

4 C. Kruegel

areas that are associated with a managed device and that are mapped into the
kernel address space to provide more efficient access or modules that overwrite
function pointers to register themselves for event callbacks.

Kernel rootkits, on the other hand, usually write directly to kernel mem-
ory to alter important system management data structures. The purpose is
to intercept the regular control flow of the kernel when system services are
requested by a user process. This is done in order to monitor or change the
results that are returned by these services to the user process. Because system
calls are the most obvious entry point for requesting kernel services, the ear-
liest kernel rootkits modified the system call table accordingly. For example,
one of the first actions of the knark [11] rootkit is to exchange entries in the
system call table with customized functions to hide files and processes.

In newer kernel releases, the system call table is no longer exported by the
kernel, and thus it cannot be directly accessed by kernel modules. Therefore,
alternative approaches to influence the results of operating system services
have been investigated. One such solution is to monitor accesses to the /proc
file system. This is accomplished by changing the function addresses in the
/proc file system root node that point to the corresponding read and write
functions. Because the /proc file system is used by many auditing applications
to gather information about the system (e.g., about running processes, or
open network connections), a rootkit can easily hide important information
by filtering the output that is passed back to the application. An example
of this approach is the adore-ng rootkit [19] that replaces functions of the
virtual file system (VFS) node of the /proc file system.

As a general observation, we note that rootkits perform writes to a num-
ber of locations in the kernel address space that are usually not touched by
regular modules. These writes are necessary either to obtain control over sys-
tem services (e.g., by changing the system call table, file system functions,
or the list of active processes) or to hide the presence of the kernel rootkit
itself (e.g., modifying the list of installed modules). Because write operations
to operating system management structures are required to implement the
needed functionality, and because these writes are unique to kernel rootkits,
they present a salient opportunity to specify malicious behavior.

To be more precise, we identify a loadable kernel module as a rootkit based
on the following two behavioral specifications:

1. The module contains a data transfer instruction that performs a write
operation to an illegal memory area, or

2. the module contains an instruction sequence that i) uses a forbidden kernel
symbol reference to calculate an address in the kernel’s address space and
ii) performs a write operation using this address.

Whenever the destination address of a data transfer can be determined
statically during the analysis step, it is possible to check whether this address
is within a legitimate area. The notion of legitimate areas is defined by a
white-list that specifies the kernel addressed that can be safely written to.

1 Behavioral and Structural Properties of Malicious Code 5

For our current system, these areas include function pointers used as event
callback hooks (e.g., br_ioctl hook()) or exported arrays (e.g., blk_dev).

One drawback of the first specification is the fact that the destination ad-
dress must be derivable during the static analysis process. Therefore, a com-
plementary specification is introduced that checks for writes to any memory
address that is calculated using a forbidden kernel symbol.

A kernel symbol refers to a kernel variable with its corresponding address
that is exported by the kernel (e.g., via /proc/ksysm). These symbols are
needed by the module loader, which loads and inserts modules into the kernel
address space. When a kernel module is loaded, all references to external
variables that are declared in this module but defined in the kernel (or in
other modules) have to be patched appropriately. This patching process is
performed by substituting the place holder addresses of the declared variables
in the module with the actual addresses of the corresponding symbols in the
kernel.

The notion of forbidden kernel symbols can be based on black-lists or
white-lists. A black-list approach enumerates all forbidden symbols that are
likely to be misused by rootkits, for example, the system call table, the root
of the /proc file system, the list of modules, or the task structure list. A
white-list, on the other hand, explicitly defines acceptable kernel symbols that
can legitimately be accessed by modules. As usual, a white-list approach is
more restrictive, but may lead to false positives when a module references a
legitimate but infrequently used kernel symbol that has not been allowed pre-
viously. However, following the principle of fail-safe defaults, a white-list also
provides greater assurance that the detection process cannot be circumvented.

Note that it is not necessarily malicious when a forbidden kernel symbol
is declared by a module. When such a symbol is not used for a write access,
it is not problematic. Therefore, we cannot reject a module as a rootkit by
checking the declared symbols only.

Also, it is not sufficient to check for writes that target a forbidden symbol
directly. Often, kernel rootkits use such symbols as a starting point for more
complex address calculations. For example, to access an entry in the system
call table, the system call table symbol is used as a base address that is
increased by a fixed offset. Another example is the module list pointer, which
is used to traverse a linked list of module elements to obtain a handle for a
specific module. Therefore, a more extensive analysis has to be performed to
also track indirect uses of forbidden kernel symbols for write accesses.

Naturally, there is an arms-race between rootkits that use more sophisti-
cated methods to obtain kernel addresses, and our detection system that relies
on specifications of malicious behavior. For current rootkits, our basic specifi-
cations allow for reliable detection with no false positives (see Section 1.2.4 for
details). However, it might be possible to circumvent these specifications. In
that case, it is necessary to provide more elaborate descriptions of malicious
behavior.

6 C. Kruegel

Note that our behavioral specifications have the advantage that they pro-
vide a general model of undesirable behavior. That is, these specifications
characterize an entire class of malicious actions. This is different from fine-
grained specifications that need to be tailored to individual kernel modules.

