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Abstract—Malware remains one of the most significant secu-
rity threats on the Internet. Antivirus solutions and blacklists,
the main weapons of defense against these attacks, have only
been (partially) successful. One reason is that cyber-criminals
take active steps to bypass defenses, for example, by distribut-
ing constantly changing (obfuscated) variants of their malware
programs, and by quickly churning through domains and IP
addresses that are used for distributing exploit code and botnet
commands.

We analyze one of the core tasks that malware authors have to
achieve to be successful: They must distribute and install malware
programs onto as many victim machines as possible. A main vec-
tor to accomplish this is through drive-by download attacks where
victims are lured onto web pages that launch exploits against the
users’ web browsers and their components. Once an exploit is
successful, the injected shellcode automatically downloads and
launches the malware program. While a significant amount of
previous work has focused on detecting the drive-by exploit
step and the subsequent network traffic produced by malware
programs, little attention has been paid to the intermediate step
where the malware binary is downloaded.

In this paper, we study how clients in real-world networks
download and install malware, and present Nazca, a system
that detects infections in large scale networks. Nazca does not
operate on individual connections, nor looks at properties of the
downloaded programs or the reputation of the servers hosting
them. Instead, it looks at the telltale signs of the malicious
network infrastructures that orchestrate these malware installa-
tion that become apparent when looking at the collective traffic
produced and becomes apparent when looking at the collective
traffic produced by many users in a large network. Being content
agnostic, Nazca does not suffer from coverage gaps in reputation
databases (blacklists), and is not susceptible to code obfuscation.
We have run Nazca on seven days of traffic from a large
Internet Service Provider, where it has detected previously-unseen
malware with very low false positive rates.

I. INTRODUCTION

Malware is one of the most severe security threats on the
Internet. Once infected with malicious code, victim machines
become platforms to send email spam messages, launch denial-
of-service attacks, and steal sensitive user data.

A key challenge for attackers is to install their malware
programs on as many victim machines as possible. One ap-
proach is to rely on social engineering: for example, attackers
might send email messages that entice users to install attached
malware programs. While this technique works, it requires the
cooperation of victim users, and hence is often ineffective. An
alternative, and more effective, approach is to lure users onto
web pages that launch exploits against vulnerabilities in web
browsers (or their components, such as the PDF reader or the
Flash player). In this case, no user interactions are required,
and the malware is surreptitiously installed and launched on
the victim’s machine. The effectiveness and stealthiness of
drive-by downloads have made them the preferred vehicle for
attackers to spread their malware, and they are the focus of
the work presented in this paper.

The infection process in a drive-by download attack can be
divided into three phases. During the first phase (the exploita-
tion phase), the goal of the attacker is to run a small snippet of
code (shellcode) on the victim’s host. To this end, the attacker
first prepares a website with drive-by download exploit code.
When a victim visits a malicious page, the browser fetches
and executes the drive-by code. When the exploit is successful,
it forces the browser to execute the injected shellcode. In the
subsequent second phase (the installation phase), the shellcode
downloads the actual malware binary and launches it. Once
the malware program is running, during the third phase (the
control phase), it unfolds its malicious activity. Typically, the
malware connects back to a remote command and control
(C&C) server. This connection is used by attackers to issue
commands, to “drop” new executables onto the infected host
to enhance the malware’s functionality, and receive stolen data.

Most current techniques protecting users against malware
focus on the first and the third phases. A large body of
work targets the initial exploitation phase, trying to detect
pages that contain drive-by download exploits and prevent
browsers from visiting a malicious page in the first place. For
example, honeyclients crawl the web to quickly find pages
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with exploit code, and turn these findings into domain and
URL blacklists. Attackers have responded by quickly rotating
through malicious domains, making blacklists perpetually out-
of-date. Also, attackers have started to aggressively fingerprint
honeyclients and obfuscate their code to avoid detection [1].

Another large body of work focuses on the control phase,
attempting to identify the execution of malicious code on the
end host. Antivirus (AV) programs are probably the main line
of defense that is employed by most users. AV software relies
mostly on signatures to detect malicious programs when they
are stored to disk or executed. Unfortunately, these programs
are seeing diminishing returns in successful detections [2], as
malware writers modify their programs to avoid detection [3].
Researchers have also developed solutions that use signatures
or reputation-based systems to identify and block the directives
that the malware distributor issues to the infected hosts after
a successful infection. Attackers have reacted by encrypting
their communication channels and even using steganographic
techniques to make their command and control (C&C) traffic
appear legitimate.

So far, little attention has been paid to the installation
phase. At first glance, this makes sense as in the installation
phase, the shellcode typically issues an HTTP request that
fetches a program from a remote server, and then installs
and executes the malware locally. Often, this request is done
by simply invoking available functions in the user’s browser.
From the network point of view, such connections are hardly
suspicious, and look essentially identical to legitimate requests
performed by users who download benign programs (e.g.,
updates or shareware programs).

However, the situation changes significantly when “zoom-
ing out” and leaving the myopic view of individual malware
downloads. Instead, when considering many malware down-
loads together – performed by different hosts, but related
to a single campaign – a malware distribution infrastructure
becomes visible. In some sense, this malware distribution
infrastructure acts like a content distribution network. How-
ever, there are also differences, and these differences can be
leveraged to identify cases where malicious content (malware
programs) are distributed.

We present Nazca, a system that aims to detect web
requests that are used to download malware binaries. Similar to
the drawings in the Nazca desert, the malware downloads (and
the supporting distribution infrastructure) becomes more appar-
ent when observing a larger part of the picture/network. Our
system detects these large-scale traits of malware distribution
networks. Thus, it is designed to operate in large-scale net-
works, such as Internet Service Providers (ISPs), large enter-
prise networks, and universities. Moreover, our system focuses
on malware downloaded through HTTP requests. This design
choice is driven by the observation that an overwhelming
majority of drive-by exploits use the web to download malware
binaries. Finally, Nazca does not perform any analysis of the
content of web downloads, except for extracting their MIME
type. That is, we do not apply any signatures to the network
payload, do not look at features of the downloaded programs,
and do not consider the reputation of the programs’ sources.
This allows us to identify the downloads of previously-unseen
malicious software, enabling zero-day malware detection.

Our system monitors web traffic between a set of hosts
(typically, machines in the protected network) and the Internet.
The goal is to identify the connections that are related to
malware downloads. To this end, Nazca operates in three
steps: In the first step, the system identifies HTTP requests
and extracts metadata for subsequent analysis. This metadata
includes information on the connection endpoints, the URIs,
and whether an executable program is being downloaded.

In the second step, Nazca identifies suspicious web con-
nections whose HTTP requests download an executable file.
There are certain properties associated with the connection
that make it appear different from legitimate downloads. These
properties are designed to capture techniques employed by
malware authors to hide their operations from traditional
defense systems. Such evasive techniques include domain
fluxing, malware repackaging, and the use of malware droppers
for multi-step installations. An interesting and favorable trait
of our approach is that it complements well to the existing
detection mechanisms. That is, when malware authors employ
techniques to evade traditional approaches (such as malware
signatures or IP/domain reputation systems), their downloads
are easier to recognize for Nazca.

In the third step, Nazca aggregates the previously-identified
suspicious connections (candidates). The goal is to find related,
malicious activity so as to reduce potential false positives and
focus the attention on the most significant infection events.
Here, we build a graph of the malicious activities that Nazca
detected. This enables the reconstruction and observation of
entire malware distribution networks.

We have evaluated Nazca’s effectiveness on a one-week
traffic dataset from a commercial ISP. Our results show that
Nazca is effective in detecting malicious web downloads in
large-scale, real-world networks.

