
KARONTE: Detecting Insecure
Multi-binary Interactions in Embedded Firmware

Nilo Redini⇤, Aravind Machiry⇤, Ruoyu Wang†, Chad Spensky⇤, Andrea Continella⇤,
Yan Shoshitaishvili†, Christopher Kruegel⇤, and Giovanni Vigna⇤

⇤UC Santa Barbara †Arizona State University
{nredini, machiry, cspensky, conand, chris, vigna}@cs.ucsb.edu

{fishw, yans}@asu.edu

Abstract—Low-power, single-purpose embedded devices (e.g.,
routers and IoT devices) have become ubiquitous. While they
automate and simplify many aspects of users’ lives, recent
large-scale attacks have shown that their sheer number poses a
severe threat to the Internet infrastructure. Unfortunately, the
software on these systems is hardware-dependent, and typically
executes in unique, minimal environments with non-standard
configurations, making security analysis particularly challenging.
Many of the existing devices implement their functionality
through the use of multiple binaries. This multi-binary service
implementation renders current static and dynamic analysis
techniques either ineffective or inefficient, as they are unable
to identify and adequately model the communication between
the various executables. In this paper, we present KARONTE, a
static analysis approach capable of analyzing embedded-device
firmware by modeling and tracking multi-binary interactions.
Our approach propagates taint information between binaries
to detect insecure interactions and identify vulnerabilities. We
first evaluated KARONTE on 53 firmware samples from various
vendors, showing that our prototype tool can successfully track
and constrain multi-binary interactions. This led to the discovery
of 46 zero-day bugs. Then, we performed a large-scale experiment
on 899 different samples, showing that KARONTE scales well
with firmware samples of different size and complexity.

I. INTRODUCTION

A radical increase in the connectivity of our world is being
driven by the proliferation of small, interconnected embedded
devices, which are taking the place of traditional door locks,
light bulbs, and many other previously inconspicuous objects.
Unfortunately, the software (or firmware) running on these
Internet-of-Things (IoT) devices is vulnerable to attack [3], [9],
[32], which led to the development of an IoT-specific cyber-
crime underground [21]. For example, in 2016, the Mirai botnet
compromised millions of devices (e.g., routers and cameras)
and leveraged them in denial-of-service attacks to disrupt core
Internet services and shut down websites [27], [30], [50].

In response, researchers have proposed techniques to automat-
ically identify vulnerabilities in firmware distributions, gener-
ally by unpacking them into analyzable components [11], which
are then analyzed in isolation [5], [42], [40]. Nonetheless, de-
spite these advances in vulnerability discovery techniques, state-
of-the-art approaches are insufficient, and vulnerabilities persist.

A key reason behind the insufficiency of current techniques
is that embedded devices are, themselves, made up of inter-
connected components. These components are different binary
executables, or different modules of a large embedded OS,

which interact to accomplish various tasks. For example, em-
bedded devices often expose web-based interfaces comprised by
a web server and various back-end applications [6], [44]. In this
architecture, any given piece of functionality often relies on the
execution of multiple programs [12]: e.g., the web server that
accepts an HTTP request, a local binary that is summoned by
the web server (e.g., using sockets), and an external command
that is executed by the local binary to accomplish the request.

Each interacting firmware component (the web server,
the back-end applications, and other helper programs) can
make different assumptions about the data being shared,
and inconsistencies can manifest as security vulnerabilities.
Precisely detecting these insecure multi-binary interactions
among the different components of a firmware sample is
challenging. Program analysis approaches that consider each
component in isolation, without accounting for the internal
flow of data, yield suboptimal results, as they (i) ignore
meaningful constraints imposed by components in the course of
inter-binary communication, (ii) cannot effectively differentiate
between attacker-controlled and non-attacker-controlled
sources of input, and (iii) might uncover only superficial bugs.

Consider a web server that accepts user credentials, restricts
their lengths to 16 characters, and then passes them to a
handler binary (e.g., through environment variables), which
copies them into two 16-byte long buffers. If the latter binary
is dedicated to only handle user credentials received (and
vetted) by the web server, it may forego the implementation
of a length check. In this example, analyzing the handler
binary in isolation could result in identifying bugs that are
impossible to trigger in practice, and a security analysis would
likely produce a large number of false positives, because it
would have to assume that all sources of input into the binary
might produce unconstrained, attacker-controlled data. These
false positives would need to be checked by a human analyst,
representing a time cost. As the time required by an analyst
to check, patch, and test a firmware sample is not negligible,
controlled interactions between binaries that, in practice, do
not impose security threats should be deprioritized. On the
other hand, analyses that only consider the network-facing
binaries (i.e., those directly accepting user requests) cannot
identify deeper and more complex bugs within the firmware.

Thus, an effective firmware analysis must take into account
multiple binaries, and reason about the data they share.

����

�����*&&&�4ZNQPTJVN�PO�4FDVSJUZ�BOE�1SJWBDZ

¥������/JMP�3FEJOJ��6OEFS�MJDFOTF�UP�*&&&�
%0*���������41����������������

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

Unfortunately, most existing work in program analysis only
focuses on a single program or module at a time [55], [37],
[45]. While some work has attempted to emulate embedded
devices, thus analyzing all components simultaneously, current
approaches either impose strict assumptions on the firmware
samples [11], or achieve a limited success rate (i.e., from
13% [12] to 21% [5]). Other approaches [6], [48], [54] attempt
to analyze actual devices directly, but as they adopt purely
dynamic techniques (e.g., fuzzing), they may be ineffective
in discovering deeper and more complex bugs [34].

In this paper, we present KARONTE, a novel static analysis
approach that tracks data flows across the binaries of a firmware
sample to precisely uncover security vulnerabilities. KARONTE
is based on the intuition that binaries communicate using a
finite set of Inter-Process Communication (IPC) paradigms, and
it leverages commonalities in these paradigms to detect where
user input is introduced into the firmware sample, and to iden-
tify interactions between the various components. The identified
interactions are then used to track data flows between compo-
nents, and perform cross-binary taint analysis. Finally, the prop-
agated taints and constraints are used to detect insecure uses
of the user-controlled input, which can lead to vulnerabilities.

We implemented KARONTE and evaluated it using two
datasets: 53 current-version firmware samples and 899 samples
gathered from related work [5]. We leveraged the former
dataset to study, in depth, each phase of our approach and
evaluate its effectiveness to find bugs. In our experiments, we
showed that our approach successfully identifies data flows
across different firmware components, correctly propagating
taint information. This allowed us to discover potentially
vulnerable data flows, leading to the discovery of 46 zero-day
software bugs, and the rediscovery of another 5 n-days bugs,
demonstrating the effectiveness of our approach on complex
firmware of varying designs (i.e., both monolithic embedded
OS and embedded Linux distributions). Indubitably, a sound
single-binary static analysis technique could also find these
vulnerabilities, but it would do so with a significant amount
of false positives, making the analysis untenable in the real
world. In our comparison between KARONTE’s multi-binary
analysis approach and the same analysis run in single-binary
mode (i.e., with inter-binary data flow tracking disabled), the
number of produced alerts increased from an average of 2 to
an average of 722 per sample: KARONTE provided an alert
reduction of two orders of magnitude and a resulting low
false-positive rate. As shown in our evaluation, we estimate
that the verification of all the alerts produced by a single-binary
analysis might require a security analyst around four months of
work. On the other hand, the verification of the alerts generated
by our prototype took a cumulative time of roughly 10 hours.

Finally, we leveraged the second, bigger dataset to study
the performance of our tool, showing its ability to scale well
on firmware samples of different size and complexity.

In summary, we make the following contributions:

• We introduce novel combinations of static analysis
techniques to perform multi-binary taint analysis. To do

so, we design a novel technique to precisely apply and
propagate taint information across multiple binaries.

• We propose KARONTE, a novel static analysis approach to
identify insecure interactions between binaries. KARONTE
radically reduces the number of false positives, making
real-world firmware analysis practical.

• We implement and evaluate our prototype of KARONTE
on 53 real-world firmware samples, showing that our
tool can successfully propagate taint information across
multiple binaries, resulting in the discovery of 46
unknown (zero-day) bugs, and producing few false
positives. Then, we leverage a bigger dataset of 899
firmware samples to assess the performance of our tool.

• The results obtained by our tool were thoroughly verified
by an independent researcher at another university.

In the spirit of open science, we release the implementation
of our prototype and a docker image to replicate our working
environment1.

II. BACKGROUND

This section provides the background information to under-
stand the goals of our approach and inherent challenges thereto.

A. IoT Attacker Model

IoT devices exchange data over the network. This data can
come directly from the user (e.g., through a web interface), or
indirectly from a trusted remote service (e.g., cloud backends).
Many devices, especially routers, smart meters, and a host
of low-power devices, such as smart light bulbs and locks, use
the former paradigm. Moreover, recent attacks have shown
that such devices can be exploited by clever remote attackers,
even when their communication is restricted to a closed
local network [23]. In this work, we consider network-based
attackers who communicate directly with the device, either
through a local network or the Internet. However, as shown in
Section X, KARONTE can be easily extended to other scenarios.

B. Firmware Complexity

The firmware of modern IoT devices is complex and made
of multiple components. These components can take the
form of either different binaries, packaged in an embedded
Linux distribution, or different modules, compiled into a large,
single-binary embedded OS (“blob firmware”). The former
type of firmware is, by far, the most ubiquitous: a large-scale
experiment analyzed tens of thousands of firmware samples,
and found that 86% of them were Linux-based [11]. Similar
to other Linux-based systems, Linux-based firmware includes
a large number of interdependent binaries.

The different binaries (or components) of the firmware on
embedded devices share data to carry out the device’s tasks.
Under our attacker model, this interaction is critical, as we
focus on bugs that can be triggered by attacker input from
“outside” of the device (i.e., over the network), but may affect
binaries other than those directly facing the network. Any

1https://github.com/ucsb-seclab/karonte

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

1 char* parse_URI(Req* req) {
2 char* p = req[1];
3 if (!strncmp(p, "<soap:AddRule", 13))
4 return p; // unconstrained data
5 // ...
6 if (strlen(p) > 127)
7 p[128] = 0;
8 return p; // constrained data
9 }

10 int serve_request(Req *req) {
11 char *data = parse_URI(req);
12 setenv("QUERY_STRING", data, 1);
13 execve(get_handler(req));
14 }

Listing 1: Decompiled code of a network-facing program of a real
firmware sample.

analysis that focuses only on these network-facing binaries
would miss bugs contained in other components [6]. On the
other hand, an analysis that focuses on all the binaries in
isolation would produce an unacceptable amount of false alerts.

We demonstrate this in the following example service, based
on a real-world firmware sample. This service is composed of
a network-facing web server (Listing 1) that executes a CGI
handler binary (Listing 2). When the web server receives a user
request, it invokes the function serve_request. Then, after
parsing the request (parse_URI), the web server executes
the handler program, passing data via the QUERY_STRING
environment variable. The handler binary retrieves the data
and passes it to process_request. This function contains
a bug: if the value of the field op in the user request is longer
than 128 bytes, a buffer overflow occurs. This overflow is
attacker-controlled and represents a significant vulnerability.

While this specific overflow would be detected by an analysis
that only focuses on the handler binary, any single-binary analy-
sis would detect two vulnerabilities in this program. The second
one is the overflow of the log_dir buffer caused by the
LOG_PATH environment variable. Though this is a legitimate
bug, its classification as a vulnerability depends on the prove-
nance of the data in LOG_PATH. If an attacker cannot control
this data, the bug is not a vulnerability, and the real vulnerability
should be prioritized. Ideally, every alert would be examined,
and every bug fixed. Unfortunately, this goal is not feasible in
practice. While this simple example has two alerts that reveal
one vulnerability, our evaluation shows that static analysis on in-
dividual binaries in real-world firmware can produce thousands
of alerts per device, requiring months of analyst time to process.