1.2.3 Symbolic Execution

Based on the specifications introduced in the previous section, the task of
the analysis step is to statically check the module binary for instructions
that correspond to these specifications. When such instructions are found,
the module is labeled as a rootkit.

We perform analysis on binaries using symbolic execution. Symbolic exe-
cution is a static analysis technique in which program execution is simulated
using symbols, such as variable names, rather than actual values for input
data. The program state and outputs are then expressed as mathematical
(or logical) expressions involving these symbols. When performing symbolic
execution, the program is basically executed with all possible input values
simultaneously, thus allowing one to make statements about the program be-
havior.

In order to simulate the execution of a program, or, in our case, the execu-
tion of a loadable kernel module, it is necessary to perform two preprocessing
steps.

First, the code sections of the binary have to be disassembled. In this step,
the machine instructions have to be extracted and converted into a format
that is suitable for symbolic execution. That is, it is not sufficient to simply
print out the syntax of instructions, as done by programs such as objdump.
Instead, the type of the operation and its operands have to be parsed into an
internal representation. The disassembly step is complicated by the complexity
of the Intel x86 instruction set, which uses a large number of variable-length
instructions and many different addressing modes for backward-compatibility
reasons.

In the second preprocessing step, it is necessary to adjust address operands
in all code sections present. The reason is that a Linux loadable kernel module
is merely a standard ELF relocatable object file. Therefore, many memory
address operands have not been assigned their final values yet. These memory
address operands include targets of jump and call instructions but also source
and destination locations of load, store, and move instructions.

For a regular relocatable object file, the addresses are adjusted by the
linker. To enable the necessary link operations, a relocatable object also con-
tains, besides regular code and data sections, a set of relocation entries. Note,
however, that kernel modules are not linked to the kernel code by a regular
linker. Instead, the necessary adjustment (i.e., patching) of addresses takes
place during module load time by a special module loader. For Linux kernels
up to version 2.4, most of the module loader ran in user-space; for kernels from
version 2.5 and up, much of this functionality was moved into the kernel. To

1 Behavioral and Structural Properties of Malicious Code 7

be able to simulate execution, we perform a process similar to linking and
substitute place holders in instruction operands and data locations with the
real addresses. This has the convenient side-effect that we can mark operands
that represent forbidden kernel symbols so that the symbolic execution step
can later trace their use in write operations.

When the loadable kernel module has been disassembled and the nec-
essary address modifications have occurred, the symbolic execution process
can commence. To be precise, the analysis starts with the kernel module’s
initialization routine, called init_module (). More details about a possible re-
alization of the binary symbolic execution process can be found in [4]. During
the analysis, for each data transfer instruction, it is checked whether data
is written to kernel memory areas that are not explicitly permitted by the
white-list, or whether data is written to addresses that are tainted because of
the use of forbidden symbols. When an instruction is found that violates the
specification of permitted behavior, the module is flagged as a kernel rootkit.

1.2.4 Evaluation

The proposed rootkit detection algorithm was implemented as a user-space
prototype that simulated the object parsing and symbol resolution performed
by the existing kernel module loader before disassembling the module and
analyzing the code for the presence of malicious writes to kernel memory.

To evaluate the detection capabilities of our system, three sets of ker-
nel modules were created. The first set comprised the knark and adore-ng
rootkits, both of which were used during development of the prototype. As
mentioned previously, both rootkits implement different methods of subvert-
ing the control flow of the kernel: knark overwrites entries in the system call
table to redirect various system calls to its own handlers, while adore-ng
patches itself into the VFS layer of the kernel to intercept accesses to the
/proc file system. Since each rootkit was extensively analyzed during the pro-
totype development phase, it was expected that all malicious kernel accesses
would be discovered by the prototype.

Rootkit |Technique | Description

adore| syscalls |File, directory, process, and socket hiding
Rootshell backdoor
all-root| syscalls |Gives all processes UID 0
kbdv3| syscalls |Gives special user UID 0
kkeylogger| syscalls |Logs keystrokes from local and network logins
rkit| syscalls |Gives special user UID 0
shtroj2| syscalls |[Execute arbitrary programs as UID 0
synapsys| syscalls |File, directory, process, socket, and module hiding
Gives special user UID 0

Table 1.1. Evaluation rootkits.

8 C. Kruegel

The second set consisted of a set of seven additional popular rootkits
downloaded from the Internet, described in Table 1.1. Since these rootkits
were not analyzed during the prototype development phase, the detection rate
for this group can be considered a measure of the generality of the detection
technique as applied against previously unknown rootkits that utilize similar
means to subvert the kernel as knark and adore-ng.

The final set consisted of a control group of legitimate kernel modules,
namely the entire default set of kernel modules for the Fedora Core 1 Linux
x86 distribution. This set includes 985 modules implementing various com-
ponents of the Linux kernel, including networking protocols (e.g., IPv6), bus
protocols (e.g., USB), file systems (e.g., EXT3), and device drivers (e.g., net-
work interfaces, video cards). It was assumed that no modules incorporating
rootkit functionality were present in this set.

Module Set|Modules Analyzed|Detections Misclassification Rate

Development rootkits 2 2 0 (0%)
Evaluation rootkits 6 6 0 (0%)
Fedora Core 1 modules 985 0 0 (0%)

Table 1.2. Detection results.