The main contributions of this paper are as follows:

• We present a novel approach to identify web requests
related to malware downloads and installations. Our
system operates in large networks, and identifies traits
of orchestrated malware distribution networks. Since
our approach does not analyze the downloaded pro-
grams, Nazca can identify unseen-before malware, and
is not defeated by content obfuscation.

• We introduce a three-step process to detect malware
downloads. First, we extract a short summary of
HTTP requests metadata. We then identify suspicious
candidate connections that exhibit features that are
anomalous for benign downloads. These features cap-
ture evasive attempts of malware authors to avoid
detection by traditional defense systems. Last, we
combine candidates to identify clusters of malicious
activity.

• Using seven days of traffic from a commercial ISP, we
evaluate the effectiveness of our system to detect mal-
ware downloads, and we compare this effectiveness to
popular blacklists.

II. APPROACH

Nazca aims at identifying HTTP connections downloading
malicious software. Our system is designed to operate in large-
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scale networks, such as ISPs, large enterprise networks, and
universities. That is, we assume that our system is positioned
at a vantage point where it can observe the traffic between a
large set of hosts and the Internet. In Section VII-D, we explore
in more detail how many hosts Nazca needs to observe to be
effective.

The ability to monitor the web traffic from larger number
of machines provides the key advantage that our system can
see – and correlate – multiple malware downloads related to a
specific campaign. This is crucial, since we do not analyze the
downloaded binaries or take into account the reputation of the
source of the download. Attackers have significant freedom in
crafting their malware programs, and have long used packers
and code obfuscation to limit the utility of traditional AV
signatures. Malware authors can also use different IPs and
domains to serve their software. As a result, blacklists and
domain reputation systems naturally lag behind and suffer
from limited coverage. By ignoring features that attackers
can easily change, and instead focusing on properties of the
malware distribution infrastructure, Nazca has the ability to
detect previously-unseen, malicious code.

Nazca inspects only IP and TCP packets headers, HTTP
headers, and a small portion of HTTP responses. We limit
Nazca’s analysis to HTTP traffic because we observed that it
is the protocol of choice for the vast majority of malware in
current circulations (see Section VII-A for details). One reason
for distributing malware via HTTP is that it is typically allowed
through corporate firewalls. When attackers implement custom
protocols to download their binaries, the risk is higher that
application-aware firewalls would simply drop the traffic (and
hence, block the infection).

The payload analysis of an HTTP response is limited to
detecting the MIME type of the content that the web server
returns and calculating a hash of (the beginning of) it. We
need to determine the MIME type of the server response to
distinguish between program (binary) downloads and other,
irrelevant content (such as web pages, images, etc.). We
compute the hash over the first portion of a program download
to determine whether two programs are (likely) identical or
different. Since we do not inspect properties of the code
that is being downloaded, but instead focus solely on the
malware distribution infrastructure, Nazca has the ability to
detect previously-unseen (zero-day) malware programs.

The following sections discuss the main steps of Nazca in
more detail.

III. EXTRACTION

During the extraction step, Nazca analyzes network traffic
by recording live packets on the wire or reading the PCAP
files. The goal of this step is to extract a metadata record for
each connection of interest. Nazca extracts a record for each
HTTP connection that initiates a download of a file whose
MIME type is not in our whitelist (MIME types of popular
formats for images, videos, audio, and other innocuous files).

More specifically, Nazca reassembles packets and aggre-
gates them into streams. For performance reasons, we do not
reassemble the complete stream, but just enough to perform
protocol detection. We discard any stream that does not contain

HTTP requests or responses. Whenever we find an HTTP
request, we analyze the corresponding answer from the server.
In particular, we are interested in determining the MIME type
of the object that the server returns. To this end, we do not
trust the server HTTP Content-Type header, as we have
found it to be often misleading. Instead, we perform a quick
Content-Type sniffing with libmagick (the library that
powers the file command in GNU/Linux). We also attempt
to decompress payloads zipped with popular protocols (such
as zip, gzip, bzip2, etc.).

Whenever our analysis recognizes that a downloaded file’s
MIME type is not whitelisted, we record the following in-
formation: source (client) and destination (server) IP address
and port, URI that the client requests (everything, including
parameters), the value of the User-Agent HTTP header
field, and a content hash of the uncompressed first k bytes at
the beginning of the file. k is a configurable value that should
be large enough to minimize collisions, without sacrificing
performance (see [4]). In this paper, we use the first kilobyte.

The records that correspond to interesting connections can
be recorded in real-time, as soon as the information is avail-
able. In a typical network, the amount of data that is collected
in this fashion is very small (compared to the data volume
on the wire). Hence, we do not expect any scalability issues,
even for very large networks. For example, in Section VII-E,
we show that we need to store only 286 KB of metadata per
client per day. Since our default time window is typically less
than a day, old data can be discarded.

IV. CANDIDATE SELECTION

Nazca works by correlating information from multiple
connections. In the candidate selection step, Nazca considers
the set of all metadata records that are captured during a
certain time period T . One can run the candidate selection
step periodically, analyzing the connections in chunks of T .
Alternatively, one could keep a sliding window of length T .
The goal of this step is to produce a candidate set that contains
suspicious connections. These candidates are connections that
exhibit behavior that is typically associated with malicious
download or install activity.

We use four different techniques to identify candidates.
These four techniques focus on cases of repackaged malware,
distributed malware hosting, ad hoc malicious domains, and the
use of malware droppers. Our techniques are designed to be
fast so that they can work on large-scale datasets. Of course, we
cannot expect a single technique to handle all ways in which
malware is distributed. However, our experiments demonstrate
that the combination of our techniques provide good coverage.
Moreover, if needed, it is easily possible to add additional
techniques.

We now present the techniques used in the filtering step
in detail. Keep Figure 1 for reference on how to interpret the
various symbols on the graphs that accompany them.

A. Detection of File Mutations

Our first detection mechanism captures attempts by mal-
ware authors to bypass antivirus signatures. To avoid signature-
based detection at the end host, malware authors frequently
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Fig. 1. Legend to interpret graphs throughout the paper.

change their files. Typically, this is achieved by packing the
basic malware program, using a different (encryption) key for
each iteration. The technique of preparing and serving a new
variant of a malware program (or family) is called server-side
polymorphism. Alternatively, malware authors can prepare a
set of malicious executables, and serve a different one for each
request.

Our technique to detect file mutations (i.e., server-side
polymorphism) works by looking for download records that
are (i) associated with a single URI and (ii) download more
than n different files (determined by the hashes of the files). We
discuss the choice of a suitable threshold for n later. The nice
property of this technique is that increased efforts by cyber-
criminal to avoid being detected by antivirus signatures make
it easier for our technique to detect such activity.

Examples of malicious domains that trigger this tech-
nique include cacaoweb.org, which hosts URIs that serve an
executable that changes every few hours (and that is still
active at the time of writing). Other examples are the three
domains www.9530.ca, www.wgcqsf.com, and 585872.com.
All three domains host the same URL path /dlq.rar, which
contains malware that attacks Internet Explorer. This example
is particularly interesting because it shows that the malware
distributors are trying not only to evade antivirus signatures
by repackaging their malware (therefore exposing to detection
by our technique), but also to achieve robustness to blacklisting
and take-downs by using multiple domains, a behavior that is
handled by our subsequent techniques.

We expect that only a small minority of benign web sites
exhibit a similar behaviour, where a URI keeps pointing to
different executable files within a short time period. One reason
for this is that quickly rotating files negatively affects browser
and proxy caching, which in turn increases the page loading
time and the server load. Another reason is that such behavior
might cause unexpected timing effects, where the code that a
client receives depends on the precise time of access. We found
only one family of programs that seem to use such behavior,
namely, antivirus software itself. Since there are only a few
domains associated with well-known AV software, we simply
whitelist those domains.