For static analyses to be feasible on binaries, an approach
to filter out bugs that cannot be triggered by an attacker is
critical. KARONTE is such an approach. It identifies data
dependencies across binaries, such as the one in this example,
by using static analyses to connect functions that produce (or
set) data to functions in other binaries that consume (or get) it.

Throughout this paper, we refer to the program interactions
shown in the above example as multi-binary interactions.
Similarly, we refer to vulnerabilities that involve data flows
across multiple binaries as multi-binary vulnerabilities. Finally,
we refer to the binary producing data (e.g., the web server
in Listing 1) as a setter binary, and the binary consuming data

1 int process_request(char *query, char *log_path) {
2 char *q, arg[128];
3 char log_dir[128];
4 if (!(q=strchr(query, "op=")))
5 return;
6 strcpy(arg, q); // query string argument
7 strcpy(log_dir, dirname(log_path));
8 // ...
9 return 0;

10 }
11 int main(int argc, char *argv[], char *envp[]) {
12 char *query = getenv("QUERY_STRING");
13 char *log_path = getenv("LOG_PATH");
14 process_request(query, log_path);
15 }

Listing 2: Decompiled code of a handler binary that contains two
bugs. However, only one bug is reachable by an attacker.

(e.g., the handler binary in Listing 2) as a getter binary.

C. IPC in IoT Firmware
Automatically determining how user input is introduced into

and propagates through an embedded device is an open prob-
lem [36], [51], [55], and prone to a discouraging rate of false
positives [22]. However, we observed that, in practice, processes
communicate through a finite set of communication paradigms,
known as Inter-Process Communication (or IPC) paradigms.

An instance of an IPC is identified through a unique key
(which we term a data key) that is known by every process
involved in the communication. As this information has to be
available to all the involved programs before their execution, it
is usually hard-coded in the binaries themselves. For example,
two binaries exchanging data through a file have to know the
filename (i.e., the data key) prior to transferring the data.

Data keys associated with common IPC paradigms can
be used to statically track the flow of attacker-controlled
information between binaries. Below, we describe the most
common IPC paradigms employed in firmware2.
Files. Processes can share data using files. A process writes

data on a given file, and another process reads and consumes
such data. The data key is the name of the file itself.

Shared Memory. Processes can share memory regions.
Shared memory can be either backed by a file on the
filesystem, or be anonymous (if two processes are in a
parent-child relationship). In the former case, the data key
is represented by the backing file name, whereas in the latter
case by the virtual address of the shared memory page.3

Environment Variables. Processes can share data via
environment variables. In this case, the data key is the
environment variable name (e.g., QUERY_STRING).

Sockets. Processes can use sockets to share data with
processes that reside on the same host (Unix domain
sockets with a file path) or on a different host (network

2We focus on IPC mechanisms that enable rich data exchange. IPCs that
do not transport data (e.g., signals) are not included, as they are out of our
scope. Additionally, we reference UNIX-based concepts for user-space IPC.
Other systems (e.g., iOS) have analogous concepts.

3Note that, components in a “blob” can use a statically mapped region to
exchange data. By using the addresses of these regions as data keys, we can
reason about data flows without analyzing the prohibitively large amount of
control flow that separates the components themselves in a real-world firmware.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

sockets). The socket’s endpoint (e.g., IP address and port, or
file path of a Unix domain socket) represents the data key.

Command Line Arguments. A process can spawn another
process and pass data through command line arguments.
The data key is the name of the invoked program.

We represent shared data as a tuple (data key, data).

III. APPROACH OVERVIEW

KARONTE is an approach that performs inter-binary data-
flow tracking to automatically detect insecure interactions
among binaries of a firmware sample, ultimately discovering
security vulnerabilities. Although our system focuses on
detecting memory-corruption and DoS vulnerabilities, it can be
easily extended, as discussed in Section IX. KARONTE analyzes
firmware samples through the following five steps (Figure 1):
Firmware Pre-processing. KARONTE’s input is comprised
of a firmware sample (i.e., the entire firmware image). As a
first step, KARONTE unpacks the firmware image using the
off-the-shelf firmware unpacking utility binwalk [20].
Border Binaries Discovery. The Border Binaries Discovery
module analyzes the unpacked firmware sample, and automati-
cally retrieves the set of binaries that export the device function-
ality to the outside world. These border binaries incorporate the
logic necessary to accept user requests received from external
sources (e.g., the network). As such, they represent the point
where attacker-controlled data is introduced within the firmware
itself. For each border binary, this module identifies the program
points that reference attacker-controlled data (Section IV).
Binary Dependency Graph (BDG) Recovery. Given a set
of border binaries, KARONTE builds a Binary Dependency
Graph (BDG), which is a directed graph [49] that models
communications among those binaries processing attacker-
controlled data. The BDG is iteratively recovered by leveraging
a collection of Communication Paradigm Finder (CPF)
modules, which are able to reason about the different
inter-process communication paradigms (Section V).
Multi-binary Data-flow Analysis. Given a binary b in the
BDG, we leverage our static taint engine (see Section VI)
to track how the data is propagated through the binary and
collect the constraints that are applied to such data. We then
propagate the data with its constraints to the other binaries
in the BDG that have inbound edges from b (Section VII).
Insecure Interactions Detection. Finally, KARONTE identifies
security issues caused by insecure attacker-controlled data
flows, which are reported for further inspection (Section VIII).

KARONTE’s novelty lies in the creation of its Binary
Dependency Graph and its ability to accurately propagate taint
information across binary boundaries, enabling the detection of
complex, multi-binary vulnerabilities in an efficient manner, and
drastically decreasing the number of false positives that would
be otherwise generated. While KARONTE focuses on inter-
binary software bugs, it also performs single-binary analysis.

Furthermore, though KARONTE detects data-flows across
binaries of a firmware sample, its generic design allows

�

8QSDFNHU
&3)�

&3)3

Fig. 1: After unpacking a firmware sample, KARONTE extracts the
binaries handling user requests, identifies their data dependencies to
build the Binary Dependency Graph (BDG), and uses its inter-binary
taint analysis engine to find insecure data flows.

KARONTE to also reason about interactions of different
modules of a monolithic embedded OS, as long as a separation
among these modules is present (e.g., they represent different
processes at runtime), as shown in Section X. Finally, given our
attacker model (Section II-A), we assume that border binaries
are represented by network-facing binaries (i.e., binaries imple-
menting network services). For this reason, we interchangeably
use the terms border binaries and network-facing binaries.

IV. BORDER BINARIES DISCOVERY

KARONTE is designed to detect vulnerabilities that may be
exploited by attackers over the network. To do so, KARONTE
first identifies the set of binaries that export network services
(i.e., network-facing binaries) in a firmware sample. We
leverage the observation that network-facing binaries are the
components of a firmware sample that receive and parse
user-provided data. Therefore, we identify those binaries within
a firmware sample that parse data read from a network socket.

Following Cojocar et al. [8] work, we utilize three features
to identify functions in embedded systems that implement
parsers: (i) the number of basic blocks (#bb), (ii) the number
of branches (e.g., if-then-else, loops) (#br), and (iii) the
number of conditional statements used in conjunction with
memory comparisons (#cmp). Since we want to specifically
identify input-affected network parsers, we consider two
additional features: (iv) a metric we call network mark (#net),
and (v) a flag we call connection mark (#conn).

The network mark feature encodes the probability that a
parsing function handles network messages, and it is calculated
by identifying every memory comparison in the code of the
function, and comparing the referenced memory locations
against a preset list of network-encoding strings (e.g., soap or
HTTP). We initialize #net to 0 and increment it for every com-
parison against network-encoding strings present in the code.

The connection mark flag, instead, indicates if any data read
from a network socket is used in a memory comparison. We

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

initialize #conn to 0 and set it to 1 if there exists a data-flow
between a socket read and a memory comparison operation.

We combine the aforementioned five features to compute
the parsing score psb of a binary b as follows:

psb=max({psj | 8j2get functions(b)}),

psj =(
X

i2{bb,br,cmp}
ki⇤#ij)⇤(1+kn⇤#netj)⇤(1+kc⇤#connj) (1)

where each constant ki is set to maximize the parsing detection
capabilities (kbb = 0.5, kbr = 0.4, kcmp = 0.7 [8]), whereas
kn and kc promote functions that refer to network-encoding
keywords and binaries that parse network data, respectively. The
optimal values for the last two constants are found empirically
in Section X-B. Finally, psj is the parsing score of the j-th
function of b. Note that, we introduce our two features as
multipliers in order to highlight input-affected network parsers.

Since all binaries are likely to have a score greater than
zero, we need to distinguish and separate the “most significant”
scores. To this end, we leverage the DBSCAN density-based
clustering algorithm [15], which groups binaries whose scores
are closely packed together. Then, we select the cluster that
contains the binary having the highest parsing score in the
firmware sample, and consider all the binaries belonging to
the cluster as the initial set of network-facing binaries.

Finally, the algorithm implemented by this module
returns the unpacked firmware sample, the set of identified
network-facing binaries, and the program locations containing
memory comparisons against network-encoding keywords.
These memory comparisons represent the program locations
where attacker-controlled data is more likely to be referenced.

V. BINARY DEPENDENCY GRAPH

The Binary Dependency Graph module detects data depen-
dencies among a set of binaries or components belonging
to a firmware sample. Furthermore, it establishes how data
is propagated from a setter binary to a getter binary. Data
propagation across different processes differs from data transfer
during subroutine calls/returns and program-library dependency
analyses, as both of these are guided by control flow infor-
mation. For inter-process interactions, there is no control flow
transfer to rely on, because after making the data available (e.g.,
through environment variables), processes proceed with their ex-
ecution. Since processes do not normally access other processes’
memory regions, traditional points-to analyses are also futile.

KARONTE tackles these problems by modeling the various
inter-process communication paradigms through the use of a
set of modules that we call Communication Paradigm Finders
(or CPFes). KARONTE uses them to build a graph, called
Binary Dependency Graph (or BDG), which encodes the data
flow information among binaries within a firmware sample.

A. Communication Paradigm Finders
A CPF provides the necessary logic to detect and describe

instances of a communication paradigm (e.g., socket-based
communication) used by a binary to share data. To achieve
this goal, a CPF considers a binary and a program path

(i.e., a sequence of basic blocks), and checks whether the
path contains the necessary code to share data through the
communication paradigm that the CPF represents. If so, it
gathers the details of the communication paradigm through
the following paradigm-specific functionality:
Data Key Recovery. The CPF recovers data keys that

reference data being set or retrieved by the binary under
the associated communication paradigm.

Flow Direction Determination. The CPF identifies all the
program points where data represented by the collected
data keys is accessed. If such program points exist,
it determines the role of each program point in the
communication flow (i.e., setter or getter).

Binary Set Magnification. The CPF identifies other binaries
in the firmware sample that refer to any of the data keys
previously identified. These binaries are likely to share
data with the binary currently under consideration, and are
thus scheduled for further analysis.

We then combine the information gathered by the different
CPFes to create edges in the Binary Dependency Graph,
recovering the data flow across different binaries.

The specifics of each CPF depend on the OS that
the firmware sample runs on (e.g., Linux). Therefore, to
maintain OS-independence and to reason about inter-process
communication paradigms when some information is
missing (e.g., a firmware blob), KARONTE uses a generic
OS-independent CPF, which we call the Semantic CPF. This
CPF leverages the intuition that any communication among
processes must rely on data keys, which are often hard-coded in
binaries (e.g., hard-coded addresses). To this end, the Semantic
CPF detects if a hard-coded value is used to index a memory
location to access some data of interest (e.g., attacker-controlled
data). Our prototype of KARONTE implements the Environment,
File, Socket and Semantic CPFes (details in Appendix A).