Table 1.2 presents the results of the detection evaluation for each of the
three sets of modules. As expected, all malicious writes to kernel memory by
both knark and adore-ng were detected, resulting in a false negative rate
of 0% for both rootkits. All malicious writes by each evaluation rootkit were
detected as well, resulting in a false negative rate of 0% for this set. We
interpret this result as an indication that the detection technique generalizes
well to previously unseen rootkits. Finally, no malicious writes were reported
by the prototype for the control group, resulting in a false positive rate of
0%. We thus conclude that the detection algorithm is completely successful in
distinguishing rootkits exhibiting specified malicious behavior from legitimate
kernel modules, as no misclassifications occurred during the entire detection
evaluation.

kmodscan: initializing scan for rootkits/all-root.o
kmodscan: loading kernel symbol table from boot/System.map
kmodscan: kernel memory configured [c0100000-cO41leaf8]
kmodscan: resolving external symbols in section .text
kmodscan: disassembling section .text

kmodscan: performing scan from [.text+40]

kmodscan: WRITE TO KERNEL MEMORY [c0347df0] at [.text+50]
kmodscan: 1 malicious write detected, denying module load

Fig. 1.1. all-root rootkit analysis.

1 Behavioral and Structural Properties of Malicious Code 9

To verify that the detection algorithm performed correctly on the eval-
uation rootkits, traces of the analysis performed by the prototype on each
rootkit were examined with respect to the corresponding module code. As
a simple example, consider the case of the all-root rootkit, whose analysis
trace is shown in Figure 1.1. From the trace, we can see that one malicious
kernel memory write was detected at .text+50 (i.e., at an offset of 50 bytes
into the .text section). By examining the disassembly of the all-root mod-
ule, the relevant portion of which is shown in Figure 1.2, we can see that
the overwrite occurs in the module’s initialization function, init_module ()?.
Specifically, the movl instruction at .text+50 is flagged as a malicious write
to kernel memory. Correlating the disassembly with the corresponding rootkit
source code, shown in Figure 1.3, we can see that this instruction corresponds
to the write to the sys_call_table array to replace the getuid() system call
handler with the module’s malicious version at line 4. Thus, we conclude that
the rootkit’s attempt to redirect a system call was properly detected.

00000040 <init_module>:

40: al 60 00 00 00 mov 0x60, %eax
45: 55 push Yebp
46: 89 eb mov %esp, hebp
48: a3 00 00 00 00 mov %eax,0x0
4d: bd pop hebp
de: 31 c0 xor %eax,heax

50: c7 05 60 00 00 00 00 movl $0x0,0x60
57: 00 00 00
ba: c3 ret

Fig. 1.2. all-root module disassembly.

1 int init_module(void)

24

3 orig_getuid = sys_call_table[__NR_getuid];
4 sys_call_table[__NR_getuid] = give_root;
5

6

7

return O;

}

Fig. 1.3. all-root initialization function.

! Note that this disassembly was generated prior to kernel symbol resolution, thus
the displayed read and write accesses are performed on place holder addresses.
At runtime and for the symbolic execution, the proper memory address would be
patched into the code.

10 C. Kruegel

1.3 Structural Identification of Worms

As mentioned previously, polymorphic code can change its binary represen-
tation as part of the replication process. This can be achieved by using
self-encryption mechanisms or semantics-preserving code manipulation tech-
niques. As a consequence, copies of polymorphic malware often no longer share
a common invariant substring that can be used as a detection signature.

In this section, we present a technique that uses the structural properties
of an executable to identify different mutations of the same malware. This
technique is resilient to code modifications that make existing detection ap-
proaches based on syntactic signatures ineffective. Our approach is based on a
novel fingerprinting technique based on control flow information that allows us
to detect structural similarities between variations of one malware instance or
between members of the same malicious code family. The following properties
are desirable for the fingerprinting technique:

e Uniqueness. Different executable regions should map to different finger-
prints. If identical fingerprints are derived for unrelated executables, the
system cannot distinguish between code that should be correlated and
those that should not. If the uniqueness property is not fulfilled, the sys-
tem is prone to producing false positives.

e Robustness to insertion and deletion. When code is added to an
executable region, either by prepending it, appending it, or interleaving
it with the original executable (i.e., insertion), the fingerprints for the
original executable region should not change. Furthermore, when parts of
a region are removed (i.e., deletion), the remaining fragment should still be
identified as part of the original executable. Robustness against insertion
and deletion is necessary to counter straightforward evasion attempts in
which an attacker inserts code before or after the actual malicious code
fragment.

e Robustness to modification. The fingerprinting mechanism has to be
robust against certain code modifications. That is, even when a code se-
quence is modified by operations such as junk insertion, register renaming,
code transposition, or instruction substitution, the resulting fingerprint
should remain the same. This property is necessary to identify different
variations of a single polymorphic malware program.

Our key observation is that the internal structure of an executable is more
characteristic than its representation as a stream of bytes. That is, a represen-
tation that takes into account control flow decision points and the sequence
in which particular parts of the code are invoked can better capture the na-
ture of an executable and its functionality. Thus, it is more difficult for an
attacker to automatically generate variations of an executable that differ in
their structure than variations that map to different sequences of bytes.