B. Detection of Distributed Hosting and Domain Fluxing

Cyber-criminals, like regular content providers, must en-
sure that their sites (and malware programs) are always avail-
able. Any downtime results in fewer compromised users, and
thus, a loss of revenue. For this reason, many cyber-criminals
replicate their infrastructure on multiple servers, much like
Content Delivery Networks (CDNs). Unlike CDNs, cyber-
criminals need to take one step further as they face defenders
that are actively trying to shut them down. Thus, malicious
distribution networks have different properties than benign
CDNs.

Our technique works in two steps. First, we attempt to
find CDNs. We then use a classifier to distinguish between
legitimate and malicious CDNs. As we show later, we found
that a decision tree classifier performs well for our purpose.

For the first step, we cluster domains so that two domains
end up in the same cluster if they host at least one identical
file (based on the file hash). That is, when we see web requests
to URIs that link to a file with hash h on domains d1 and d2,
respectively, both are put into the same cluster. We connect
two clusters when we find a single file that has been hosted
by at least one element (domain) in each cluster. All clusters
that contain two or more elements are considered to be CDNs.

For the second step, we distinguish between malicious
and benign clusters (CDNs). This distinction is made using
a classifier that we trained on a small data set of manually
labeled malicious and benign clusters. The classifier leverages
six features, as described below:

Domain co-location: To reduce operating costs, some
cyber-criminals opt to host different domain names on the same
server (IP address), all serving the same malware (possibly,
under different names). Benign software is less likely to be
distributed in such manner, because a single host defeats the
idea of redundancy and load balancing. This feature is equal
to the number of hosts, divided by the number of domains.

Number of unique top-level domain names: To defeat
domain blacklisting, malware typically uses a variety of top-
level domains (TLDs). Legitimate CDNs might use several
domains, but they are all sub-domains under a single TLD.
For example, Facebook and Netflix use a single top-level
domain to distribute their files. Exceptions exist in a form of
legitimate software mirrors dispersed over different domains
that commonly serve open software.

Number of matching URI paths and Number of match-
ing file names: Legitimate CDNs are typically very well
organized, and every server replicates the exact directory
structure of the other ones. This is mainly for efficiency, which
is the central focus of a CDN. Malicious distributed hosting
instead focuses on avoiding blacklisting. Because of this, file
names and paths are often different. For these features, we
compute the number of URI paths (and filenames) that appear
in more than one domain in the cluster, divided by the number
of domains.

Number of URIs per domain: Malware distributors
usually have a small number of URLs serving executables
(often, a single one) from each of their domain. In contrast,
legitimate CDNs have vast directory structures. We leverage
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Fig. 2. Candidates selected by the Distributed Hosting technique.

this difference as an indication of maliciousness. We note that
malware distributors, with some effort, could mimic this aspect
of a legitimate CDN. However, we found this to be quite
uncommon. For this feature, we count all the URIs across all
domains in the cluster, and we divide this by the number of
domains.

Served file types: File type diversity is also indicative:
while most domains serve different file types, malware CDNs
mostly serve executables. For this feature we divide the number
of executables that we have seen hosted on the cluster, divided
by the total number of files.

As an example of a malicious CDN, consider three
URIs http://searchyoung.org/dfrg/dfrg, http://clickyawn.org/
dfrg/dfrg, and http://clickawoke.org/dfrg/dfrg. We see that the
same executable is offered on three different domains. The
file is a fake optimization software called “HDD repair.”
Here, all three domains offer the download under the same
path dfrg/dfrg. This is not always the case, as shown in
Figure 2. The malicious infrastructure in this figure is very
interesting, as it showcases how distributed malware hosting
tries to evade blacklisting by using multiple domains, servers,
payloads, file names, and URL paths. We explain the details
of this graph and the meaning of the different symbols in the
next section. For this discussion, it can be seen how pairs of
different URIs are linked together because they are linked to
identical files.

Cyber-criminals often decide to quickly run through many
domains, trying to stay ahead of domain blacklists. This is an
evasion technique called domain fluxing. This evasive behavior
is also captured by our technique as such activity looks similar
to a CDN where only a single domain is used at any point in
time.

C. Detection of Dedicated Malware Hosts

One technique that cyber criminals use to make their in-
frastructure more robust is to set up dedicated backend servers
that deliver malware programs as part of a single domain.
Typically, these servers only host the malicious binary. Traffic

redirection services forward requests to the dedicated host as
part of a successful drive-by download exploit. By hiding the
dedicated malware server behind multiple layers of redirection,
it is more difficult to detect and, ultimately, to take down. Since
their sole purpose is delivering malware, dedicated hosts only
host a small number of executable payloads (often times, only
a single one) and at most a very small number of HTML
and JavaScript files to support malware delivery. This is very
different from a normal web server that hosts many different
HTML pages, CSS files, and JavaScript programs.

With this technique, we check for those dedicated malware
servers. To this end, we look for domains and IP addresses (in
case the server is accessed directly via its IP address) that are
involved in the download of a single executable file and host
at most one other URI that can be an HTML page. From the
set of candidates that this technique detects, we remove all
instances that serve an executable that we have seen hosted on
another domain (based on the file hash). The reason is that this
technique specifically checks for single, dedicated hosts that
are involved in a particular campaign. The previous technique
already handles cases where malware authors distribute their
samples over multiple hosts (domains).

As an example, we found dedicated servers (sub-domains)
hosted under the 3322.org domain. These servers were
used by the Nitol botnet and have since been taken
down after a legal action pursued by Microsoft [5]. More-
over, many executables that were found by this tech-
nique had names that try to lure the user to execute
them (e.g., emule_ultra_accelerator_free.exe,
FreeTorrentViewer.exe). These names are unique with
respect to the rest of downloads that we observed.

D. Detection of Exploit/Download Hosts

When a vulnerable client visits an exploit website and
the browser is successfully exploited, the shellcode silently
downloads the second-step malware binary. In some cases, the
host that serves the exploit is the same server that also delivers
the malware program. Reusing the same server for both exploit
and malware is a rational decision as the attacker knows that
the server is up and unblocked. After all, it just delivered the
infection.

Looking at the network traffic of such an incident, we
observe two subsequent requests: one from the browser and
one from the shellcode. If the malware writer is not careful
and does not use the exploited browser’s code to download
the malware binary, the format of the second request will
differ from a typical browser request from that user. With
this technique, we leverage such discrepancies to identify
suspicious requests. In particular, we look for destinations that
are contacted more than once by the same IP address, but have
different User-Agent HTTP header field values. Moreover,
we check whether the User-Agents of the subsequent
requests appear in requests that download the files. That is,
we compute a score for each User-Agent, as the number
of executables downloaded with that User-Agent, divided
by the total number of downloads made with that agent (we
count this during the Filtering Step). If this score is over a
certain threshold (discussed in Section VI-D4), we consider
the domain that is being contacted as a candidate for Nazca’s
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last step. The assumption is that malicious download requests
often use the same (hard-coded) User-Agent values. Hence,
when the download request involves a User-Agent value
that is indicative of download requests in general, the corre-
sponding requests are considered suspicious. Otherwise, they
are discarded as likely benign.

There are legitimate cases that could trigger this technique
but result in false positives: a user could access the same site
with multiple browsers (for example, apps in iOS devices have
different User-Agent strings), or multiple users behind a
NAT or a fast-rotating DHCP might access a specific site, and
trigger our detection. We mitigate these issues by restricting
the maximum time delta δ between a browser and a suspi-
cious User-Agent visiting a domain. In our experiments,
all malicious connections were issued within one minute of
the infection. Another mitigation that we did not employ is
filtering out popular domains that are constantly hit by multiple
browsers.