B. Building the BDG
KARONTE models data dependencies among binaries through

a disconnected cyclic digraph [49], called the Binary Depen-
dency Graph (or BDG). A BDG, G, of the set of binaries B is
denoted as G=(B,E), where, E is the set of directed edges.
Each directed edge e2E from b12B to b22B is represented
by a triplet e=([b1,loc1,cp1],[b2,loc2,cp2],k), which indicates
that the information associated with the data key k (e.g., an
environment variable name) can flow from binary b1 at location
loc1 (e.g., a program point containing a call to the setenv
function) via the communication paradigm cp1 (e.g., the OS
environment), to the binary b2 at location loc2 (e.g., a call to
the getenv function) via the communication paradigm cp2.

The algorithm to recover the Binary Dependency Graph
(Algorithm 1) begins by considering the information gathered
by the Border Binaries Discovery module: (i) the unpacked
firmware sample in analysis (fw), (ii) the border binaries (B),
and (iii) a set of program locations (int locs) performing
memory comparisons. Then, for each binary b in B, we
consider each location loc in int locs belonging to b
(function get locs), and we leverage our taint analysis engine

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Binary Dependency Graph Algorithm
function BDG(int locs, B, fw)

comm info {}
E {}
for each b2B do

locs get locs(int locs,b)
for each loc2 locs do

f addr get faddr(loc)
for each block2explore paths(f addr) do

if (address(block)== loc) then
buf get buf(loc)
apply taint(buf)

end if
if matches CPF (block) then

CPFp=get CPF (block)
k find data key and role(block,CPFp)
Bnew, int locs new get new binaries(fw,k,CPFp)
update binaries(B,int locs,Bnew,int locsnew)
comm info comm info[{b,block,CPFp,k}

end if
end for

end for
end for
for each {b,block,CPFp,k}2comm info do

if is setter(block,k) then
getters get getters(comm info,k,CPFp)
E E[create edges(b,getters)

end if
end for
return (B,E)

end function

(Section VI) to bootstrap a symbolic path exploration starting
from the beginning of the function containing loc (function
explore paths). When the analysis reaches loc, we taint
the memory location buf being referenced, i.e., the memory
location being compared against the network-encoding
keyword (functions get buf and apply taint).

In each step of the path exploration (i.e., for each visited
basic block), we invoke each of our CPF modules, which ana-
lyze the current path and use the taint information (propagated
by the taint engine during the path exploration) to detect if the
binary b is sharing some tainted data d. If a CPFp matches, i.e.,
it detects that the analyzed binary relies on the communication
paradigm p to share some data, we leverage CPFp to recover
all of the details of the communication paradigm instance in use.
More precisely, the CPFp recovers the data key k used to share
data through p and infer the role (i.e., setter or getter) of the
binary for k (function find data key and role) and finds
other binaries within the firmware sample that might communi-
cate through this channel (function get new binaries). Newly
discovered binaries are then added to the overall set of binaries
to analyze. Note that, when any of these new binaries Bnew is
scheduled to be analyzed, the analysis has to know where to
apply the taint initially. In other words, we have to detect where
the shared data is initially introduced in these new binaries.
Therefore, for each newly added binary ba, the CPFp also
retrieves the program points int locsnew where the data key k
is referenced, and add them to int locs. These last two opera-
tions are performed by the function update binaries. Finally,
for each analyzed binary b, we consider each CPF (cp) that
matched for b over some key k, and use cp to retrieve the role of
b for k (e.g., setter). Then, we create an edge between b and any
other binaries that have the opposite role of b for k (e.g., getter).

To demonstrate the BDG algorithm, we again refer

to Listing 1. The BDG algorithm starts by considering the
memory comparison against a network-encoding keyword (Line
3). After inferring that the variable p is used in the memory
comparison, we taint the memory location it points to, and
bootstrap the intra-procedural taint analysis exploration, starting
from the function parse_URI (Line 1), and propagating the
taint by following the control flow of the program. When the
taint exploration reaches the execve function call (Line 13),
the Environment CPF detects that another binary is being exe-
cuted, and that the setenv function is used to set the data key
QUERY_STRING. Therefore, the Environment CPF establishes
that the binary in analysis is a setter for QUERY_STRING.
Then, the Environment CPF scans the firmware sample and
finds other binaries relying upon the same data key, and
adds them to the set of binaries to analyze. Finally, for each
newly added binary, the Environment CPF retrieves the code
locations where the data key QUERY_STRING is referenced
(e.g., a call to the function getenv("QUERY_STRING")).

VI. STATIC TAINT ANALYSIS

KARONTE uses taint propagation to detect multi-binary
vulnerabilities. This section describes the operation of the
underlying taint engine, and the next section discusses how
KARONTE combines the taint engine with the BDG, described
previously, to achieve such detection.

KARONTE’s taint engine is based on BootStomp [40]. Given
a source of taint s (e.g., a function returning untrusted data) and
a program point p, our taint engine performs a symbolic path
exploration starting from p, and, every time s is encountered,
the taint engine assigns a new taint ID (or tag) to the memory
location receiving data from s. KARONTE’s taint engine
propagates taint information following the program data flow,
and it untaints a memory location (i.e., by removing its taint
tag) when the memory location gets overwritten by untainted
data, or when its possible values are constrained (e.g., due
to semantically equivalent strlen and memcmp functions).
Our taint engine presents two improvements compared to
related work: (i) it includes a path prioritization strategy, and
(ii) it introduces the concept of taint tag dependencies.

The path prioritization strategy tackles the undertaint
problem, which affects taint engines based on path exploration
when dealing with implicit control flows [18], by prioritizing
more interesting paths. In the scope of a taint analysis, a path
p1 is considered to be more interesting than a path p2 if a
variable of interest is tainted in p1, and untainted in p2.

Consider the example in Listing 3, and assume that the
variable user_input (Line 14) points to tainted data. When
the function parse is invoked, the variable start (Line 1)
aliases user_input (i.e., they point to the same memory
location), and, therefore, it points to tainted data. The function
parse contains, potentially, an infinite number of paths:
If the variable start is represented by an unconstrained
symbolic expression, there is always a possible path passing
through the default statement (Line 9) to the head of the
while loop (Line 3). Among these paths, only those passing
through the first case statement (Line 5) would propagate

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

1 char* parse(char *start) {
2 char* end = start + strlen(start) - 1;
3 while (start < end)
4 switch (*start[0]) {
5 case ’=’:
6 return start + 1;
7 case ’;’:
8 return 0;
9 default:

10 start ++;
11 }
12 }
13 void foo() {
14 char dst[512], *user_input = get_user_input();
15 char *cmd = parse(user_input); // undertaint
16 int n = strlen(cmd);
17 if (n >= 512)
18 return -1;
19 strcpy(dst, cmd);
20 }

Listing 3: Path prioritization and taint dependencies use case.

the taint outside the function. Therefore, an analysis that
does not explore these paths would mistakenly establish that
user_input cannot affect the variable cmd (Line 15).

Our path prioritization strategy aims to valorize those paths
within a function that potentially propagate the taint also outside
the function (as the paths passing through the first case
statement in Listing 3). As expected, we noticed that network-
facing binaries contain various sanitization functions that can
cause the issue just discussed. In Appendix A, we describe
the implementation details of our path prioritization feature.

Finally, in our taint engine, an analyst can create dependen-
cies among tainted variables having different tags (taint tag
dependencies). Tracking these dependencies plays an important
role in having an effective untaint policy in a multi-tag taint
tracking system, thus alleviating the overtainting problem [41].

To demonstrate this, consider again the example in Listing 3,
and assume that there exists an untaint policy to remove a taint
tag when a variable is explicitly constrained within a range
of values. First, as get_user_input generates untrusted
data (Line 14), a new taint tag t1 is created and assigned to
user_input. If the function strlen is not analyzed (e.g.,
its code is not available or the call is not followed to keep
the overall analysis tractable), following the semantics of a
multi-tag taint tracking [40], the variable n gets tainted using
a different tag t2. When the taint execution engine reaches the
if statement (Line 17), following the untaint policy in use, the
variable n is automatically untainted by removing the tag t2.
Given that the taint tag of user_input (t1) is different than
n’s tag (t2), user_input is not untainted, and the call to
the unsafe strcpy (Line 19) could cause a false positive to
be generated. This behavior emerges because some functions
that semantically constrains tainted data might not be analyzed
(due to lack of code, or limits of the employed analysis). The
solution we propose is to maintain the information that the
taint tag of user_input (i.e., t1) depends on the taint tag of
n (i.e., t2), and, to untaint user_input when n is untainted.
We say that a taint tag t1 depends on a taint tag t2, if removing
t2 (i.e., untainting the variable with taint tag t2) provokes t1
to be removed. Of course, the taint tag t1 might depend on

multiple taint tags. In this case, if all the tags that t1 depends
on are removed, t1 is removed too. Our prototype automatically
finds semantically equivalent memcmp and strlen functions,
and applies taint tag dependencies (see Appendix A).

VII. MULTI-BINARY DATA-FLOW ANALYSIS

To discover insecure interactions among binaries and find
vulnerabilities, we need to recover the data-flow details of the bi-
naries in a BDG. Enumerating all the possible inter-binary paths
in a BDG leads, in general, to the path explosion problem [4].

Our key insight is that the inter-binary paths more likely
to lead to bugs are those that apply less strict constraints on
the user-provided data d (i.e., the set of values that d can
assume has a higher cardinality). To retrieve such paths, we
collect the sets of constraints that a binary applies to d across
different program paths, and propagate to other binaries only
the least restrictive set of constraints.

To do so, we create a graph that we called the Binary Flow
Graph (or BFG), which extends the BDG with the least strict
set of constraints applied to the data shared among multiple
binaries. In the BFG, an edge ([b1, loc1, cp1, c1], [b2, loc2, cp2,
c2], k) indicates that the data associated with the data key k can
flow from the binary b1 at location loc1 via the communication
paradigm cp1 with the set of constraints c1 to the binary b2 at
location loc2 via the communication paradigm cp2 with the set
of constraints c2. The BFG building algorithm is based on the
notion of chaotic iteration [1], and is composed of two phases.
Initialization. We consider every edge in the BDG and create
a new edge setting c1=c2=? (? means ”uninitialized”). Next,
we consider every edge e whose setter (i.e., b1) is a border
binary, and retrieve the variable var1 that contains the data
being shared at location loc1. Then, we use our taint engine
to explore the paths between the entry point of the function
containing loc1 and loc1 itself, and collect, for each path,
the set of constraints applied to var1. For instance, if var1
maximum length is checked (e.g., through a strlen) against
a constant value, we collect such constraint. Then, we select
the least strict set of constraints l1, and set c1= l1. Finally, we
add e to a set wset, which is used during the second phase.
Constraint Propagation. We consider every edge ew2wset,
and set c2=c1, thus propagating the constraints from the setter
binary to the getter binary. We then retrieve the variable var2
used by b2 to receive the data at loc2 and find the least restric-
tive set of constraints l2 that the binary applies to var2 (relying
on the same approach used to find l1), and set c2=c2[l2.

As b2 might further share the data, we also determine the ad-
ditional constraints that b2 applies to such data before re-sharing
it. To do this, we collect every edge er where the binary b2 is
the setter. Then, we run our taint engine to find a path between
the program point where the binary previously received the data
(i.e., loc2 of edge ew) and the location where it shares it further
(i.e., loc1 of edge er) and find the least strict set of constraints
lr applied to var2 along these paths. If we cannot find a path
between these two program points (e.g., due to limits of the
underlying analyses), we determine lr using the same approach

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

used to find l1 (i.e., starting from the entry point of the function
containing loc1 of er). Finally, we consider the constraints c⇤=
lr[c2 and the constraints for the setter of er. If the latter set is
uninitialized (i.e., c1=? for er) or more restrictive than c⇤, we
substitute it with c⇤ and add er to wset—thus keeping the least
restrictive constraints. We iterate this phase until wset is empty.