For our purpose, the structure of an executable is described by its control
flow graph (CFG). The nodes of the control flow graph are basic blocks. An

1 Behavioral and Structural Properties of Malicious Code 11

edge from a block u to a block v represents a possible flow of control from
to v. A basic block describes a sequence of instructions without any jumps or
jump targets in the middle.? Note that a control flow graph is not necessarily
a single connected graph. It is possible (and also very likely) that it consists
of a number of disjoint components.

Given two regions of executable code that belong to two different malware
programs, we use their CFGs to determine if these two regions represent two
polymorphic instances of the same code. This analysis, however, cannot be
based on simply comparing the entire CFG of the regions because an attacker
could trivially evade this technique, e.g., by adding some random code to the
end of the actual malware instance. Therefore, we have developed a technique
that is capable of identifying common substructures of two control flow graphs.
We identify common substructures in control flow graphs by checking for
isomorphic connected subgraphs of size k (called k-subgraphs) contained in
all CFGs. Two subgraphs, which contain the same number of vertices k, are
said to be isomorphic if they are connected in the same way. When checking
whether two subgraphs are isomorphic, we only look at the edges between the
nodes under analysis. Thus, incoming and outgoing edges to other nodes are
ignored.

Two code regions are related if they share common k-subgraphs. Consider
the example of the two control flow graphs in Figure 1.4. While these two
graphs appear different at a first glance, closer examination reveals that they
share a number of common 4-subgraphs. For example, nodes A to D form con-
nected subgraphs that are isomorphic. Note that the number of the incoming
edges is different for the A nodes in both graphs. However, only edges from
and to nodes that are part of the subgraph are considered for the isomorphism
test.

Different subgraphs have to map to different fingerprints to satisfy the
uniqueness property. The approach is robust to insertion and deletion be-
cause two CFGs are related as long as they share sufficiently large, isomor-
phic subgraphs. In addition, while it is quite trivial for an attacker to modify
the string representation of an executable to generate many variations au-
tomatically, the situation is different for the CFG representation. Register
renaming and instruction substitution (assuming that the instruction is not a
control flow instruction) have no influence on the CFG. Also, the reordering
of instructions within a basic block and the reordering of the layout of basic
blocks in the executable result in the same control flow graph. This makes
the CFG representation more robust to code modifications in comparison to
syntax-based techniques.

2 More formally, a basic block is defined as a sequence of instructions where the
instruction in each position dominates, or always executes before, all those in
later positions, and no other instruction executes between two instructions in
the sequence. Directed edges between blocks represent jumps in the control flow,
which are caused by control transfer instructions (CTIs) such as calls, conditional
and unconditional jumps, or return instructions.

12 C. Kruegel

Fig. 1.4. Two control flow graphs with an example of a common 4-subgraph.

To refine the specification of the control flow graph, we also take into
account information derived from each basic block, or, to be more precise,
from the instructions in each block. This allows us to distinguish between
blocks that contain significantly different instructions. For example, the sys-
tem should handle a block that contains a system call invocation differently
from one that does not. To represent information about basic blocks, a color
is assigned to each node in the control flow graph. This color is derived from
the instructions in each block. The block coloring technique is used when
identifying common substructures, that is, two subgraphs (with & nodes) are
isomorphic only if the vertices are connected in the same way and the color
of each vertex pair matches. Using graph coloring, the characterization of an
executable region can be significantly improved. This reduces the amount of
graphs that are incorrectly considered related and lowers the false positive
rate.

1.3.1 Control Flow Graph Extraction

The initial task of our system is to construct a control flow graph from the
program(s) that should be analyzed. This requires two steps. In the first step,
we perform a linear disassembly of the byte stream to extract the machine
instructions. In the second step, based on this sequence of instructions, we
use standard techniques to create a control flow graph.

Constructing a control flow graph is easy when the executable program is
directly available (e.g., as an email attachment or as a file in the file system).
However, the situation is very different in the case of network flows. The
reason is that it is not known a priori where executable code regions are
located within a network stream or whether the stream contains executable
code at all. Thus, it is not immediately clear which parts of a stream should
be disassembled. Nevertheless, network traffic must be analyzed to identify

1 Behavioral and Structural Properties of Malicious Code 13

worms. The problem of finding executables in network traffic is exacerbated
by the fact that for many instruction set architectures, and in particular for
the Intel x86 instruction set, most bit combinations map to valid instructions.
As a result, it is highly probable that even a stream of random bytes could
be disassembled into a valid instruction sequence. This makes it very difficult
to reliably distinguish between valid code areas and random bytes (or ASCII
text) by checking only for the presence or absence of valid instructions.

We address this problem by disassembling the entire byte stream first and
deferring the identification of “meaningful” code regions after the construction
of the CFG. This approach is motivated by the observation that the structure
(i.e., the CFG) of actual code differs significantly from the structure of ran-
dom instruction sequences. The CFG of actual code contains large clusters of
closely connected basic blocks, while the CFG of a random sequence usually
contains mostly single, isolated blocks or small clusters. The reason is that
the disassembly of non-code byte streams results in a number of invalid basic
blocks that can be removed from the CFG, causing it to break into many
small fragments. A basic block is considered invalid (i) if it contains one or
more invalid instructions, (i) if it is on a path to an invalid block, or (iii) if
it ends in a control transfer instruction that jumps into the middle of another
instruction.