An example of a domain identified via this technique is
pacedownloader.com. This site is a file-sharing site that hosts
bait software with hidden, malicious functionality, alongside
clean software. A user in our dataset downloaded GZIP2
decompressor from the culprit domain. Unfortunately, this
software contained malicious code. Specifically, after being
launched, the Trojan (malware) component issued an HTTP
request to the same domains to download additional, unwanted
software (Funtool, a browser toolbar). This second request
had the User-Agent field set to NSISDL/1.2. This is
a framework by NullSoft, designed to ease the creation of
installers. This framework is very popular among malware
writers because it allows downloading additional software at
runtime. Interestingly, this framework is abused so frequently
that it is blocked by Kaspersky’s AV software, and is detected
by Snort rules published by EmergingThreats.

V. DETECTION

The end result of Nazca’s candidate selection step is
a collection of URIs that have exhibited some suspicious
behavior, and thus, have been selected by one (or more) of our
candidate selection techniques. These techniques are designed
to efficiently filter the majority of benign traffic; however, they
occasionally misclassify benign traffic as suspicious, as they
miss contextual information to make a more accurate decision.

To remove false positives and focus the attention of the se-
curity administrator on large malware campaigns, we leverage
the scale of our dataset: in particular, the fact that it often
contains multiple clients’ interactions with various portions
of a malware distribution infrastructure (which might span
multiple hosts and domains). If enough of these interactions
are captured, they expose to Nazca the overall structure of
these malware distributions services and their interconnections.
We call this a “malicious neighborhood”; that is, a collection
of domains, hosts, executable files, and URLs that, bundled
together, define and compose one (or multiple) malicious
distribution services.

An example of a complete malicious neighborhood is given
in Figure 3. Here, we have several clients that download
several malicious executables from a variety of sources, hosted
on several servers. The malware they are downloading turns

them into a botnet’s zombies. To receive commands from the
botnet’s C&C server, these clients connect to a variety of
IP addresses, and download their instructions. Note that the
overall structure of the malicious infrastructure is not visible
when we operate on a single connection or single host level.

Why are malware distribution infrastructure intercon-
nected? We see three fundamental reasons: cost effectiveness,
availability, and business deals among cyber-criminals.

As any web developer, cyber-criminals face the need of
maximizing their availability while limiting their expenses.
Their resources are therefore limited: servers and domain
registrations come with a price tag and need to be used
efficiently, so that profits are maximized. Hence, they co-
locate multiple malicious domains on the same server (e.g.,
Figure 2), and multiple malware specimens on the same
domain. Moreover, to achieve availability against blacklisting,
miscreants deploy multiple copies of their C&C servers and
initial attack domains, and discard them as they get blacklisted.

Finally, the economic ecosystem supporting malware is
complex, and cyber-criminals tend to specialize in offering a
particular service [6]. For example, some focus on compromis-
ing hosts and selling their bots. Others purchase access to bots
and use them as platform to send spam. Yet others develop
exploits that are sold to those that want to infect machines.
From the point of view of the malicious neighborhood graph,
we expect to see clients that contact domains related to
attackers that infect machines. Afterwards, we see infected
machines connect to a different set of domains; those that are
related to the C&C infrastructure of the malware that has been
installed.

In this detection step, we build malicious neighborhood
graphs for each candidates produced by the candidate selection
step. If a candidate is actually malicious, it is likely (as we
have experimentally validated) that there are other malicious
candidates in the same graph, belonging to the same malicious
neighborhood. From this graph, we then compute for each
candidate a confidence score on its likelihood to be malicious.
This score is based on how many other candidates appear in
the same graph and how close they are to the input candidate
in the graph.

A. Malicious Neighborhood Graph Generation

We define the malicious neighborhood as the collection of
malicious activities related to a suspicious candidate, which is
used as the starting point of the graph.

Neighborhood graphs are undirected and contain heteroge-
neous nodes that represent the following entities: IP addresses,
domain names, FQDNs, URLs, URL paths, file names, and
downloaded files (identified by their hash value). A simple
graph that we invite the reader to keep as a reference is
shown in Figure 1. It represents a zipped executable file being
downloaded from http://www.example.com/files-
/malware.zip.

We build these graphs incrementally. At initialization, the
graph comprises only the seeding suspicious candidate; it
can be a URL or a FQDN, depending on the technique that
generated it. We then execute a series of iterations to grow

6



Fig. 3. A malicious neighborhood graph, showing clients that got infected and joined a botnet (i.e., they started contacting the botnet’s C&C server). The
various tiny snippets of texts, which lists the URLs of all the candidates, can be ignored.

the graph, until the graph reaches its pre-set size limit (in our
experiments, 4,000 nodes), or we cannot grow it anymore.

At each step, we consider if any node in the graph has
some relation with entities that are not yet in the graph. If
there is any, we add the corresponding entity. We consider the
following relations:

• URLs belonging to a domain or FQDN (resource
reuse)

• Files being downloaded from the same URL

• Domains/FQDNs being hosted on a server (resource
reuse)

• URLs having the same path, or file name (availability,
ease of deployment)

• Files being fetched by the same clients

For example, let’s build a graph surrounding the candi-
date domain 04cc.com. This domain is hosted on server
58.218.198.119, hence we add this host to the graph. This
server also hosts taobao91.com, as Figure 2 shows, so we
add the latter to the graph, and so on.

Finally, we apply some post-processing heuristics that
remove the parts of the graph that do not convey any useful
information for the subsequent metric calculation, such as
clients that are leaves in the graph with a single parent.

While building the graph, we employ a few methods to
ensure that the graph covers a sizeable portion of the malicious
infrastructure it represents. We do so to avoid, for example
the graph expansion iteration keeps adding URL after URL
to the same domain that offers many similar-looking URLs,
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instead of moving to neighbor domains and thus describing a
larger portion of the infrastructure. In particular, we grow the
graph always in the direction of maximum interest, which is
toward domains that are yet to be included in the graph. Since
it conveys more information that multiple clients that visit that
domain also happen to browse other suspicious domains, we
apply this rule first.

We also employ some techniques to keep the graph size
manageable. First, when we explore other URLs that a client
in the graph has visited, we only add to the graph the URLs that
one (or more) of our technique has deemed suspicious. This is
to avoid inserting to the graph the benign traffic generated by
the user. Also, we avoid adding additional URLs belonging to
popular domains (in our experiment, domains that have been
visited by more than 10% of the hosts in the dataset). Note that
this does not imply that popular domains cannot be present in
the graph; they can still be added as the seeding candidate,
selected by our techniques. In this case, we consider this an
exception and do not apply this method. In fact, both the
Malicious CDN and the Exploit/Download Hosts techniques
have identified suspicious candidates in the popular website
phpnuke.org. This website has been exploited at the time
when our dataset was taken and was used to serve malware to
unsuspecting users. Also, to avoid the graph exploding in size,
we do not expand popular file names and URL paths (such as
index.html and ’/’).

B. Malicious-likelihood Metric

Once one of these graphs is generated for a particular
suspicious candidate, simply by looking at it, a security analyst
can decide with high accuracy which domains and URLs in
the graphs are malicious. The rule of thumb is the following:
if many suspicious candidates are included in the same graph,
they are likely to be malicious. If they are very scarce, they
are likely to be false positives. This, in fact, follows from
the reasoning made in the previous section: both malicious
and benign services have affinities with similar services. To
encapsulate this guideline in a metric that can be computed
automatically, we devise our malicious-likelihood metric.