VIII. INSECURE INTERACTIONS DETECTION

The Insecure Interactions Detection module leverages the
BFG to find dangerous data flows and detect subsets of two
classes of vulnerabilities: (i) memory-corruption bugs (e.g.,
buffer overflows) and (ii) denial of service (DoS) vulnerabilities
(e.g., attacker-controlled loops). To detect the former class,
we first find memcpy-like functions within a binary, that is,
every function that is semantically equivalent to a memcpy
(Appendix A). Then, if attacker-controlled data unsafely
reaches a memcpy-like function (e.g., without being sanitized),
we raise an alert. To detect the latter class of vulnerabilities,
we retrieve the conditions that control (guard) the iterations of
a loop. Then, we check whether their truthfulness completely
depends on attacker-controlled data, and, if so, we raise
an alert. We refer to both memcpy-like functions and
attacker-controlled loops with the general term sinks.

The Insecure Interactions Detection phase works as follows.
First, we consider every edge ef in a BFG, and for each
node (b,loc,cp,c)2 ef , we leverage the static taint engine to
bootstrap a symbolic path exploration from the function f
containing loc. Then, when we encounter the location loc,
we rely on the provided CPF cp to retrieve the address of the
buffer buf that references attacker-controlled data at location
loc (e.g., the memory location returned by getenv), and
apply the taint to it. Furthermore, at each step of the path
exploration, we collect any constraints on buf (in a similar
way as explained in Section VII) and add them to c.

If a sink is encountered during the path exploration, we check
whether it contains tainted data. If the sink is a loop, and one of
its conditions completely relies on tainted variables, we raise an
alert (for a possible DoS vulnerability). On the other hand, if the
sink is a memcpy-like function, we retrieve the address of the
destination buffer bdst. Then, we retrieve the allocation point
of bdst (e.g., its position in the function’s stack) and estimate
its boundaries (e.g., the offset of the surrounding variables in
the stack) to recover its size. If the size of buf (given by its con-
straints c) is greater than the size of bdst, we raise an alert, as it
means that the copy operation might produce a buffer overflow.

Finally, we consider every disconnected node in the BFG,
and perform a single-binary static analysis.

IX. DISCUSSION

In this section, we discuss some key points of our system.
As with any other path-based exploration analyses,

KARONTE suffers from the path explosion problem. In our
prototype, we limit path explosion, while increasing precision,
by: (i) providing precise taint propagation policies (e.g.,
function calls with no tainted arguments are not always
followed, depending on call-stack depth), (ii) using timeouts

(each symbolic path exploration is performed up to a certain
time limit), (iii) limiting loop iterations, and (iv) automatically
creating function summaries (as explained in Appendix A).

Our prototype may generate both false positives and false
negatives. They are due to the fact that taint information
might not be correctly propagated to unfollowed paths
(e.g., due to time, call-stack depth, or loop constraints), or
imprecisions of the underlying static analysis tool (i.e., angr),
as shown in Section X. This might result in incomplete BDGs,
and, therefore, some security vulnerabilities might be left
undiscovered. However, KARONTE alleviates this problem by
generating taint tag dependencies (see Section VI).

Though by default, KARONTE finds buffer overflows and
denial-of-service vulnerabilities, its design allows an analyst
to support different types of vulnerabilities. The Insecure
Interactions Detection algorithm (Section VIII) relies on a
set of detection modules designed to use taint information to
recognize specific classes of vulnerability. For instance, an
analyst can extend our system to find use-after-free bugs by
providing a new detection module, such as [16].

X. EVALUATION

In this section, we first evaluate each phase of KARONTE’s
algorithm on several of the latest firmware samples available
at the time of writing. Then, we evaluate KARONTE’s
performance using a dataset from related work [5]. We
implemented a prototype of KARONTE on top of angr [43],
and, in particular, our taint engine on top of BootStomp [40].

A. Datasets

We evaluated our prototype of KARONTE on both
Linux-based firmware samples and firmware blobs.
Recent Linux-based Firmware. We selected four major IoT
vendors that make the firmware of their devices available for
download: NETGEAR, TP-Link, D-Link, and Tenda. Then,
we scraped their official websites to collect the available
firmware, for a total of 112 different products. Unfortunately,
several firmware samples were not available for download
or packaged with proprietary algorithms. We eventually
successfully collected 49 different firmware samples.
Firmware Blobs. We retrieved the BootStomp [40] dataset,
which provides us with the ground truth for our approach.
BootStomp’s dataset is composed of 5 firmware samples. In
particular, it contains two versions of Qualcomm’s Little Kernel
(or LK): the most recent at the time of publication, and a
version (not specified) that was released before 2016-07-05
that contains a known vulnerability. Throughout this work, we
refer to the latter with a *. Also, as these firmware blobs receive
data from persistent storage (rather than from the network), we
modified our Border Binaries Discovery module to accommo-
date BootStomp’s approach to identifying procedures that read
from or write to the hard drive. Finally, we did not consider
the Mediatek bootloader because angr fails to analyze it [40].

Table I shows our dataset of 53 firmware images (the
combination of the Linux-based and firmware blobs datasets).

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Results on our dataset of current-version firmware samples. For each vendor we report the device series, the number of
firmware samples, and those samples whose network services are handled by one and multiple binaries, respectively, the total number of
binaries, the average number of border binaries, the number of alerts our prototype generated, the average execution time, the number of
true positives, and the number of bugs retrieved by tracking the data-flow through one or more binaries.

Vendor Device Series # Firmware # Single # Multi # Binaries Avg # Border #Alerts Avg Time # Bugs # Single Binary # Multi-binary
Samples Binary Binaries Binaries [hh:mm:ss] Vulnerabilities Vulnerabilities

NETGEAR R/XR/WNR 17 12 5 4,773 7 36 17:13:45 23 10 13
D-Link DIR/DWR/DCS 9 4 5 1,290 5 24 14:09:12 15 0 15
TP-Link TD/WA/WR/TX/KC 16 16 0 1,769 5 2 1:30:16 2 2 0
Tenda AC/WH/FH 7 4 3 734 5 12 1:01:22 6 0 6
Huawei ALE-L23 1 1 0 1 0 6 4:04:37 4 4 0
Nvidia Nexus 9 1 1 0 1 0 0 0:25:01 0 0 0
Qualcomm - 1 0 1† 1 0 0 2:28:27 0 0 0
Qualcomm* - 1 0 1† 1 0 7 5:03:32 1 1 0

Total - 53 38 15 8,565 279 87 49:09 51 17 34

†: The firmware sample was manually separated into distinct components.

Large-scale Dataset. To measure the scalability of KARONTE,
we obtained Firmadyne’s dataset [5], and considered the
firmware samples whose architecture is supported by
BootStomp [40] (i.e., ARM, AARCH64, and PowerPC). We
did not consider firmware samples for MIPS architectures,
as angr only partially supports MIPS binaries, and some
of its analyses might yield imprecise results in these cases
(as explained in Section X-C). This limitation is introduced
by the employed tool, and not by our approach, which is
architecture-independent. Overall, this dataset consists of 899
firmware samples from 21 different vendors (Table III).

B. Border Binaries Discovery
First, we established the optimal values for kn and kc.

We randomly selected one firmware sample and manually
investigated its border binaries. We identified three binaries.
Then, we ran the Binary Border Discovery module against the
firmware sample using different values for kn and kc (ranging
from 1 and 10). For kn�5 and kc�1 we correctly identified
the three binaries as border binaries. Therefore, we set kn and
kc to 5 and 1 respectively.

Next, we measured the effectiveness of the Border Binaries
Discovery module to identify network parsers. We randomly
picked 10 firmware samples, investigated their network-facing
binaries and randomly selected 150 more binaries. Then, we
ran the Border Binaries Discovery module against all of
these binaries three times: (i) considering only the features
described in [8], (ii) considering also the #net feature, and,
(iii) considering also the #conn feature. In the first case (i),
this module identified 50 binaries containing parsers. However,
after manual investigation, we concluded that only 16 of them
handled data received from the network. In the second case
(ii), our tool identified 51 binaries, and we found that 26 of
them contained network parsers that are affected by user input.
Finally, in the third experiment (iii), this module identified 50
binaries, and we verified that 26 of them contained network
parsers affected by user input. One of the 51 binaries identified
during experiment two (ii) was not detected as a network parser
in experiment three (iii). We found that, indeed, it does not
implement any network functionality. Finally, we found that our
Border Binaries Discovery module’s algorithm missed a real

network parser. This false negative was due to the fact that angr
failed to identify any strings, as the binary retrieved them by
computing their addresses at runtime as offsets from the Global
Offset Table (GOT), thus affecting the binary parsing score.

C. Binary Dependency Graph

We manually checked the soundness and completeness of
the recovered BDGs. In all of the 53 cases, to the best of our
knowledge, the BDGs were sound: every edge in the BDG
corresponded to an existing data dependency between the
involved binaries. Then, we checked if any edge was missing.
Out of 53 BDGs, we found that, for the three Tenda firmware
samples, the BDG algorithm failed to connect an edge between
two binaries, as a valid network-facing binary was missing
(as explained in Section X-B). However, our Semantic CPF
correctly identified the binaries receiving data from the missing
network-facing binary as getters. Furthermore, the BDG of 14
TP-Link firmware samples did not contain any edges, as angr
failed to resolve several data attributes referenced within these
firmware samples during the Border Binaries Discovery phase.
We discovered that these firmware samples ran on a MIPS
architecture, which is unfortunately poorly supported by angr.

We manually investigated all the matching CPFs, and we
found that the Semantic and the Environment CPFes matched
11 and 32 times respectively, whereas the remaining CPFes did
not identify any active IPC communication. After manual inves-
tigation, we concluded that these results were indeed correct.

D. Insecure Interactions Detection

Each alert produced by our prototype consists of an insecure
data flow (e.g., a flow reaching an unsafe memcpy-like
function), and we distinguish true positives from false positives
according to the type of data reaching the sinks of the data flows.
If the data is provided by the user (e.g., HTTP headers), we
consider the alert a true positive bug (if the bug can be exploited,
it is denoted as a security vulnerability). On the other hand, if
the data is not user-provided (e.g., the data is represented by
filesystem file names), we consider the alert a false positive.

Our prototype produced 87 alerts, among which 51 were true
positives (34 multi-binary bugs and 17 single-binary bugs), for

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Comparative Evaluation. Number of alerts generated for each step of KARONTE. For each vendor, we report the average values.

ALL† PARSERS BDG KARONTE
Vendor Ana. Bin‡ No. Alerts Time No. Bin No. Alerts Time No. Bin No. Alerts Time No. Bin No. Alerts Time

NETGEAR 71 729 7 days 7 312 13:53 h 8 443 25:31 h 8 2 17:13 h
D-Link 80 811 7 days 5 205 12:00 h 6 294 14:33 h 6 3 14:09 h
TP-Link 181 819 7 days 5 71 7:44 h 5 86 6:37 h 5 0 1:30 h
Tenda 41 474 7 days 5 154 10:41 h 6 175 11:07 h 6 2 1:01 h

Total 2,424 20,931 28 days 279 9,363 44:18 h 312 12,778 48:57 h 312 74 33:57 h

†: Experiment conducted up to 7 days. ‡: Average number of binaries analyzed within 7 days.

a total of 8,565 considered binaries (Table I). We manually veri-
fied each alert by reverse-engineering the involved binaries and
inspecting the highlighted data flows. We reported all our find-
ings to the appropriate manufacturers (responsible disclosure).