As mentioned previously, we analyze connected components with at least
k nodes (i.e., k-subgraphs) to identify common subgraphs. Because random
instruction sequences usually produce subgraphs that have less than k& nodes,
the vast majority of non-code regions are automatically excluded from further
analysis. Thus, we do not require an explicit and a priori division of the
network stream into different regions nor an oracle that can determine if a
stream contains a worm or not. Experimental results (presented in [5]) support
our claim that code and non-code regions can be differentiated based on the
shape of the control flows.

Another problem that arises when disassembling a network stream is that
there are many different processor types that use completely different formats
to encode instructions. In our current system, we focus on executable code for
Intel x86 only. This is motivated by the fact that the vast majority of vulner-
able machines on the Internet (which are the potential targets for malware)
are equipped with Intel x86 compatible processors.

As we perform linear disassembly from the start (i.e., the first byte) of
a stream, it is possible that the start of the first valid instruction in that
stream is “missed”. As we mentioned before, it is probable that non-code
regions can be disassembled. If the last invalid instruction in the non-code
region overlaps with the first valid instruction, the sequence of actual, valid
instructions in the stream and the output of the disassembler will be different
(i.e., de-synchronized). An example of a missed first instruction is presented
in Figure 1.5. In this example, an invalid instruction with a length of three
bytes starts one byte before the first valid instruction, which is missed by two
bytes.

14 C. Kruegel

l Non-code L Code l

LIT LTI T T T[T [] syesteam
Missed instruction —» | | | | | Actual instructions
[[[| [1 | | Disassembler output

Synchronization point

Fig. 1.5. Linear disassembler misses the start of the first valid instruction.

We cannot expect that network flows contain code that corresponds to a
valid executable (e.g., in the ELF or Windows PE format), and, in general, it
is not possible, to identify the first valid instruction in a stream. Fortunately,
two Intel x86 instruction sequences that start at slightly different addresses
(i.e., shifted by a few bytes) synchronize quickly, usually after a few (between
one and three) instructions. This phenomenon, called self-synchronizing disas-
sembly, is caused by the fact that Intel x86 instructions have a variable length
and are usually very short. Therefore, when the linear disassembler starts at
an address that does not correspond to a valid instruction, it can be expected
to re-synchronize with the sequence of valid instructions very quickly [6]. In
the example shown in Figure 1.5, the synchronization occurs after the first
missed instruction (shown in gray). After the synchronization point, both the
disassembler output and the actual instruction stream are identical.

1.3.2 K-Subgraphs and Graph Coloring

Given a control flow graph extracted from a binary program or directly from
a network stream, the next task is to generate connected subgraphs of this
CFG that have exactly k nodes (k-subgraphs).

The generation of k-subgraphs from the CFG is one of the main contrib-
utors to the run-time cost of the analysis. Thus, we are interested in a very
efficient algorithm even if this implies that not all subgraphs are constructed.
The rationale is that we assume that the number of subgraphs that are shared
by two malware samples is sufficiently large that at least one is generated by
the analysis. The validity of this thesis is confirmed by our experimental de-
tection results, which are presented in Section 1.3.5.

To produce k-subgraphs, our subgraph generation algorithm is invoked for
each basic block, one after another. The algorithm starts from the selected
basic block A and performs a depth-first traversal of the graph. Using this
depth-first traversal, a spanning tree is generated. That is, we remove edges
from the graph so that there is at most one path from the node A to all

1 Behavioral and Structural Properties of Malicious Code 15

the other blocks in the CFG. In practice, the depth-first traversal can be
terminated after a depth of k£ because the size of the subgraph is limited to k
nodes. A spanning tree is needed because multiple paths between two nodes
lead to the generation of many redundant k-subgraphs in which the same set
of nodes is connected via different edges. While it would be possible to detect
and remove duplicates later, the overhead to create and test these graphs is
very high.

Qeée QGGG

Control flow graph Spanning tree

B @ @@ ©@ @& ©
@ ®@ @© © e @

4-node subtrees

Fig. 1.6. Example for the operation of the subgraph generation process.

Once the spanning tree is built, we generate all possible k-node subtrees
with the selected basic block A as the root node. Note that all identified
subgraphs are used in their entirety, also including non-spanning-tree links.
Consider the graph shown in Figure 1.6. In this example, k is 4 and node
A is the root node. In the first step, the spanning tree is generated. Then,
the subtrees {A, B, D, E}, {A, B, C, D}, and {A, B, C, E} are identified.
The removal of the edge from C to E causes the omission of the redundant
subgraph {A, B, C, E}.

1.3.3 Graph fingerprinting

In order to quickly determine which k-subgraphs are shared between different
programs or appear in different network streams, it is useful to be able to map
each subgraph to a number (a fingerprint) so that two fingerprints are equal
only if the corresponding subgraphs are isomorphic. This problem is known
as canonical graph labeling [1]. The solution to this problem requires that a

16 C. Kruegel

graph is first transformed into its canonical representation. Then, the graph is
associated with a number that uniquely identifies the graph. Since isomorphic
graphs are transformed into an identical canonical representation, they will
also be assigned the same number.