In particular, our metric indicates the likelihood that the
candidate under scrutiny is malicious, if all the other candidates
in the graph are postulated as malicious. For each suspicious
candidate, we compute the shortest distances to all the remain-
ing suspicious candidates in the graph. Different link types,
generated by the various affinities described above, carry a
different link weight, depending on the likelihood that one end
of the link being malicious implies that the other end is also
malicious. For example, if two candidate URLs have links to
the same payload (which means that they both delivered it at
some point in time), and one is malicious, the other is also
surely malicious. The links’ weights are assigned as follows.
A smaller link weight represents a higher probability that the
maliciousness of one end of the link implies the maliciousness
of the other:

• url ←→ payload: weight 1

• url ←→ server: weight 1

• url ←→ client: weight 4

• weight 2 for any other case.

We evaluated the sensitivity that the metric has to these
values: as long as the ordering of the link values is respected,
the resulting values for the metric are scaled and yield similar
results in the suspicious candidates rankings. Once these
shortest path distances are computed, our metric Mj for the
candidate j can be computed as:

Mj =
∑

i∈candidates

1

shortest path(i, j)
.

This formula encloses the concept that suspicious candidates
close to the candidate under scrutiny make it more likely that
the latter is malicious. In fact, the more and the closer they
are, the larger the metric, whereas a few candidates far away
are of little significance.

Having computed this metric for all the candidates, we
can now rank them from the most to the least likely to be
malicious. In our experiments, we show the performance of a
maliciousness classifier that we trained, based on this metric.

VI. EVALUATION

We experimentally validate our initial hypothesis that
Nazca can effectively complement antivirus software and
blacklists, detecting malware that evades these legacy solu-
tions. We first provide a description of and insights into our
datasets.

A. Traffic Collection

Our data comprises nine days of traffic from a commercial
ISP. We use the first two, non-consecutive, days as our training
set to develop our techniques and observe malicious behaviors.
The remaining seven days, collected two months later, are used
exclusively as our testing set. The network traces cover the
traffic of residential and small business clients, using ADSL
and fiber.

More specifically, the traffic for the two days in the training
dataset was collected by the ISP on April 17th, 2012 and
August 25th, 2012. For each TCP connection, at most 10
packets or 10 kilobytes were collected, starting from the
beginning of the stream. The seven day testing dataset was
collected from October 22nd to October 28th, 2012. To further
limit the size of the collected data, for this dataset, at most
five packets or five kilobytes were collected from every TCP
connection. Moreover, the traffic to the most popular 100
domains (in volume of traffic) were removed.

In our two-days training dataset, we found 52,632 unique
hosts, as identified by their IP address. 43,920 of them operate
as servers, whereas 8,813 operate as clients. 101 hosts show
both client and server behavior; these hosts have small websites
running on a machine that is also used as a workstation. The
dataset comprises of 4,431,472 HTTP conversations where the
server responds with a non-whitelisted MIME type. For these
connections, we counted 8,813 clients that contacted 22,232
distinct second-level domains. The seven days worth of test-
ing dataset contains 58,335 hosts, which produced 9,037,419
HTTP requests for non-whitelisted file MIME types, to a total
of 28,194 unique second-level domains. A total of 3,618,342
unique files where downloaded from 756,597 distinct URLs.
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Blacklist Records Type Size Present in Dataset Present Executables Present Malware
Train Test Train Test Train Test Train Test

Google Safe Browsing* URLs - - 116 237 22 50 22 1
Lastline IPs and FQDNs 20,844 21,916 25 30 24 25 13 2
DNS-BH IPs and FQDNs 23,086 25,342 86 34 76 11 3 2
PhishTank* FQDNs 3,333 10,438 10 0 6 0 0 0
ZeusTracker* IPs and FQDNs 1,043 1,019 3 3 2 1 0 0
Ciarmy* IPs 100 100 0 0 0 0 0 0
Emerging Threats (Open) IPs and FQDNs 1,848 1,927 0 2 0 2 0 1

All blacklists combined 236 271 128 77 33 4
TABLE I. MALWARE DETECTION IN OUR TRAINING AND TESTING DATASETS USING POPULAR BLACKLISTS.

.

Fig. 4. CDF of the number of User-Agents from each IP address.

The HTTP requests that download non-whitelisted files are of
our interest and form the input to our detection techniques.

To estimate the number of users served by this ISP,
we look at the distribution of the User-Agents HTTP
headers (see Figure 4). In both dataset combined, 89.9%
of the IP addresses that operate exclusively as clients are
associated with no more than ten different User-Agents.
Here, we ignore User-Agents from popular AV software,
since they keep their update version in that string. We also
discard User-Agents from iPhones, since they encode the
application name (and hence, an iPhone produces requests
with a variety of User-Agents). Since a single workstation
typically employs a few User-Agents (e.g., one or two
browsers, several software updaters), these IP addresses are
probably in use by single households, and the remaining 10.1%
by small businesses.

B. Defining Maliciousness

Before discussing our experimental results, we need to have
an operational definition of what constitutes maliciousness
for a downloaded executable. In our experiments, we used
VirusTotal as a basic oracle to discriminate malicious and
benign executables. More precisely, we consider any software
to be malicious when it tests positive against two or more AV
engines run in VirusTotal. We only accept AV classifications
that identify the malware strain and discard generic heuristics

such as Heuristic.LooksLike.HTML.Infected and
IFrame.gen. We are aware that this choice might seem
counter-intuitive, since we claim that our system can detect
zero-day malware. However, in the wild, many (most) samples
are detected by at least some AV programs, especially after
some time has passed. Thus, using VirusTotal as an approxi-
mation of the ground truth seems reasonable. Also, when we
detect samples that are later confirmed by one or more antivirus
engines, we do so without looking at the actual file itself.

For cases that (i) are not clearly classified by VirusTotal
or (ii) match a blacklist record and test benign in VirusTotal,
we run the executables in the Anubis sandbox [7] and perform
manual inspection, We rely exclusively on VirusTotal for our
testing dataset because of its large amount of executables. This
makes deeper (manual) analysis prohibitively expensive.

For privacy reasons, after recording the traffic, the ISP has
kept the dataset for several months on hold before releasing
them to us. This is because the datasets contain information
that should be kept private, including session cookies of
the ISP’s clients. Since both dataset contain only the first
few kilobytes of each connection, we cannot recover the
executables downloaded in the traffic directly from our data.
Instead, we fetched these files from the web using the recorded
URIs and discarded all those whose beginning did not match
the ones present in the collected traffic. This has led us to
classify executables in three categories: benign, malicious,
and unknown, when we could not find a live copy of the
executable. We are aware that this operational definition of
maliciousness has limitations that might lead to a small amount
of misclassifications, but it is the price we pay to have access
to such a sensitive dataset.

C. Blacklists

We apply a comprehensive set of popular blacklists to our
dataset to show how effectively a meticulous ISP could block
malware, using the most straightforward and popular solution.
The results are shown in Table I. For accuracy, we applied the
version of these blacklists that was available during the dataset
collection. For the blacklists that were not available during the
data collections, a later version was applied and marked with
an esterisk in the table.

D. Candidate Selection Step

To evaluate the efficacy of Nazca’s Candidate Selection
Step, we apply our four techniques to our training and testing
datasets. When some parameters need tuning, we use (part
of) the training dataset. We evaluate each technique in detail.
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Before that, we show the overall results of the Candidate
Selection Step in Table II. We note that the blacklists and
our techniques identify two almost separate sets of malware in
our datasets. Their intersection is limited to nine elements in
the training dataset and none in the testing dataset.

We manually inspected the 24 downloads of malware that
were detected by the blacklists but ignored by Nazca in the
testing dataset. These are all pieces of malware (.doc, .jar,
.dll, etc.) that have been downloaded by a single client, which
did not show signs of infections observable in the traffic. For
example, a client downloaded a malicious DLL after visiting
a gaming website. After that, the client navigated Facebook
for a few minutes, and made no other requests until midnight,
when our traffic collection was halted. This kind of isolated
cases defeat many of our techniques (e.g., a single download
cannot trigger the File Mutations technique), and evade Nazca.
This however, was expected; Nazca is designed to complement
traditional solutions, not to replace them. Note also that the
client in question was running ESET NOD32 antivirus (we can
infer that from the User-Agents of its connection), which
might have prevented the infection.