We also verified how many of these 51 bugs were security
vulnerabilities. We acquired two of the devices and successfully
crafted PoCs for three of the vulnerabilities, and obtained one
CVE and one PSV4. Two other alerts were non-exploitable
bugs: though user data reached a sensible program point,
we were not able to achieve control-flow redirection. Five
more vulnerabilities were confirmed by related work [40].
For the remaining vulnerabilities, we relied on manufacturers’
collaboration, since we could not obtain all of the devices
for the firmware in our dataset without incurring in excessive
expenses, and confirmed nine more vulnerabilities. Sadly,
some of the manufacturers were uncooperative and refused to
consider reports without a proof-of-crash (PoC) on the physical
device. Therefore, we assessed the remaining vulnerabilities by
reverse engineering the firmware. By using vendor-confirmed
vulnerabilities and checking whether other firmware using the
same codebase (information gathered from vendors) had similar
bugs, we were able to confirm another 20. The remaining 12
were statically investigated for exploitability, and we believe
that all of them are exploitable. Overall, we verified every alert,
and 46 of the detected bugs, to the best of our knowledge,
were not publicly known before KARONTE. The 12 confirmed
vulnerabilities are being fixed as well as those bugs affecting
samples sharing similar codebases (at least an additional 20).

To evaluate the false negative rate of our prototype, we
searched for CVEs involving our dataset, and collected
information for 30 different bugs. Since 21 of these bugs
belonged to the binary that angr failed to analyze (Section X-B),
we manually added this binary to the BDG and annotate
the functions referencing network-encoding keywords, and
re-ran our analysis. KARONTE re-discovered all of these bugs.
Overall, our prototype generated two false negatives belonging
to the Nvidia and Huawei firmware, respectively. In these
cases, we failed to introduce the initial taint, as angr failed
to resolve two indirect control-flow transfers.

E. Comparative Evaluation

To evaluate the importance of every step of KARONTE, we
compared the effort required by an analyst to verify the results
generated by different approaches. To do this, we considered the

4CVE-2017-14948, PSV-2017-3121

(a) (b)

(c) (d)

Fig. 2: (a) Average and standard deviation of the execution time of
each step of KARONTE. Analysis time includes BFG Recovery and
Insecure Interaction Detection. (b) Dependency between execution
time and the number of explored paths. (c) Dependency between
execution time and the number of binaries in the firmware samples. (d)
Dependency between execution time and the number of basic blocks in
the firmware samples. The dashed lines represent the linear regressions.

49 firmware samples containing multiple binaries, and selected
those 29 samples whose architecture is fully supported by angr.

We then compared four different approaches. First, we per-
formed a static single-binary bug search using our static taint en-
gine on every binary contained in each firmware sample (dataset
ALL). Second, we ran our static taint engine on the border bina-
ries of the firmware sample (dataset PARSERS). Third, we run
the BDG algorithm on each firmware sample, and we applied
our static taint engine to the binaries that handle user-provided
data without propagating the data constraints (dataset BDG).
Finally, we considered our full approach (dataset KARONTE).
During this evaluation, we made the realistic assumption that
without propagating user input from network-facing binaries,
the security analyst has no prior knowledge of where, or if,
the user input is introduced in a given binary. Therefore, we
considered every IPC channel as a possible source of input.

As clearly shown by our results depicted in Table II, the
number of generated alerts decreased to a manageable number

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 3: (a) Distribution of the sizes of the BDGs of our firmware
samples. (b) Distribution (in log scale) of the estimated total number
of paths in an average binary in the BDG. For graphical reasons,
this figure shows 95% of our data.

(i.e., 20,931 to 74) only when applying the full KARONTE
approach. We manually investigated 50 randomly picked alerts
selected from those generated by the single-binary analysis
experiments, which were effectively filtered out by the full
KARONTE approach. All of them were false positives. In fact, in
all of these cases, the binaries causing the alerts were spawned
(e.g., through the system function call) only using hard-coded
arguments and parameters, thus not being affected by the user
input. On average, KARONTE uncovered 2 vulnerabilities per
sample not discovered when only network-facing binaries were
considered (PARSERS), which highlights the importance of
considering all the binaries handling attacker-controlled data.

Throughout our experiment, our expert program analyst
averaged 7 minutes per investigation of alert. Based on this,
we estimate that the investigation of alerts stemming from a
single-binary analysis of a NETGEAR firmware sample, for
instance, would require approximately 138 hours. KARONTE
decreases this time to 14 minutes.

F. Large-scale Scalability Assessment
We assessed KARONTE’s performance and scalability by an-

alyzing 899 firmware samples from Firmadyne dataset (all sam-
ples using architectures supported by KARONTE). We ran this
evaluation on a cluster of machines equipped with Intel Xeon
E5 CPU, 16 to 32 GB of RAM, and running Ubuntu 18.04.
Firmware Complexity. We investigated the complexity of the
firmware samples in our dataset using three metrics: number
of binaries, number of basic blocks, and number of paths
present in the binaries handling user input (i.e., those in the
BDG). In particular, we leveraged Bang et al.’s work [2]
to calculate an upper bound on the number of paths of a
program. To do this, Bang’s approach requires us to retrieve
the program’s longest path, which is an NP-hard problem [46].
To overcome this issue, we approximated the longest path of
a binary by performing a symbolic exploration for 10 minutes
(while limiting the maximum number of iterations of a loop
to five), and recording the longest visited path.

Table III shows that, on average, a firmware sample contains
around 157 binaries, for a total of 7.85 ⇤ 105 basic blocks.
Furthermore, 82% of the binaries in the BDGs contain less
than 1025 paths, as shown in Figure 3.b. Interestingly, our

Fig. 4: Distribution of the number of timeouts triggered during the
symbolic exploration with and without our path prioritization.

dataset includes some far more complex firmware samples.
Around 2% of them contain more than 1000 binaries (for a
total of more than 7.15⇤106 basic blocks), and those handling
user input can reach a number of paths on the order of 10306.

Overall, our dataset is composed of a collection of firmware
samples with a wide range of complexity, thus making it
suitable for studying the performance of our tool.
BDG. We investigated the BDGs of our dataset, and found
that 38.7% of the firmware samples implement network-related
services through the use of multiple binaries (#Multi-Binary
column in Table III). Their BDGs contain, on average, 5
binaries, among which 3 are border binaries. Most of BDGs
are comprised of 5 or 6 binaries, though some samples have
BDGs composed of more than 10 binaries, and one BDG
contains 16 binaries (Figure 3.a). For 6 vendors our tool did
not identify any firmware sample sharing user data among
multiple binaries. We randomly picked 5 of these 18 firmware
samples for manual investigation. In three cases, the network
functionality was indeed performed by single binaries, not
communicating with each other. In two cases, the Border
Binary Discovery phase failed to find one border binary, as we
could not statically resolve its strings (Section X-B). However,
the firmware samples were relying on a single program to
implement the network functionality of the device.

On average, a BDG connected subgraph contains 4 nodes
(i.e., four binaries communicating), and has a depth of 1 (i.e.,
a binary shares data with other 3 binaries). However, our
dataset presented more complex cases. For instance, the BDG
composed of 16 different binaries had 4 different connected
subgraphs, and the biggest subgraph had a depth of 2 and
contained 7 binaries. In this case, we found that a border
binary exchanged data with 6 other binaries, and one of them
modified the data and shared it further. Finally, there were a few
cases where both the cardinality of a BDG connected subgraph
and its depth were 1 (e.g., Belkin). In these cases, we found
that a border binary was using IPC to exchange data with itself.

Overall, the results are in line with those discussed in Sec-
tion X-C, and show that firmware samples are made of highly in-
terconnected components, whose interactions can be fairly com-
plex, highlighting the importance of approaches like KARONTE.
Performance. We measured the time required by each phase
of KARONTE, and the total analysis time. Our prototype fully
analyzed 80% of the firmware samples within a day, and, on
average, it completed each phase within 8 hours (Figure 2.a).

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Dataset for large-scale evaluation. In order: vendor’s name, number of firmware samples, number of firmware samples whose
network services are handled by multiple binaries (percentage), number of binaries in the firmware samples, number of border binaries,
number of binaries in the BDG, cardinality of a subgraph in the BDG, maximum depth of a subgraph in the BDG, number of basic blocks
in the firmware sample, number of paths in binaries handling user input, execution time, and generated alerts.

Vendor # Firmware # Multi # # Border BDG Subgraph Subgraph # Basic # Explored Time† #
Samples Binary (%) Binaries† Binaries† Size† Cadinality‡ Depth‡ Blocks† Paths† Paths [hh:mm:ss]† Alerts†

Airlink101 1 1 (100.0%) 94 5 8 4 1 9⇥1004 1⇥1005 68.58K 3:55:44 13
Belkin 6 1 (16.7%) 184 5 5 1 1 2⇥1005 3⇥1081 4.12K 0:49:46 1
Buffalo 3 0 (0.0%) 301 5 5 0 0 2⇥1006 3⇥1014 43.00 0:17:01 0
Cisco 21 6 (28.6%) 142 5 5 3 1 4⇥1005 2⇥1022 173.27K 5:36:15 4
D-Link 306 196 (64.1%) 103 3 3 1 1 7⇥1005 3⇥1030 41.64K 21:51:27 1
Foscam 5 5 (100.0%) 115 5 6 4 2 4⇥1005 5⇥1015 52.20K 18:01:00 7
Inmarsat 2 0 (0.0%) 640 5 5 0 0 2⇥1006 9⇥1003 3.10K 11:05:06 0
Linksys 12 1 (8.3%) 404 5 6 11 1 8⇥1005 2⇥10305 23.20K 3:32:36 1
NETGEAR 304 52 (17.1%) 115 5 5 3 1 5⇥1005 4⇥10107 82.83K 3:54:00 1
OpenWrt 12 1 (8.3%) 14 1 1 4 2 3⇥1004 4⇥1015 24.41K 1:06:16 0
Polycom 7 0 (0.0%) 130 4 4 0 0 1⇥1006 2⇥1012 1.01M 31:49:22 8
Supermicro 26 3 (11.5%) 209 5 5 2 1 4⇥1005 2⇥10148 12.16K 1:54:03 5
Synology 44 28 (63.6%) 679 3 3 1 1 5⇥1006 1⇥1014 4.55K 33:12:01 1
TP-Link 3 0 (0.0%) 200 5 5 0 0 7⇥1005 1⇥1012 2.00K 2:53:15 1
TRENDnet 55 26 (47.3%) 156 3 4 2 1 6⇥1005 2⇥10118 14.52K 22:59:12 1
Tenda 4 1 (25.0%) 332 5 5 1 1 6⇥1005 2⇥1013 13.04K 5:39:25 1
Tomato 51 11 (21.6%) 223 5 5 4 1 7⇥1005 1⇥1026 90.36K 9:40:55 6
Ubiquiti 15 7 (46.7%) 68 3 4 1 1 1⇥1005 3⇥1008 11.61K 3:06:21 2
Verizon 1 0 (0.0%) 10 5 5 0 0 1⇥1005 5⇥1020 2.49K 0:19:02 1
Zyxel 19 9 (47.4%) 153 5 6 3 1 3⇥1005 4⇥1016 260.87K 4:46:38 3
forceWare 2 0 (0.0%) 173 5 5 0 0 2⇥1005 2⇥1003 3.00 0:30:18 0

Total 899 348 (38.7%) 140.82K 3.60K - - - 16.43M - 60.68M 11830:28:37 1.03K

†: Averages considering all of the vendor’s firmware samples.
‡: Averages considering the firmware samples whose network services are handled by multiple binaries (multi-binary samples).