The problem of finding the canonical form of a graph is as difficult as
the graph isomorphism problem. There is no known polynomial algorithm
for graph isomorphism testing; nevertheless, the problem has also not been
shown to be NP-complete [15]. For many practical cases, however, the graph
isomorphism test can be performed efficiently and there exist polynomial so-
lutions. In particular, this is true for small graphs such as the ones that we
have to process. We use the Nauty library [8, 9], which is generally considered
to provide the fastest isomorphism testing routines, to generate the canonical
representation of our k-subgraphs. Nauty can handle vertex-colored directed
graphs and is well-suited to our needs.

When the graph is in its canonical form, we use its adjacency matrix to
assign a unique number to it. The adjacency matrix of a graph is a matrix
with rows and columns labeled by graph vertices, with a 1 or 0 in position
(vi,v;) according to whether there is an edge from v; to v; or not. As our
subgraphs contain a fixed number of vertices k, the size of the adjacency
matrix is fixed as well (consisting of k2 bits). To derive a fingerprint from the
adjacency matrix, we simply concatenate its rows and read the result as a
single k2-bit value. This value is unique for each distinct graph since each bit
of the fingerprint represents exactly one possible edge. Consider the example
in Figure 1.7 that shows a graph and its adjacency matrix. By concatenating
the rows of the matrix, a single 16-bit fingerprint can be derived.

o A B C D

G Al 01 10
B 0 0 0 1
C 0O 0 0 1 —» 01100001 0001 1000
e D 1 0 0 O
4-node subgraph Adjacency matrix 42.pit fingerprint

Fig. 1.7. Deriving a fingerprint from a subgraph with 4 nodes.

Of course, when k2 becomes too large to be practical as a fingerprint, it is
also possible to hash the rows of the adjacency matrix instead of concatenating
them. In this case, however, fingerprints are no longer unique and a good hash
function (for example, one proposed by Jenkins [2]) has to be used to prevent
frequent collisions.

1 Behavioral and Structural Properties of Malicious Code 17
1.3.4 Graph coloring

One limitation of a technique that only uses structural information to iden-
tify similarities between executables is that the machine instructions that are
contained in basic blocks are completely ignored. The idea of graph coloring
addresses this shortcoming.

We devised a graph coloring technique that uses the instructions in a basic
block to select a color for the corresponding node in the control flow graph.
When using colored nodes, the notion of common substructures has to be
extended to take into account color. That is, two subgraphs are considered
isomorphic only if the vertices in both graphs are connected in the same way
and have the same color. Including colors into the fingerprinting process re-
quires that the canonical labeling procedure accounts for nodes of different
colors. Fortunately, the Nauty routines directly provide the necessary func-
tionality for this task. In addition, the calculation of fingerprints must be
extended to account for colors. This is done by first appending the (numerical
representation of the) color of a node to its corresponding row in the adja-
cency matrix. Then, as before, all matrix rows are concatenated to obtain the
fingerprint. No further modifications are required to support colored graphs.

It is important that colors provide only a rough indication of the instruc-
tions in a basic block, that is, they must not be too closely associated with
specific instructions. Otherwise, an attacker can easily evade detection by
producing structurally similar executables with instructions that result in dif-
ferent colorings. For example, if the color of a basic block changes when an
add instruction is replaced by a semantically equivalent sub (subtraction)
instruction, the system could be evaded by malicious code that uses simple
instruction substitution.

In our current system, we use 14-bit color values. Each bit corresponds to
a certain class of instructions. When one or more instructions of a certain class
appear in a basic block, the corresponding bit of the basic block’s color value
is set to 1. If no instruction of a certain class is present, the corresponding bit
is 0.

|| Class | Description || Class | Description ||

Data Transfer | mov instructions String | x86 string operations
Arithmetic incl. shift and rotate Flags | access of x86 flag register
Logic incl. bit/byte operations || LEA load effective address

Test test and compare Float | floating point operations
Stack push and pop Syscall | interrupt and system call
Branch conditional control flow || Jump | unconditional control flow
Call function invocation Halt stop instruction execution

Table 1.3. Color classes.

18 C. Kruegel

Table 1.3 lists the 14 color classes that are used in our system. Note that it
is no longer possible to substitute an add with a sub instruction, as both are
part of the data transfer instruction class. However, in some cases, it might
be possible to replace one instruction by an instruction in another class. For
example, the value of register %eax can be set to 0 both by a mov 0, %eax
instruction (which is in the data transfer class) or by a xor %eax, %eax in-
struction (which is a logic instruction). While instruction substitution attacks
cannot be completely prevented when using color classes, they are made much
more difficult for an attacker. The reason is that there are less possibilities
for finding semantically equivalent instructions from different classes. Further-
more, the possible variations in color that can be generated with instructions
from different classes is much less than the possible variations on the instruc-
tion level. In certain cases, it is even impossible to replace an instruction with
a semantically equivalent one (e.g., when invoking a software interrupt).