Finally, we attribute a higher count of candidates marked as
Unknown in the testing dataset to the fact that we received this
second dataset with a longer delay compared to the training
dataset. Many servers have gone offline by the time we were
fetching their payloads. Although this quick take down could
be an indication that some malicious activity was taking place,
we do not use this in our evaluation.

Technique Type Malware Benign Unknown
Train Test Train Test Train Test

File Mutations URLs 43 8 0 11 16 107
Distributed Hosting FQDNs 45 155 4 17 42 238
Isolated Hosting FQDNs 68 145 12 233 47 140
Exploit/Download Hosts FQDNs 29 16 9 3 28 152

All techniques combined 117 324 9 258 85 637
TABLE II. EFFICACY OF OUR TECHNIQUES.

.

1) Detection of File Mutations: With this technique, we
look for URLs that deliver different payloads over time. One
such URL is shown in the malicious neighborhood graph in
Figure 5. We have already shown a graph containing candidates
detected by this technique in Figure 3 where all the C&C
endpoints at the center of the figure exhibit this behavior.
Applying this technique to the testing set, we also found a
different set of URLs that was operating as a C&C.

In Figure 6, we show the number of variations across all
URLs that show this behavior in the training dataset. If we
consider only URLs that have shown more than 500 variations
during these two days, we obtain exclusively malicious URLs.
However, just four URLs fulfill this requisite. Instead, with
the minimum possible threshold, which is two versions per
day, this technique detects 49 malicious URIs in our training
dataset. However, it also has 6,702 false positives, 3,864 of
which are Antivirus URIs. The rest includes many failed/trun-
cated downloads. Clearly, this performance is not acceptable
and, by looking at the graph, we should set a threshold
somewhere between 10 and 50. Notice that the majority of
the benign URLs that trigger this technique are endpoints
contacted by AV updaters. We can easily filter them with a

Fig. 5. Candidate selected by the Mutating Payloads technique (for clarity,
not all payloads are shown in the graph).

Fig. 6. Yield of different thresholds in the Mutating Payloads technique.

small whitelist: specifically, only six antivirus domains account
for all the false positives in this area.

To set a more sensible threshold, we trained a simple
classifier using five-fold cross validation on the training set,
which has chosen a threshold of 12 variations a day. We
show the performance of varying this threshold on the training
dataset in Figure 7. The classifier choice is intuitively correct,
as it yields a 91.1% true positive rate, with a 5.8% false
positive rate.

We also studied the timing of the changes in the payloads,
but found that there is no distinctive difference among the
trends of these timings in malicious and benign URLs, other
than the fact that malicious URLs tend to change more often.

2) Detection of Distributed Hosting and Domain Fluxing:
We look for groups of domains that host a similar set of
malicious executables. To evaluate this technique, we first
discover all groups of domains that have an intersection of the
file they offer. From each of these tentative distributed hosting
infrastructures, we extract the features listed in Section IV-B.
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Fig. 7. Mutating Payloads technique: performance with respect to the
threshold.

Distributed hosting infrastructures Malicious Benign Class Precision

Predicted Malicious 12 5 70.59%
Predicted Benign 0 128 100%

Class recall 100 % 96.24%
TABLE III. DISTRIBUTED HOSTING: CLASSIFIER PERFORMANCE.

.

We then train a few classifiers using the leave-one-out cross
validation. The classifier that performs the best in the training
dataset is a Decision Tree classifier, as shown in Figure 8.
This classifier learns that a malicious distributed hosting in-
frastructure (i) hosts primarily executables, (ii) spans across
many first-level domains, many of which are co-located on the
same server, or (iii) spans across to just two or three domains,
exclusively hosting the malware and a couple of supporting
files (usually JS and HTML).

The classifier’s performance, evaluated on the training set
via the leave-one-out cross validation, is shown in Table III.
Note that the classifier operates on the entire distributed
hosting infrastructure as a single sample. 12 malicious infras-
tructures in the training set account for a total of 45 malicious
domains. Three of the five benign CDNs that are incorrectly
predicted as malicious belong to antivirus companies (Avira,
Lavasoft, and Spybot). One of these detected malicious dis-
tributed hosting infrastructures is shown in Figure 2.

3) Detection of Dedicated Malware Hosts: We look for
small domains that host a single malicious executable that is
unique in the network and a small set of supporting HTML
and JS files. By simply looking for domains that are involved
in the download of a single unique executable file and host
at most one other URL delivering HTML or JS, we obtain
241 suspicious candidates. Of these, 73 are malicious, 38 are
legitimate, and 130 are either unreachable or have an expired
domain record.

To boost the performance of this technique, we build a
simple classifier that takes into account the registration date of
the domain under analysis. If the registration has been made in

Fig. 8. Distributed Hosting: decision tree classifier.

Fig. 9. Dedicated Malware Hosts technique: performance of the classifier
with respect to the registration date threshold.

the last three years (our threshold), we consider this domain as
a candidate. The performance of such a classifier with respect
to the threshold chosen is shown in Figure 9.

Figure 10 shows an example of a domain detected by this
technique. 3322.org is a Chinese dynamic DNS provider
used by the Nitol botnet, which has been recently seized by
Microsoft [5].

4) Detection of Exploit/Download Hosts: We look for
domains that successfully perform the initial client infection.
To detect them, we search for traffic that matches our model
of the infection process, where a client makes a first request
to the suspicious domain, followed by another request, with
a different User-Agent, that downloads an executable. Just
by selecting domains that have been contacted multiple times
by the same host with different User-Agents, and at least
one of the subsequent requests has downloaded an executable
(with User-Agent u), we obtain 35 malicious domains and
697 legitimate ones in the training dataset.

Fig. 10. Candidate selected by the Dedicated Malware Hosts technique.
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To improve the detection, we train a simple classifier using
as the only feature the fraction of connections, scattered in the
whole dataset, performed with User-Agent u that resulted
in downloading executables. Choosing a threshold score for
the classifier at 0.9 (that is, 90% of the HTTP requests made
with u in the dataset have delivered executables), we obtain a
classifier that identifies 29 malicious domains and nine false
positives in the training dataset.

E. Detection Step

The candidate selection step produced 1,637 unique URLs
as candidates in the training dataset, and 2,581 in the testing
dataset. The astute reader might notice that these numbers
are different from the values listed in Table II. The reason
is that the detection step operates on URIs. Table II shows the
number of candidates for unique FQDNs. Since a domain can
host multiple (sometimes many) distinct URIs, the numbers
for URIs are larger than for FQDNs.

Using all URIs as inputs, we generate the Malicious
Neighborhood graphs. Since multiple candidates might appear
together in the same graph, we generated a total of 209 graphs
for the training dataset and 156 graphs for the testing dataset.
For the training dataset, we have 169 singleton graphs, while
we have 98 for the testing dataset. The distribution of the graph
sizes is shown in Figure 11. Overall, we find that the vast
majority of candidates are part of a graph of non-trivial size.
Note that the testing dataset graph sizes seem to be clustered.
That is because we have some vast malicious neighborhoods
that are only partially represented in a graph. Hence we need
multiple graphs, built around different candidates belonging to
these neighborhoods, to cover them completely.

We have already shown sections of these graphs through-
out the paper. With them, we captured several infection-
C&C Botnet infrastructures, users being tricked to download
software that quietly downloads and installs malware, and a
popular domain phpnuke.org being used to host malware.
Interestingly, we have seen that a major contributor to the
availability of malware comes from the ISP’s caching servers;
in four caching servers operated by the ISP, we found 54 mal-
ware samples. In many cases, malicious server that originally
delivered them has since gone offline, but the malware was
still being downloaded from the caching servers.