As we can see, the Border Binaries Discovery and BDG Re-
covery phases presented a great variance. We discovered that the
time increase in the Border Binary Discovery phase was caused
by the Z3 theorem solver, which sometimes required several
minutes to solve a single symbolic expression and is heavily
utilized by angr (some CFGs took 8 hours to be built). Time
increases in the Binary Dependency Graph phase were also due
to slow z3 solves, and, in a few cases, to an unusually high num-
ber of data keys. The time spent to build a BDG depends on the
number of analyzed paths, which, in turn, depends on the num-
ber of data keys found in a binary. Some border binaries (around
7%) contain more than 50 data keys, which we analyzed to de-
tect whether the binary is a setter or a getter. Since we perform
each of these analyses up to a certain time limit (10 minutes
in our experiments), the BDG phase might take several hours
to analyze a single binary (around 8 hours for 50 data keys).

Figure 2.b depicts how the number of analyzed paths
influences the total analysis time. Most samples that took
longer to be fully analyzed are those for which we explored
a small number of paths. These samples are those that caused
angr to take a long time to generate the CFGs.

Finally, we found that the number of binaries and their size
(in terms of the number of basic blocks) in a firmware sample
do not significantly impact on the performance of our tool. In
fact, 67% of the firmware samples that we analyzed for more
than a day contained a number of binaries less than or equal
to 27 (for a total number of basic blocks less than or equal
to 7.64⇤105), whereas far more complex firmware samples
were analyzed faster, as shown in Figure 2.c and Figure 2.d.

Overall, KARONTE scales well with the firmware complexity,

in terms of the number of binaries, basic blocks, and paths.
Symbolic Exploration. We studied the impact of our path
prioritization strategy and untaint policies on our results. First,
we ran our prototype on the KARONTE dataset with and without
the path prioritization strategy and compared the number of
times that a timeout (set to 10 minutes) triggered during the
analysis (note that no timeout means all paths carrying tainted
data have been exhausted). Figure 4 depicts the distribution
of the number of timeouts triggered during the analysis of the
samples in our dataset. Indeed, the number of firmware samples
fully analyzed without any timeout is higher when the path pri-
oritization is enabled. Specifically, considering the total number
of times we ran our taint engine, we explored every tainted path
84% of the times when the path prioritization was enabled, and
75% of the times when it was disabled. This corresponded to
around 2⇤106 paths being pruned away. On average, KARONTE
explored around 15⇤103 paths per firmware sample (Table III).
Though the average number of estimated paths is significantly
higher, it is important to remind that KARONTE aims to find
and analyze only those paths affected by user input.

Then, we ran our tool with and without untaint policies and
compared the number of generated alerts. Overall, the number
of alerts generated when the untaint policies were applied
decreased by 2.5%. We manually inspected all of them and
found them to be, indeed, false positives. In these cases, a
buffer was safely copied using unsafe functions (e.g., using
strcpy after checking their size through strlen).
Alerts & Vulnerabilities. On average, KARONTE generated
2 alerts per sample, for a total of 1,037 alerts. We sampled
100 alerts for inspection and found 44 to be true positive

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

(i.e., user-provided data reached a sink), and 30 of them to
be multi-binary vulnerabilities. This means that, in almost one
case out of two, KARONTE is able to detect critical data flows
that require immediate attention, and that often involve multiple
binaries. We reported our findings to the respective vendors.

Firmadyne raised zero alerts for the large-scale dataset.
Though we cannot be certain about why Firmadyne did not find
bugs, we speculate that this emphasizes one of the advantages
of a static approach over a dynamic one: though KARONTE
makes certain trade-offs, it analyzes complex firmware without
emulating it or tackling the dynamic coverage problem.

G. Verifiability
To promote reproducible research, we asked an independent

researcher from Northeastern University to replicate our
results shown in Table I (excluding the columns bugs and
vulnerabilities, as they would have needed to contact the
manufacturers, but including generated alerts). The large-scale
evaluation and Table II were not replicated, due to the
prohibitive cost of the required computational power.

We created a Docker container with our tool and running
environment (e.g., KARONTE’s dataset). Along with this
container, we provided the researcher with the source code
of our tool, a copy of this paper, the necessary documentation
explaining the purpose of each component in our tool, and
our expected results. Finally, we instructed them on how to
run our tool. The independent researcher was successfully
able to obtain all of the results presented in Table I.

XI. RELATED WORK

Dynamic Taint Tracking & Emulation. Dynamic taint
analysis [41] (DTA) is a well-known technique for vulnerability
detection. However, reduction in performance is one of the
main reasons for not integrating DTA into production
devices. Techniques based on function summaries [55],
instruction coalescing [37], storage optimization [24],
and multi-threading [33] were developed to improve the
performance of DTA techniques. However, resource constraints
on embedded devices render traditional DTA techniques
infeasible [53]. Although techniques such as FirmaDyne [11],
SURROGATES [26], and Avatar [52] address this by emulation,
custom hardware, and hardware proxying, they either pose
strict assumption on the firmware, or rely on the presence of
debugging ports (e.g., JTAG), which are usually disabled.
Fuzzing. Driller [45] uses bounded symbolic execution
to generate deep inputs. Dowser [19] and offset-aware
fuzzing [39] use a combination of taint analysis and symbolic
execution to generate overflow-inducing inputs. However,
gray-box fuzzing techniques [25], [31], [38] require access to
the runtime state of the target program making them unsuitable
for embedded devices. DIFUZE [10] uses the interface
information extracted using static analysis for fuzzing mobile
kernel drivers. However, their techniques are customized to
kernel drivers and are not applicable to binary programs.
RPFuzzer [48] provides a fuzzing framework for routers.
However, it requires monitoring of the running process, which

is not always possible for proprietary routers. IoTFuzzer [6]
performs black-box fuzz testing of various IoT devices through
the corresponding mobile app. However, it obeys to the app’s
code constraints on the user input to generate fuzzing inputs
(user’s data sanitization). FIRM-AFL [54] and FirmFuzz [44]
fuzz programs on IoT devices by emulating the corresponding
firmware. However, a faithful emulation of firmware is a hard
problem. Furthermore, similar to the other fuzzing techniques
they suffer from effective input generation.
Static Analysis. Most of the static analysis-based techniques
focus on specific vulnerability types, such as buffer
overflows [28], [35], integer overflows [47], [7], use-
after-free [17], authentication bypass [42] and v-table
escapes [14]. Few techniques exist to detect general taint
style vulnerabilities [13], [40]. However, they suffer from
scalability. Unlike KARONTE, none of these techniques handle
vulnerabilities that require modelling interaction between
multiple binaries. Costin et al. [12] provide a framework that
mixes static analysis and emulation to analyze embedded web
interfaces. However, their technique is not generic, does not
detect previously-unknown memory-corruption vulnerabilities,
and relies on various heuristics for emulation.

XII. CONCLUSION

We presented KARONTE, an approach to detect insecure
interactions among components of embedded firmware.
KARONTE leverages novel static analysis techniques to drasti-
cally reduce the false positives that traditional binary analysis
techniques produce when analyzing real-world firmware. We
extensively evaluated KARONTE on the latest firmware of 53
IoT products, showing its effectiveness. Our prototype produced
87 alerts (two orders of magnitude reduction over an approach
not considering inter-component interactions), among which
we identified 46 previously unknown zero-day bugs. Finally,
we showed that KARONTE scales well using a collection of
899 firmware samples of different size and complexity.

ACKNOWLEDGEMENTS

We would like to thank our reviewers for their valuable
comments and inputs to improve our paper. We also thank Ph.D.
Sajjad Arshad and Prof. Engin Kirda to help us validate our find-
ings, and Prof. Manuel Egele for sharing the large-scale dataset.

This material is based upon work supported by AFRL
under Award No. FA8750-19-C-0003, by ONR under Award
No. N00014-17-1-2011, and by NAVSEA under Award No.
N00024-12-C-6404/0451. Research was also sponsored by
DARPA under agreement number HR001118C0060. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA, the U.S. Government,
or the other sponsors.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. R. Apt, “The essence of constraint propagation,” Theoretical
Computer Science, vol. 221, no. 1, 1999.

[2] L. Bang, A. Aydin, and T. Bultan, “Automatically Computing Path
Complexity of Programs,” in Proc. of the Joint Meeting on Foundations
of Software Engineering, 2015.

[3] C. Brook, “Travel Routers, NAS Devices Among Easily Hacked IoT
Devices,” https://threatpost.com/travel-routers-nas-devices-among-easily-
hacked-iot-devices/124877/, 2017.

[4] C. Cadar and K. Sen, “Symbolic Execution for Software Testing: Three
Decades Later,” Communication of the ACM, vol. 56, no. 2, 2013.

[5] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards Automated
Dynamic Analysis for Linux-based Embedded Firmware,” in Proc. of
the Network and Distributed System Security Symposium (NDSS), 2016.

[6] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), 2018.

[7] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “Brick: A Binary Tool
for Run-Time Detecting and Locating Integer-Based Vulnerability,” in
Proc. of the Availability, Reliability and Security (ARES), 2009.

[8] L. Cojocar, J. Zaddach, R. Verdult, H. Bos, A. Francillon, and
D. Balzarotti, “PIE: Parser Identification in Embedded Systems,” in Proc.
of the Annual Computer Security Applications Conference (ACSAC),
2015.

[9] L. Constantin, “Hackers found 47 new vulnerabilities in 23 IoT devices at
DEFCON,” https://www.csoonline.com/article/3119765/security/hackers-
found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html, 2016.

[10] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “DIFUZE: Interface Aware Fuzzing for Kernel Drivers,” in
Proc. of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[11] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis,
“A Large-scale Analysis of the Security of Embedded Firmwares,” in
Proc. of the USENIX Security Symposium, 2014.

[12] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” in Proc. of
the ACM Asia Conference on Computer and Communications Security
(ASIACCS), 2016.

[13] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static Detection of
Vulnerabilities in x86 Executables,” in Proc. of the Annual Computer
Security Applications Conference (ACSAC).

[14] D. Dewey and J. T. Giffin, “Static Detection of C++ Vtable Escape
Vulnerabilities in Binary Code,” in Proc. of the Network and Distributed
System Security Symposium (NDSS), 2012.

[15] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Kdd, vol. 96, no. 34, 1996.

[16] J. Feist, L. Mounier, S. Bardin, R. David, and M.-L. Potet, “Finding the
Needle in the Heap: Combining Static Analysis and Dynamic Symbolic
Execution to Trigger Use-After-Free,” in Proc. of the Workshop on
Software Security, Protection, and Reverse Engineering (SSPREW), 2016.

[17] J. Feist, L. Mounier, and M.-L. Potet, “Statically Detecting Use After
Free on Binary Code,” Journal of Computer Virology and Hacking
Techniques, vol. 10, no. 3, 2014.

[18] M. Gyung Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++:
Dynamic Taint Analysis with Targeted Control-Flow Propagation,”
in Proc. of the Network and Distributed System Security Symposium
(NDSS), 2011.

[19] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations,”
in Proc. of the USENIX Security Symposium, 2013.

[20] C. Heffner, “binwalk - firmware analysis tool designed to assist in
the analysis, extraction, and reverse engineering of firmware images,”
https://github.com/ReFirmLabs/binwalk, 2014.

[21] S. Hilt, V. Kropotov, F. Mercês, M. Rosario, and D. Sancho,
“The Internet of Things in the Cybercrime Underground,”
https : / / documents.trendmicro.com / assets / white papers / wp - the -
internet-of-things-in-the-cybercrime-underground.pdf, 2019.

[22] M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interprocedural pointer
alias analysis,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 21, no. 4, 1999.

[23] B. Insider, “Hackers once stole a casino’s high-roller database
through a thermometer in the lobby fish tank,” https :
//www.businessinsider.de/hackers-stole-a-casinos-database-through-a-
thermometer-in-the-lobby-fish-tank-2018-4?r=UK&IR=T, 2018.

[24] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical Dynamic Data Flow Tracking for Commodity Systems,” in
Proc. of the ACM SIGPLAN/SIGOPS conference on Virtual Execution
Environments, 2012.