1.3.5 Worm Detection

In this section, we show how the previously introduced structural properties
of executables can be used to detect polymorphic worms in network traffic.
To do so, we have to assume that at least some parts of a worm contain ex-
ecutable machine code. While it is possible that certain regions of the code
are encrypted, others have to be directly executable by the processor of the
victim machine (e.g., there will be a decryption routine to decrypt the rest of
the worm). Our assumption is justified by the fact that most contemporary
worms contain executable regions. For example, in the 2004 “Top 10”7 list
of worms published by anti-virus vendors [16], all entries contain executable
code. Note, however, that worms that do not use executable code (e.g., worms
written in non-compiled scripting languages) will not be detected by our sys-
tem. Based on our assumption, we analyze network flows for the presence of
executable code. If a network flow contains no executable code, we discard
it immediately. Otherwise, we derive a set of fingerprints for the executable
regions.

Our algorithm to detect worms is very similar to the Earlybird approach
presented in [14]. In the Earlybird system, the content of each network flow is
processed, and all substrings of a certain length are extracted. Each substring
is used as an index into a table, called prevalence table, that keeps track of
how often that particular string has been seen in the past. In addition, for
each string entry in the prevalence table, a list of unique source-destination IP
address pairs is maintained. This list is searched and updated whenever a new
substring is entered. The basic idea is that sorting this table with respect to the
substring count and the size of the address lists will produce the set of likely
worm traffic samples. That is, frequently occurring substrings that appear in
network traffic between many hosts are an indication of worm-related activity.
Moreover, these substrings can be used directly as worm signatures.

1 Behavioral and Structural Properties of Malicious Code 19

The key difference between our system and previous work is the mechanism
used to index the prevalence table [12]. While Earlybird uses simple substrings,
we use the fingerprints that are extracted from control flow graphs. That is, we
identify worms by checking for frequently occurring executable regions that
have the same structure (i.e., the same fingerprint).

This is accomplished by maintaining a set of network streams S; for each
given fingerprint f;. Every set S; contains the distinct source-destination IP
address pairs for streams that contained f;. A fingerprint is identified as cor-
responding to worm code when the following conditions on .S; are satisfied:

1. m, the number of distinct source-destination pairs contained in S;, meets
or exceeds a predefined threshold M.

2. The number of distinct internal hosts appearing in .S; is at least 2.

3. The number of distinct external hosts appearing in S; is at least 2.

The last two conditions are required to prevent false positives that would
otherwise occur when several clients inside the network download a certain
executable file from an external server, or when external clients download a
binary from an internal server. In both cases, the traffic patterns are different
from the ones generated by a worm, for which one would expect connections
between multiple hosts from both the inside and outside networks.

In a first experiment, we analyzed the capabilities of our system to de-
tect polymorphic worms. To this end, we analyzed malicious code that was
disguised by ADMmutate [7], a well-known polymorphic engine. ADMmutate
operates by first encrypting the malicious payload, and then prepending a
metamorphic decryption routine. To evaluate our system, we used ADMmu-
tate to generate 100 encrypted instances of a worm, which produced a different
decryption routine for each run. Then, we used our system to identify common
substructures between these instances.

Our system could not identify a single fingerprint that was common to all
100 instances. However, there were 66 instances that shared one fingerprint,
and 31 instances that shared another fingerprint. Only 3 instances did not
share a single common fingerprint at all. A closer analysis of the generated
encryption routines revealed that the structure was identical between all in-
stances. However, ADMmutate heavily relies on instruction substitution to
change the appearance of the decryption routine. In some cases, data trans-
fer instructions were present in a basic block, but not in the corresponding
block of other instances. These differences resulted in a different coloring of
the nodes of the control flow graphs, leading to the generation of different fin-
gerprints. This experiment brings to attention the possible negative impact of
colored nodes on the detection. However, it also demonstrates that the worm
would have been detected quickly since a vast majority of worm instances (97
out of 100) contain one of only two different fingerprints.

In order to evaluate the degree to which the system is prone to generating
false detections, we evaluated it on a dataset consisting of 35.7 Gigabyte of
network traffic collected over 9 days on the local network of the Distributed

20 C. Kruegel

Systems Group at the Technical University of Vienna. This evaluation set
contained 661,528 total network streams and was verified to be free of known
attacks. The data consists to a large extent of HTTP (about 45%) and SMTP
(about 35%) traffic. The rest is made up of a wide variety of application traffic
including SSH, IMAP, DNS, NTP, FTP, and SMB traffic.

We were particularly interested in exploring the degree to which false pos-
itives can be mitigated by appropriately selecting the detection parameter M.
Recall that M determines the number of unique source-destination pairs that
a network stream set S; must contain before the corresponding fingerprint
fi is considered to belong to a worm. Also recall that we require that a cer-
tain fingerprint must occur in network streams between two or more internal
and external hosts, respectively, before being considered as a worm candidate.
False positives occur when legitimate network usage is identified as worm ac-
tivity by the system. For example, if a particular fingerprint appears in too
many (benign) network flows between multiple sources and destinations, the
system will identify the aggregate behavior as a worm attack. While intuitively
it can be seen that larger values of M reduce the number false positives, they
simultaneously delay the detection of a real worm outbreak.

M 3 4 5 6 7 8 9 10 11
Fingerprints || 12,661 | 7,841 | 7,215 | 3,647 | 3,441 | 3,019 | 2,515 | 1,219 | 1,174
M 12 13 14 15 16 17 18 19 20
Fingerprints 1,134 944 623 150 44 43 43 24 23
M 21 22 23 24 25
Fingerprints 22 22 22 22 22

Table 1.4. Incorrectly labeled fingerprints as a function of M. 1,400,174 total fin-
gerprints were encountered in the evaluation set.