In addition to observing malware distribution campaigns,
we used our graphs to compute the malicious-likelihood scores
of all the selected candidates. With these, we have trained a
simple classifier to tell apart malicious candidates from innocu-
ous ones, using five-fold cross validation. In the training set,
this classifier yields 77.35% precision and 65.77% recall on
the malicious class, and 95.70% precision and 97.53% recall
on the benign class. In the testing set, we have 59.81% pre-
cision and 90.14% recall on the malicious class, and 99.69%
precision and 98.14% recall on the benign class. Note that
some misclassifications happen because our data has uncovered
an insufficient section of the malicious infrastructure and we
could not see multiple candidates belonging to it. However, the
results show that benign URIs are rarely mistaken as malicious
(i.e., a very low false positive rate).

To better exemplify the nature of Nazca’s false negatives,
let’s consider one of them, http://downloads.shopperreports.

Fig. 11. Distribution of graph sizes in the Detection Step.

com/downloads/csupgrade/ComparisonShoppingUpgrade.exe.
This file was downloaded only once in our dataset by a
user that did not come into contact with any other malware
(probably because the infection did not happen). Because
of this, Nazca did not collect enough information on the
infrastructure delivering it to classify this file as malicious,
although it was first deemed suspicious by our Dedicated
Malware Host detection technique in the second step. Nazca
was actually tracking the main infrastructure orchestrating this
infection campaign (the ClickPotato campaign) and the clients
infected by it. This misclassificiation is then caused by the
scale of the monitored network, which is not large enough for
Nazca to passively observe all the various components of this
large infection. To mitigate this, Nazca could be coupled with
an active system, such as EvilSeed [8]or Li’s “Finding the
Linchpins” work [9], to better explore detected infrastructures
and improve coverage.

In our experiments, our system detected malware samples
from 19 domains that were not in our blacklists nor identified
by VirusTotal. We notified antivirus companies, and within
a few weeks these samples were flagged as malicious. For
example, when Nazca detected the infrastructure in Figure 2,
three of the payloads from URL #4 were unlisted. Being
a content-agnostic system, Nazca cannot be evaded by mal-
ware that is particularly resilient resilient content analysis.
Instead, to evade Nazca malware writers have to devise new,
stealthier ways to distribute malware, which we envision to
be challenging without sacrificing the scale of the malware
distribution. Content-agnostic systems like Nazca (or [10],
[11], [9]) can be evaded if malware writers deliver each piece
of malware without reusing any previously-used component
of their infrastructure (domain names, servers. . . ), which will
have an impact on their profits.

VII. DISCUSSION

We discuss several design choices, usage scenarios, and
evasions against Nazca.
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Fig. 12. Most popular protocols employed by 3,000 malware samples,
executed in the Anubis sandbox

A. Why Only HTTP?

During our initial research, we asked ourselves what pro-
tocols we should focus on. To get an answer, we studied the
traffic collected from malicious samples that were executed
in two different sandboxes. The first sandbox is Anubis [7],
which runs executable files in an instrumented Microsoft
Windows environment. We obtained traffic of 3,000 malicious
samples run by the Anubis network, and classified the network
connections types. The results are shown in Figure 12. We note
that HTTPS connections account for less than 1% of the total.
Because we do not observe the initial exploitation in Anubis
network traffic (as the malware is already on the sandbox), in
this experiment, we are focusing on the control phase of the
malware’s lifecycle.

The second sandbox is Capture-HPC [12]. Different from
Anubis, Capture-HPC is a honeyclient; it drives a web browser
to visit a target domain, and gets exploited if the target
delivers malware to which the honeyclient is vulnerable. We
have collected the traffic for 621 infections and classified
the connection types. From Figure 13, we see that even
during the exploitation and installation phases of the malware’s
lifecycle, the protocol that overwhelmingly dominates is HTTP.
Therefore, we chose to focus our efforts on HTTP traffic.

B. What If Cyber-criminals Switch to HTTPS?

The use of an encrypted channel would severely limit the
data that a system like Nazca could mine, surely hampering its
detection performance. However, that is true for the majority of
systems that identify malware in network traffic, for example
on a corporate firewall. So why do cyber-criminals still mas-
sively use HTTP? We believe that this is because switching to
HTTPS would ultimately harm the cyber-criminals’ revenues.
There are two ways in which cyber-criminals could handle
an HTTP malware server: by using a self-signed certificate
or adopting a certificate signed by some trusted certification
authority. On the one hand, the first solution would diminish
the rate of successful infections, as clients that visit the exploit

Fig. 13. Most popular protocols employed by 621 malware samples, executed
in the Capture-HPC sandbox.

domain would be warned by their browsers that something
is suspicious (all major browsers do this), and many would
turn away. On the other hand, the second solution requires the
cyber-criminal to obtain a valid certificate. While this might
certainly happen sporadically, it is not in the interest of the
certification authority to make a habit of signing certificates
for exploit domains, as most major browsers would quickly
remove their trust to that authority, thus hurting the certification
authority business.

Another possibility is to piggyback on legitimate web
services to host the cyber-criminal’s software and control
channels. There have been strands of malware that have used
Google Drive [13], Dropbox [14], and other web services
as C&C server and infection host. Nazca would not detect
such malware distribution frameworks. However, the compa-
nies running these web services usually monitor their servers
looking for abuse, and shut them down quickly once these
abuses are discovered.

C. How Can a Cyber-criminal Evade Nazca?

There are several evasions a cyber-criminal might attempt
to escape Nazca detection. One is using an encrypted protocol.
We already discussed the advantages and drawback of HTTPS.
Using a custom encryption protocol is possible, but such a
channel might not be allowed through corporate firewalls.
Therefore it is inconvenient for the cyber-criminals as it limits
the basin of potential victims. A smarter solution would be
piggybacking on popular software channels, such as Skype.
This would defeat a system like Nazca, but it has a limited
victim pool. Moreover, it is in the interest of the service
provider to detect and prevent misuse of their service, as giving
a free pass to malicious activities hurts their customers and
ultimately their business.

Another way to reduce the chance to be detected by Nazca
is to keep very small, independent malicious infrastructures.
In this case, while our detection step would be ineffective, a
technique like the Dedicated Malware Hosts Detection should
identify these structures.
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The best evasion technique that we envision is to keep
on creating new, independent malware infrastructures, quickly
rotating through them. Nazca needs to process several con-
nections to the malware infrastructure before being able to
identify it (although this number is fairly small; we have
detected infrastructures with five connections). If the cyber-
criminal has moved on to a completely different infrastructure
by the time that Nazca can detect it, he will avoid the
negative consequences of detection (e.g., blocking connections
to his domains). However, the two infrastructures have to be
completely independent; i.e., different domains, hosts, URL
structures and files. Moreover, the clients that the new infras-
tructure contacts have to be new. Otherwise, after a couple
of iterations of this infrastructure hopping, the infected clients
would become very noticeable in our graph, and Nazca would
flag connections to previously-unseen domains from these
clients. This is quite challenging for the cyber-criminal, and
it increases his operational cost, while decreasing the average
timespan and number of infections.

Another evasion technique is to skip being processed
by Nazca altogether, by distributing malware disguised as a
multimedia file. We have seen simple cases of this kind of
cloaking, where malware was distributed with a GIF image
header (Nazca, running without whitelisting, detected this
attack as they were mutating the images). More advanced cases
might also use steganography to improve stealthiness. If the
popularity of these attacks increases, Nazca will need to drop
its prefilter on images and accept a performance loss and a
probable increase in false detections. Ultimately, steganalysis
detectors might become a necessity to combat this trend.