[25] M. E. Khan, F. Khan et al., “A Comparative Study of White Box,
Black Box and Grey Box Testing Techniques,” International Journal
of Advanced Computer Sciences and Applications, vol. 3, no. 6, 2012.

[26] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling
Near-Real-Time Dynamic Analyses of Embedded Systems,” in Proc.
of the Offensive Technologies Workshop (WOOT), 2015.

[27] B. Krebs, “Source Code for IoT Botnet ‘Mirai’ Released,”
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-
released/, October 2016.

[28] D. Larochelle, D. Evans et al., “Statically Detecting Likely Buffer Over-
flow Vulnerabilities,” in Proc. of the USENIX Security Symposium, 2001.

[29] J. Lerch, B. Hermann, E. Bodden, and M. Mezini, “FlowTwist: Efficient
Context-sensitive Inside-out Taint Analysis for Large Codebases,” in
Proc. of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), 2014.

[30] J. Leyden, “Mirai IoT botnet blamed for ’smashing Liberia off the
internet’,” http://www.theregister.co.uk/2016/11/04/liberia ddos/, 2016.

[31] G.-H. Liu, G. Wu, Z. Tao, J.-M. Shuai, and Z.-C. Tang, “Vulnerability
Analysis for x86 Executables Using Genetic Algorithm and Fuzzing,”
in Proc. of the International Convergence and Hybrid Information
Technology, 2008.

[32] J. Lyne, “Uncovering IoT Vulnerabilities in a CCTV Camera,”
https : / / www.rsaconference.com / videos / demo - uncovering - iot -
vulnerabilities-in-a-cctv-camera, 2017.

[33] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “TaintPipe: Pipelined
Symbolic Taint Analysis,” in Proc. of the USENIX Conference on
Security Symposium, 2015.

[34] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices,” in Proc. of the Network and Distributed System
Security Symposium (NDSS), 2018.

[35] M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos,
“The BORG: Nanoprobing Binaries for Buffer Overreads,” in Proc. of
the ACM Conference on Data and Application Security and Privacy
(CODASPY), 2015.

[36] J. Newsome, “Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software,” in Proc. of
the Network and Distributed System Security Symposium (NDSS), 2005.

[37] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A
low-overhead practical information flow tracking system for detecting
security attacks,” in Proc. of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2006.

[38] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware Evolutionary Fuzzing,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), 2017.

[39] S. Rawat and L. Mounier, “Offset-Aware Mutation Based Fuzzing for
Buffer Overflow Vulnerabilities: Few Preliminary Results,” in Proc. of the
Software Testing, Verification and Validation Workshops (ICSTW), 2011.

[40] N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi, E. Gustafson,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “BootStomp: On the
Security of Bootloaders in Mobile Devices,” in Proc. of the USENIX
Conference on Security, 2017.

[41] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever Wanted to
Know About Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask),” in Proc. of the IEEE Symposium
on Security and Privacy (S&P), 2010.

[42] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities
in Binary Firmware,” in Proc. of the Network and Distributed System
Security Symposium (NDSS), 2015.

[43] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis,” in Proc.
of the IEEE Symposium on Security and Privacy (SP), 2016.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

[44] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer,
“FirmFuzz: Automated IoT Firmware Introspection and Analysis,” in
Proc. ACM CCS Workshop on IoT Security and Privacy (IoT S&P), 2019.

[45] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Proc. of the Network
and Distributed System Security Symposium (NDSS), 2016.

[46] R. Uehara and Y. Uno, “Efficient Algorithms for the Longest Path
Problem,” in Proc. International Symposium on Algorithms and
Computation (ISAAC), 2005.

[47] T. Wang, T. Wei, Z. Lin, and W. Zou, “IntScope: Automatically
Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic
Execution,” in Proc. of the Network and Distributed System Security
Symposium (NDSS), 2009.

[48] Z. Wang, Y. Zhang, and Q. Liu, “RPFuzzer: A Framework for Discovering
Router Protocols Vulnerabilities Based on Fuzzing,” KSII Transactions
on Internet and Information Systems (TIIS), vol. 7, no. 8, 2013.

[49] D. B. West, Introduction to graph theory. Prentice hall Upper Saddle
River, NJ, 1996, vol. 2.

[50] N. Woulf, “DDoS attack that disrupted internet was largest of its kind
in history, experts say,” https://www.theguardian.com/technology/2016/
oct/26/ddos-attack-dyn-mirai-botnet, 2016.

[51] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing System-wide Information Flow for Malware Detection and
Analysis,” in Proc. of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2007.

[52] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR:
A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares.” in Proc. of the Network and Distributed System
Security Symposium (NDSS), 2014.

[53] N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong, F. Qian,
X. Wang, K. Chen, Y. Tian et al., “Understanding IoT Security Through
the Data Crystal Ball: Where We Are Now and Where We Are Going
to Be,” arXiv e-print archive, 2017.

[54] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-AFL:
High-Throughput Greybox Fuzzing of IoT Firmware via Augmented
Process Emulation,” in Proc. USENIX Security Symposium, 2019.

[55] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser:
Protecting Sensitive Data Leaks Using Application-level Taint Tracking,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 1, 2011.

APPENDIX

In this appendix, we present the implementation details of our
prototype of KARONTE, which is based on angr [43], and we
show the details of a vulnerability discovered by our prototype.

A. Functions Identification
Our prototype of KARONTE scans all the functions in

the binary under analysis to find three types of functions:
(i) functions that are semantically equivalent to memory
comparisons (e.g., memcmp), which we term memcmp-like
functions, (ii) functions that copy the content of a memory
location to another (e.g., memcpy), which we term memcpy-
like functions, and (iii) functions that calculate the length of
a buffer, which we term strlen-like functions.

Intuitively, a memcmp-like function f should contain a loop
used to compare the memory locations pointed by different
function parameters of f . To find these functions, we analyze
each function f of a binary b that contains at least a loop.
In particular, we linearly scan the instructions in the body
of the loop, and retrieve each program point p containing a
memory comparisons instruction (e.g., using an opcode from
the x86 cmp instruction family). Then, we compute a static
backward slice from p up to f ’s entry point, and inspect f ’s
arguments to check whether they could affect the operands of
the considered memory comparison at the program point p. If

so, we consider f a candidate memcmp-like function. Finally,
we calculate the size of f (in terms of the number of basic
blocks), and adopt BootStomp’s threshold [40] to filter out
as many false positives as possible.

The approach to find strlen-like functions works in a very
similar manner. The difference is that we also expect these
functions to contain a counter that is incremented at each
iteration of the loop.

Finally, to automatically identify memcpy-like functions, we
adopt the same approach proposed in [40].

If a function body is not available (i.e., the function is
implemented in an external library not present in the firmware
sample), we apply string matching heuristics on the name of
the function to detect whether it belongs to one of the three
function types just described.

Furthermore, as an optimization, we abstract the memcpy-like,
memcmp-like, and strlen-like functions by providing function
summaries, which we execute every time one of these functions
is encountered during KARONTE’s symbolic path exploration
(e.g., during the BDG algorithm). With this optimization, we
alleviate the path explosion problem and speed up the overall
analysis, while maintaining unaltered its precision.

B. Border Binaries Discovery
As stated in Section IV, the connection mark (i.e., #conn)

is used as a flag, whereas the network mark (i.e., #net)
is used as a counter. We made this decision as we found
that, in practice, calculating the connection mark feature is
computationally harder than calculating the network mark.

To calculate the network mark, we need to retrieve all the
memory comparisons within a binary and consider those that
might refer to hard-coded network-related strings. We found
that finding memory comparisons that refer to these type of
strings is computationally easy, as, in practice, the addresses
of these strings are referred within the basic block containing
the call to the memory comparison itself.

On the other hand, to set the connection mark, we have
to determine whether any data read from a network socket
(i.e., the source) is passed to a memcmp-like function (i.e., the
sink). This would involve enumerating all the possible program
paths between two arbitrary program points (i.e., a read from a
socket and a call to a memcmp-like function), which is, in the
general case, unfeasible [4]. Also, in principle, we do not know
if a binary contains more sources than sinks, and, therefore, a
classic forward taint analysis from a source to a sink might incur
in scalability issues [29]. Therefore, to alleviate these problems
and increase the chances to find a path between a source
and a sink, we leverage our static taint engine and perform a
combination of both forward and backward static taint analyses.
In particular, we bootstrap a forward taint analysis from each
program point containing a source (e.g., a recv), and a
backward taint analysis from each program point containing a
sink (i.e., a memcmp-like function). Also, to keep the analyses
tractable, we constrain the number of functions traversed by
each analysis to a fixed value nf (set to 5 in our experiments),
and limit the symbolic exploration to a time limit of 10 minutes.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

Nonetheless, we might fail to find a path between a source
and a sink due to, for instance, an unresolved indirect control-
flow transfer. Therefore, if we detect any imprecision while an-
alyzing a function f of a binary b, we consider the analysis for
f to be incomplete. If the number of functions not completely
analyzed overcomes a fixed threshold (set to 50% in our exper-
iments), we take the conservative decision to set the connection
mark. Also, as the connection mark is operating system (OS)
dependent (i.e., the analysis should know the syscall number
used to read data from a socket), if the OS is unknown (e.g.,
in case of a firmware blob) we simply set the connection mark.

Finally, the feature cmp in our Parsing Score (see
Equation 1) represents an adaptation for binaries of the feature
br fact presented by Cojocar et al. [8], and it is calculated
by incrementing its value every time we find a memory
comparison operation against any string.

C. Communication Paradigm Finders

As stated in Section V-A, KARONTE provides a set of CPFes
to recognize the IPC paradigms, whose specifics depend on
the OS of the firmware sample under analysis. Furthermore, to
maintain our prototype OS-independent, and to make it able
to reason about inter-process communication paradigms when
some information is missing (e.g., embedded Linux distribu-
tions whose binaries are stripped by their symbols or firmware
blobs), we provide our prototype with a generic CPF called
the Semantic CPF, which abstracts from the underlying OS.

Since OS-dependent CPFes work in a similar fashion, we
describe the Environment CPF, as an example of OS-dependent
CPF, and the OS-independent Semantic CPF.
Environment CPF. This CPF detects whether user data is
shared through the operating system environment. Given
a program path (i.e., a sequence of basic blocks) between
two program points p1 and p2, the Environment CPF checks
whether there exists a block bb containing marks indicating that
another binary is being executed (e.g., a call to execve). If
so, this CPF scans each basic block in the program path prior
to bb, and collects every program point pc that contains a call
to a function setting (or getting) environment variables (e.g.,
setenv or getenv). Finally, the Environment CPF considers
each function f containing pc, and performs a reach-def
analysis from f ’s entry point to pc itself to determine the
values of the arguments of the function called at pc (e.g., the
string QUERY_STRING in setenv("QUERY_STRING")).
Finally, the Environment CPF considers these values as data
keys (e.g., QUERY_STRING).

The binary set magnification functionality (see Section V-A)
infers the possible names of the binaries that are invoked in bb.
To do this, we perform a reach-def analysis starting from the en-
try point of the function containing bb to bb itself, and we collect
the strings used as arguments in the function call in bb. Finally,
if we cannot resolve the names of the binaries being executed
(e.g., because they are calculated at runtime), the Environment
CPF finds all the binaries within the firmware sample that rely
on the data keys previously recovered. We do this by retrieving

all the strings in the binaries of the firmware sample, and
selecting those that have at least one of the searched data keys.
Semantic CPF. Our key observation is that any communication
among different processes must rely on the concept of data
keys. That is, there must be some known information that
is used as a reference to set, or get, some data d for
another process to be accessed. Furthermore, as explained
in Section II-C, data keys are often hard-coded in the binary
itself as constant values (e.g., hard-coded strings).