Table 1.4 gives the number of fingerprints identified by the system as
suspicious for various values of M. For comparison, 1,400,174 total fingerprints
were observed in the evaluation set. This experiment indicates that increasing
M beyond 20 achieves diminishing returns in the reduction of false positives
(for this traffic trace). The remainder of this section discusses the root causes
of the false detections for the 23 erroneously labeled fingerprint values for
M = 20.

The 23 stream sets associated with the false positive fingerprints contained
a total of 8,452 HTTP network flows. Closer inspection of these showed that
the bulk of the false alarms were the result of binary resources on the site that
were (a) frequently accessed by outside users and (b) replicated between two
internal web servers. These accounted for 8,325 flows (98.5% of the total) and
consisted of:

1 Behavioral and Structural Properties of Malicious Code 21

e 5544 flows (65.6%): An image appearing on most of the pages of a Java
programming language tutorial.

o 2148 flows (25.4%): The image of a research group logo, which appears on
many local pages.
490 flows (5.8%): A single Microsoft PowerPoint presentation.
227 flows (2.7%): Multiple PowerPoint presentations that were found to
contain common embedded images.

The remaining 43 flows accounted for 0.5% of the total and consisted of
external binary files that were accessed by local users and had fingerprints
that, by random chance, collided with the 23 flagged fingerprints.

The problem of false positives caused by heavily accessed, locally hosted
files could be addressed by creating a white list of fingerprints, gathered man-
ually or through the use of an automated web crawler. For example, if we
had prepared a white list for the 23 fingerprints that occurred in the small
number of image files and the single PowerPoint presentation, we would not
have reported a single false positive during the test period of 9 days.

1.4 Conclusions

In this chapter, we have introduced behavioral and structural properties of
malicious code. These properties allow a more abstract specification of mal-
ware, mitigating shortcomings of syntactic signatures.

Behavioral properties are captured by analyzing the effect of a piece of
code on the environment. More precisely, the behavior is specified by check-
ing for the destination addresses of data transfer instructions. In the case of
kernel modules, malicious behavior is defined as writes to forbidden regions
in the kernel address space. Using symbolic execution, each kernel module
is statically analyzed before it is loaded into the kernel. Whenever an illegal
write is detected, this module is classified as kernel rootkit and loading is
aborted.

The structure of an executable is captured by the subgraphs of the exe-
cutable’s control flow graph. Based on the results of graph isomorphism tests,
identical structures that appear in different executables can be identified. The
precision of the structural description is further refined by taking into account
the classes of instructions (not their exact type) that appear in certain nodes of
the control flow graph. Using structural properties of executables, the spread
of polymorphic worms can be identified. To this end, our system searches for
recurring structures in network flows. When the same structure is identified in
connections from multiple source hosts to multiple destinations, this structure
is considered to belong to a (possibly polymorphic) worm.

22

C. Kruegel

References

1.

2.

11.

12.

13.

14.

15.

16.

17.
18.

19.

L. Babai annd E. Luks. Canonical Labeling of Graphs. In 15th ACM Symposium
on Theory of Computing, 1983.

R. Jenkins. Hash Functions and Block Ciphers. http://burtleburtle.net/
bob/hash/.

G. Kim and E. Spafford. The Design and Implementation of Tripwire: A File
System Integrity Checker. Technical report, Purdue University, November 1993.
C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating
Mimicry Attacks Using Static Binary Analysis. In 14th Useniz Security Sym-
posium, 2005.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic
Worm Detection Using Structural Information of Executables. In 8th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID), 2005.
C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance
to Static Disassembly. In ACM Conference on Computer and Communications
Security (CCS), 2003.

S. Macaulay. ADMmutate: Polymorphic Shellcode Engine. http://www.ktwo.
ca/security.html.

B. McKay. Nauty: No AUTomorphisms, Yes? http://cs.anu.edu.au/ bdm/
nauty/.

B. McKay. Practical graph isomorphism. Congressus Numerantium, 30, 1981.

. T. Miller. TOrn rootkit analysis. http://www.ossec.net/rootkits/studies/

tOrn. txt.

T. Miller. Analysis of the KNARK Rootkit. http://www.ossec.net/rootkits/
studies/knark.txt, 2004.

M. Rabin. Fingerprinting by Random Polynomials. Technical report, Center
for Research in Computing Techonology, Harvard University, 1981.

D. Safford. The Need for TCPA. IBM White Paper, October 2002.

S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Finger-
printing. In 6th Symposium on Operating System Design and Implementation
(0SDI), 2004.

S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph The-
ory, chapter Graph Isomorphism. Addison-Wesley, 1990.

Sophos. War of the Worms: Top 10 list of worst virus outbreaks in 2004. http:
//www.sophos.com/pressoffice/pressrel/uk/20041208yeartopten.html.
Stealth. adore. http://spider.scorpions.net/“stealth, 2001.

Stealth. Kernel Rootkit Experiences and the Future. Phrack Magazine, 11(61),
August 2003.

Stealth. adore-ng. http://stealth.7350.o0rg/rootkits/, 2004.