D. What is the Minimum Scale of the Network on Which Nazca
Can Operate?

There are two factors in play here: the timespan of obser-
vation and the number of clients in the traffic. Before being
operational, Nazca must observe enough traffic to learn and
tune the various thresholds. The more data is collected, the
more precise Nazca is. In the training dataset, with 8,813
clients, Nazca was performing detections after observing less
than six hours of traffic. In smaller networks, this learning
period will be longer, inversely proportional to the number of
users.

In addition to the need for this initial learning phase,
to achieve successful detections Nazca must observe a few
interactions with the malware distribution networks. Hence,
the number of users in the traffic must be large enough to
have a sufficient view over these distribution infrastructures.
In our datasets, 7.17% of the clients have come into contact
with distribution infrastructures. To give a reference point, we
identified several distribution infrastructures using the traffic
of 50 infected clients in our dataset, which have been chosen
randomly. Considering the fraction of infected clients in our
dataset, Nazca could operate with 700 clients. With less than
that, Nazca’s performance gradually degrades.

Due to the sensitive nature of ISP traffic data, it was not
possible for us to obtain a similar dataset from other ISPs. We
are currently developing a self-contained version of Nazca,
that ISPs can deploy, so that we can have a validation of our
system in diverse conditions.

E. What is Nazca Space/Time Performance?

In our experiments, we have run the Candidate Selection
in real time with traffic collection, on a four-cores server with
12 GB of memory. This stage is the critical one in terms
of performance, as it reduces 20-fold the number of entities
(URLs/domains/hosts) to be processed by the Detection stage.
Thanks to this reduction, in the Detection stage, we generate
only 40/58 non-trivial graphs (i.e., graphs with more than 10
nodes) in our 2/7-days dataset. We build graphs incrementally
every six hours. A graph can take up to ten minutes to build
from scratch (this time includes all incremental updates). The
cumulative build time of trivial graphs is under five minutes.

For every connection, Nazca keeps the source and des-
tination IP addresses and TCP port, the URL, the HTTP
User-Agent, and an MD5 hash of the payload and its
mime type. To keep our database size in check, we perform a
few optimizations, such as deduplicating strings and keeping
pointers to them. To give an idea of the space requirements of
Nazca, the training dataset data, containing up to 10 kilobytes
of every connection, requires 470 GB of storage. Nazca’s
database representation of it takes 4.92 GB. Considering the
number of clients, this accounts for 286 KB of data per client
per day. Nazca does not need to keep more than a few days of
data, as it can operate with a sliding time window of collected
data. These space requirements can be further lowered using
a system such as Time Machine [4].

F. How Can Nazca be Used?

Nazca produces as output a set of web downloads (a file
and the URL it was downloaded from). This information can be
used to augment blacklists and prevent additional clients from
contacting the infection/C&C hosts. The network administrator
will also be aware of all the clients that might have contracted
the infection, and can initiate the appropriate cleanup actions.

G. Can Nazca Benefit from Third-party Blacklists?

The blacklist records could be added to the candidates
selected in the Candidate Selection Step, so that we have a
richer set of candidates from which to generate the malicious
neighborhood graphs, giving us more insight on the malicious
activities they represent.

VIII. RELATED WORK

Malware detection To identify malicious web pages, re-
searchers have essentially adopted three strategies: (i) visiting
them with honeyclients, (ii) statically/dynamically analyzing
their content, and (iii) studying the set of malware distribution
paths leading to their exploitation backends.

With honeyclients, such as CAPTURE-HPC [15] and
PHONEYC [16], researchers have visited these web pages with
vulnerable browsers in virtual machines, looking for signs of
infection in the guest system. This approach has very low false
positives, but does not scale as each page has to be tested with
an exploding variety of browser configurations [17]. Moreover,
this approach is vulnerable to fingerprinting and evasions [1],
yielding a high number of false negatives.

A more efficient solution is to perform some form of
content analysis of the page, recognizing patterns known
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to be malicious [18], [19], or perform static [20] or dy-
namic [21] analysis of the JavaScript code. All these solutions
are getting diminishing returns, as cyber-criminals thicken their
code obfuscation and perfect their ability to fingerprint the
analysis platforms. Researchers hence are now considering
these evolving evasions against their systems as a sign of
maliciousness [22].

Malware distribution infrastructures To overcome the short-
comings of the previous solutions, researchers have been
invested in studying [23] and detecting malicious paths as a
whole, from the initial landing pages to the infection page.
Previous works have studied the infrastructures and economies
of malvertising [24], Search-Engine Optimization [25], and
spam [26]. Infections paths targeting surfing crowds have been
passively detected analyzing the redirection chains in network
traffic [11], or actively through honeyclients [27], [10]. Other
researchers have proposed reputation-based systems to detect
malicious downloads, such as in POLONIUM [28], where
belief propagation in a tera-scale graph is used to compute
the reputation of billions of downloaded executables from
an initial seed of known benign and malicious files, and in
CAMP [29], where the same objective is achieved inside the
browser with minimal network requests. Nazca differs from
all these approaches because it generates graphs containing all
the heterogeneous entities involved in the malware distribution
network instead of focusing on a particular class (e.g., files in
CAMP and POLONIUM), thus giving a more complete view of
the attackers’ systems and the lifecycle of the infected hosts.
For example, none of these systems could detect the totality
of the complex and heterogeneous infection network shown in
Figure 3.

Once an entry point to these malicious network infrastruc-
tures has been found, it can be used to further explore these
networks, discovering their structure and interconnections, and
thus detecting more malware sources. Researchers have done
so by crawling in WEBCOP [30] and by exploiting the search
engines’ indexes to reach further into these networks to obtain
a more complete view in EVILSEED [8].

A recent in-depth study of dedicated malicious infrastruc-
tures by Zhou [9] explores the malicious neighborhoods of
an initial set of dedicated malware-spreading hosts through
crawling. It uses graph mining to classify Hostname-IP clusters
as topologically-dedicated hosts. Like Polonium and Nazca,
it is based on the observation that there is a higher density
of interconnections among malicious infrastructures than with
the rest of the web. Nazca, in contrast to Zhou’s crawlers,
passively inspects users’ activity and hence cyber-criminals’
countermeasures such as cloaking, domains takedowns and
parking (when run on the live traffic) are not effective against
it. Moreover, Nazca does not need an initial seed of malicious
hosts to expand from. We speculate that Zhou’s work, being
actively crawling, can gain a more comprehensive view of
those infections that Nazca only sees sporadically. Finally,
Nazca can monitor and correlate the whole infection process,
including long-running infections on live clients, which gives
Nazca an insight also on the Command & Control servers
that the malware is in contact with. Given the pros and cons,
we speculate that a collaboration between the two systems
would give the best insight in malware distribution networks,
with Nazca providing the malicious seed to bootstrap Zhou’s

expansion process.

IX. CONCLUSION

We analyzed how successful drive-by download exploits
download and install malware programs. In particular, we
developed Nazca, a system that monitors network traffic and
distinguishes between downloads of legitimate and malicious
programs. To make this distinction, the system observes traffic
from many clients in a large-scale network. We use a number
techniques to identify a set of suspicious downloads. More
precisely, we look at instances where downloads exhibit be-
haviors that are typically associated with malicious activity
that attempts to avoid traditional defenses. We then aggregate
suspicious connections into a malicious neighborhood graph.
This graph puts activity into context and allows us to focus
on malicious entities that appear related (and hence, close to-
gether). This approach removes false positives and also paints
a better picture of ongoing malware distribution campaigns.
We evaluated our system on nine days of ISP traffic, during
which Nazca detected almost ten million file downloads.
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