The Semantic CPF leverages this intuition, and given a
program path, it checks whether a constant value k is used
to index a memory location to set (or to get) some data of
interest (e.g., attacker-controlled data). If so, k is considered
as a candidate data key, and the binary under analysis as
a potential setter (or getter) for k. A typical example of
inter-process communication detected by the Semantic CPF
is given by memory-mapped I/O in embedded devices. In this
setting, peripherals’ input and output channels are mapped
to predefined addresses in memory, which are hardcoded in
the firmware components that need to access them.

Given a function fc to analyze, this CPF applies two
different approaches to infer if a data key is used as a
reference (base or index) to manage data.

First, we taint each argument of fc that points to constant
data (e.g., a string in a .ro section of the binary), using
different taint tags. Then, we examine every load (or store)
in fc to check whether tainted variables are referenced to
read (or write) from a memory location m. For example, if
a tainted variable is used as an address to write at location
m, we consider fc as a setter for the data key.

Second, if the first step does not yield a positive result,
we check the structure of the function fc itself. In particular,
we assume that any set or get oriented functions should look
for an entry point into a data structure relying on a provided
key, to set, or get, some value. To achieve this, we assume
that such a function contains a simple loop with a memory
comparison function (e.g., memcmp-like functions) that has
a parameter that points to tainted data. If these conditions
are met, the Semantic CPF considers the function to be a set
or get oriented function. To distinguish between the two, we
scan the basic blocks corresponding to the true branch of the
memory comparison function call and checks whether any of
the fc’s arguments are set to a new value. If a new value is
set, we identify the function fc as a setter. In the case where
a value is returned, we label the function as a getter.

Consider the example in Listing 4, which represents a
snippet of code of a setter function found in one of the
firmware samples in our dataset. The stack variable at offset
-32 (R11 represents the base pointer) points to a hard-coded
string (i.e., a sequence of ASCII characters null-terminated),
which is, therefore, tainted by the Semantic CPF. Due to a
function semantically equivalent to memcpy (Line 6), the
taint gets propagated to the destination buffer (stack variable
at offset -28). Then, after considering its length, the character
“=” is appended to the destination buffer (Line 11) and a
value (stack variable at offset -36) is appended to it through

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

the memcpy-like function call (Line 20). Finally, since a
hard-coded value is used as the offset (through its length) to
copy arbitrary data into memory, the Semantic CPF considers
this function as a candidate setter function. After manual
verification, we found that the above example was indeed
setting data to be used by another process, and that the stack
variable at offset -36 (Line 18) was the value of the data.

1 ; .text section
2 loc_A598:
3 LDR R0, [R11, -28] ; destination buffer
4 LDR R1, [R11, -32] ; data key pointer
5 LDR R2, [R11, -24] ; number of bytes
6 BL 0x9554 ; call to a memcpy-like
7 ; function
8 LDR R2, [R11, -28]
9 LDR R3, [R11,-24]

10 ADD R3, R2, R3
11 MOV R2, 61 ; append ’=’
12 STRB R2, [R3]
13 LDR R3, [R11, -24]
14 ADD R3, R3, 1
15 LDR R2, [R11, -28]
16 ADD R3, R2, R3
17 MOV R0, R3 ; destination
18 LDR R1, [R11, -36] ; source (data value)
19 LDR R2, [R11, -16] ; number of bytes
20 BL 0x9554 ; call to a memcpy-like
21 ; function
22 LDR R2, [R11, -24]
23 LDR R3, [R11, -16]
24 ADD R3, R2, R3
25 ADD R3, R3, 1
26 LDR R2, [R11, -28]
27 ADD R3, R2, R3
28 MOV R2, 0

Listing 4: Snippet of code that uses a data key to set a data value
into a local structure.

As an optimization, we leverage debugging and loading
symbols (when available) to drive our Semantic CPF to
interesting functions. For example, if a function name contains
the keyword ’send’ we mark it as a candidate set function,
and consider it for further analysis.

D. Binary Dependency Graph Algorithm

As explained in Section V, KARONTE detects if a border
binary shares user-provided data by: (i) considering the set
of memory comparisons retrieved by the Border Binaries
Discovery algorithm, (ii) using our taint engine to taint the
involved memory locations, and, (iii) performing a taint analysis
on the border binary to detect whether the binary shares some
tainted data. This procedure might involve enumerating all the
possible program paths in the border binary, and, therefore, it
might lead to the path explosion problem. Therefore, to keep
the analysis tractable, we run our taint engine up a certain time
limit (set to 10 minutes in our experiments). However, as some
paths might be left unexplored, our prototype might miss some
valid data flows between binaries, and our BDG might not
contain some valid edges. Therefore, in order to increase the
path coverage within a prefixed time limit, we apply the taint
to each function of a border binary that refers to a network-
encoding string. This solution might involve more false
positive edges within a BDG (thus affecting its soundness),
but it decreases the likelihood of false negative edges. This

heuristic gave us noticeable improvements in practice, as the
program points where data is read from sockets (e.g., recv)
might be distant (in terms of the number of instructions in
an execution trace) to those where such data is shared (e.g.,
setenv). However, as network-encoding strings might be
used for other purposes within a binary (e.g., as data keys), we
are able to alleviate this problem by considering as a source
of taint every function that refers to network-encoding strings.

E. Static Taint Analysis
Our taint engine mainly introduces two contributions: (i)

taint tag dependencies, and (ii) a path prioritization strategy.
To add taint tag dependencies, we enhanced the angr’s

symbolic state module with an additional data structure that
maps each taint tag to its dependencies. When a symbolic
expression e has to be untainted, we retrieve its taint tag te,
and all the taint tags tdep that depend on te. Then, we consider
each taint tag td in tdep, and check whether it depends on any
other taint tag other than te. If not, we remove the taint tag td
(thus untainting the tainted symbolic expressions represented by
td). Finally, we remove te, thus effectively untainting e. Note
that, taint tag dependencies based on memory comparisons
(as explained in Section VI) are created automatically.

Our path prioritization strategy aims to prioritize those
paths within a function that potentially return tainted variables.
Given a function f to symbolically explore, we build its
control flow graph (CFG), and we retrieve all the exiting basic
blocks, that is, those containing a return statement r. For each
of these basic blocks, we perform a static reach-def analysis
from f ’s entry point up to r, and collect all the possible
returning values. We then prioritize those paths that do not
always return constant values.

F. Multi-binary Data-flow Analysis
The cornerstone of the multi-binary data-flow analysis

module is to estimate the size of the buffers used to send
(or receive) attacker-controlled data. Our prototype provides
two sub-modules for this task: the stack-size finder and the
heap-size finder to detect the size of buffers allocated on stack
and heap, respectively.

Given a function fs and a buffer b allocated at offset bs
on fs stack, the stack-size finder scans fs body, and collects
the offsets of the variables allocated on fs stack. Then, this
sub-module sorts the stack offsets in ascending order, and
it picks the offset bz right after bs (remember that the stack
grows downward). Finally, the stack-size finder considers the
buffer b as big as |bz�bs|.

On the other hand, given the address bh of a heap-allocated
buffer b, and a function fh allocating b, the heap-size finder
leverages our static taint engine to taint bh, and bootstraps a
symbolic path exploration from fh’s entry point. For each basic
block encountered during the symbolic path traversal, this sub-
module detects whether the basic block contains a call to a heap
allocation function fa (e.g., malloc). If any of fa’s arguments
is tainted, or fa’s returning value gets assigned to a tainted
memory location, the heap-size finder considers the call to fa

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

1 void add_data_key(e, key, data) {
2 int nk = strlen(key);
3 int nd = strlen(data);
4 char* tmp = (char*) malloc(nk + nd + 3)
5 e->vars = realloc(e->vars, e->size + nk + nd + 3);
6 memcpy(tmp, key, nk);
7 tmp[nk] = "=";
8 memcpy(tmp[nk + 1], data, nd);
9 e->vars[e->n_vars] = tmp;

10 e->n_vars ++;
11 // ...
12 }
13

14 int do_serve(r){
15 env_struct* e;
16 add_data_key(e, "CONTENT_TYPE", r->content_type);
17 // ...
18 exec_bin(e, "fileaccess.cgi");
19 }
20

21 void parse_req(char* raw_data, usr_req* r){
22 while (raw_data && *raw_data) {
23 char *s = get_next_field(raw_data);
24 // ...
25 if (!strncmp(s, "Content-Type", 12)) {
26 // set content type info in r
27 }
28 // ...
29 }
30 }
31

32 void serve_request() {
33 usr_req* r;
34 char* raw_data;
35 raw_data = get_req_socket();
36 parse_req(raw_data, r);
37 do_serve(r);
38 }

Listing 5: Decompiled snippet of code of httpd.

for further inspection. In particular, it considers the symbolic ex-
pression of the fa’s argument that represents the allocated size
(e.g., the first argument in malloc), and leverages the z3 5 the-
orem solver to concretize its value, thus retrieving the buffer b’s
allocated size. If the symbolic expression can be concretized to
multiple values, we conservatively consider the greatest value.

G. Vulnerability Example
We provide the details of one of the vulnerabilities

discovered by KARONTE 6 for the D-Link 880 firmware
sample. This firmware is used on the D-Link Wireless AC1900
WiFi Gigabit routers, and it is composed of 129 different
binaries executing on a Linux-based filesystem.

Two of the binaries involved in handling user’s requests are
the binary httpd and a binary called fileaccess.cgi.
The former receives user’s data from the network, whereas
the latter uses such data to perform file operations.

A simplified code of httpd is shown in Listing 5.
First, httpd calls the function get_req_socket (Line

35) to receive user requests from the network, and stores them
in the raw_data variable.

The content of the request is parsed by the function
parse_req (Line 36), which also properly sets an internal
data structure r (Line 26). Note that, the memory comparison
contained in function parse_req (Line 25) refers to

5https://github.com/Z3Prover/z3
6CVE-2017-14948

1 void get_content_type(char* dst) {
2 const char *haystack = getenv("CONTENT_TYPE");
3 char *haystacka;
4 haystacka = strstr(haystack, "boundary=");
5 // ...
6 strcpy(dest, haystacka + 9); // buffer overflow
7 }
8

9 int uploadfile_handler() {
10 char buff[256];
11 get_content_type(buf);
12 // ...
13 }

Listing 6: Decompiled snippet of code of fileaccess.cgi.

attacker-controlled data. This memory comparison is returned
by our Border Binary Discover module (Section IV).

Then, httpd calls the function do_serve (Line
37), which prepares the execution environment for
fileaccess.cgi and executes it. In particular, do_serve
(Line 14) uses the function add_data_key (Line 16) to set
the local variable e with attacker-controlled data. Note that,
add_data_key (Line 1) does not impose any constraints
on the size of the attacker-controlled data: it allocates a buffer
tmp (Line 4) to accommodate arbitrarily long data. In our
prototype, the function add_data_key was recognized by
our Semantic CPF to be a setter for httpd.

Finally, the binary fileaccess.cgi is executed (trough
exec_bin), and the variable e is used as its execution
environment.

When fileaccess.cgi is executed (Listing 6), if
the user’s request involves uploading a file, the function
uploadfile_handler is executed (Line 9). This function
allocates a buffer of 256 bytes on the stack (Line 10), and
then calls the function get_content_type to retrieve the
content type of the user’s request (at Line 1).

Unfortunately, this function contains a bug. In fact, if the
variable haystack (which points to the environment variable
identified by the data key CONTENT_TYPE) contains the
string "boundary=" followed by at least 257 characters, the
strcpy function call (Line 6) will provoke a buffer overflow.
KARONTE automatically identified this bug, and we reported
it to D-Link, which promptly fixed the issue.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:08:07 UTC from IEEE Xplore. Restrictions apply.

