
SYMBEXCEL: Automated Analysis and Understanding of Malicious Excel 4.0 Macros
Nicola Ruaro†, Fabio Pagani†, Stefano Ortolani‡, Christopher Kruegel†, Giovanni Vigna†

† University of California, Santa Barbara, ‡ VMware
{ruaronicola, pagani, chris, vigna}@ucsb.edu, ortolanis@vmware.com

Abstract—Malicious software (malware) poses a significant threat
to the security of our networks and users. In the ever-evolving mal-
ware landscape, Excel 4.0 Office macros (XL4) have recently become
an important attack vector. These macros are often hidden within ap-
parently legitimate documents and under several layers of obfuscation.
As such, they are difficult to analyze using static analysis techniques.
Moreover, the analysis in a dynamic analysis environment (a sandbox)
is challenging because the macros execute correctly only under specific
environmental conditions that are not always easy to create.

This paper presents SYMBEXCEL, a novel solution that leverages
symbolic execution to deobfuscate and analyze Excel 4.0 macros
automatically. Our approach proceeds in three stages: (1) The mali-
cious document is parsed and loaded in memory; (2) Our symbolic
execution engine executes the XL4 formulas; and (3) Our Engine
concretizes any symbolic values encountered during the symbolic
exploration, therefore evaluating the execution of each macro under
a broad range of (meaningful) environment configurations.

SYMBEXCEL significantly outperforms existing deobfuscation
tools, allowing us to reliably extract Indicators of Compromise (IoCs)
and other critical forensics information. Our experiments demon-
strate the effectiveness of our approach, especially in deobfuscating
novel malicious documents that make heavy use of environment vari-
ables and are often not identified by commercial anti-virus software.

I. INTRODUCTION

Despite advances in computer security, cybersecurity threats are
still on the rise. Ransomware attacks, for instance, represent one of
the most devastating threats of the past few years, expected to inflict
more than $20 billion in damages in 2021 alone [51]. Therefore,
the detection and forensics analysis of security threats is critical
for protecting users and organizations from malicious actors.

Attackers leverage different techniques to infect a victim’s
system, ranging from exploiting vulnerabilities in Internet-facing
services to phishing campaigns stealing the victim’s credentials.
A popular approach is to abuse Microsoft Office documents as
carriers for malicious macro code. The attacker usually sends these
malicious documents as email attachments, and deceives the victim
into opening them and executing the malicious payload.

One of the most well-known examples of macros utilized for
malicious purposes are Visual Basic for Applications (VBA)
macros, which security analysts have studied extensively in the
past [34], [48], [49], [50]. However, since security researchers have
contributed numerous open-source tools to analyze and deobfuscate
VBA macros, malware authors have recently shifted their attention
to a lesser-known macro format: Excel 4.0 macros [28], [67]. Excel
4.0 macros, or XL4 macros1, are a 30-year-old feature of Microsoft
Excel that allows one to encode a series of operations into an Excel
file. While this feature originates as a precursor of VBA macros,
it is similarly powerful and still used in corporate settings.

In the past few years, malware campaigns using XL4 malware
have been deployed at scale, and infections related to this threat

1We will use the terms Excel 4.0 macro and XL4 macro interchangeably.

have increased [28], [66], [67]. However, for a series of reasons,
the XL4 malware ecosystem remains largely unexplored, due to
a number of challenges associated with the analysis of XL4 macros.

First, Microsoft Excel supports several macro formats with
complex specifications [56]. Malware authors always seek new
ways of creating spreadsheets that break static parsers (used by
analysis tools) while remaining compliant with the actual parser
shipped with Excel. Second, malware authors have deployed a
series of evasion techniques that hinder both static and dynamic
analysis. In particular, heavy obfuscation techniques have been
recently introduced, effectively preventing every available tool from
correctly analyzing these samples. These techniques use information
about the execution environment both to detect sandboxes and to
deobfuscate the malicious payloads. Third, malware analysts can
only rely on limited tooling when inspecting a potentially malicious
document. When these tools cannot process a sample, the analyst has
to resort back to manual analysis, which consists in opening the file
in Excel and manually stepping through the XL4 formulas. However,
such a manual approach is complicated by the layers of obfuscation
techniques included in XL4 malware, and by the large number of
formulas executed (often in the range of thousands of formulas).

Correctly deobfuscating XL4 malware remains a critical task. On
the one hand, in post-mortem scenarios, it is essential to understand
what malicious actions have been performed. On the other hand,
to prevent future infections, it is essential to extract any indicator
of compromise (IoC).

In this paper, we study the ecosystem surrounding Excel 4.0
malware, and we propose SYMBEXCEL, a novel system to automati-
cally analyze advanced XL4 malware samples. The core component
of our system is a symbolic execution engine for XL4 macros.
Using symbolic execution, we can automatically infer the “correct”
values of any environment variable—i.e., the values that lead to
the deobfuscation of the malicious payload. Overall, our approach
also provides valuable insights into malware’s interactions with and
dependencies on the environment. Moreover, our symbolic engine
follows multiple paths of execution (i.e., states) during the symbolic
exploration, and is, therefore, able to capture every possible behavior
of the malicious samples. For instance, malware samples often try to
connect and download a second-stage payload from multiple servers,
in case one of them becomes unreachable. In these cases, thanks to
symbolic execution, we are able to explore all the possible execution
paths, and therefore extract the address of every infected server.

Another important aspect of our system is that it can handle
symbolic Excel 4.0 formulas. Excel malware often uses information
retrieved from the environment, which is represented as symbolic
values in our system, to decrypt and execute Excel formulas. Given
the combination of two novel techniques presented in this paper,
namely observers and smart concretization, SYMBEXCEL is able
to concretize the decrypted formulas and to efficiently continue

����

�����*&&&�4ZNQPTJVN�PO�4FDVSJUZ�BOE�1SJWBDZ�	41

¥������/JDPMB�3VBSP��6OEFS�MJDFOTF�UP�*&&&�
%0*���������41����������������

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

65

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

the symbolic exploration. Finally, to avoid reimplementing the
entire Excel engine in our system, we propose a technique called
delegations to offload the execution of certain formulas to Excel.

We evaluate SYMBEXCEL on two different datasets of XL4 sam-
ples, one that contains 5,697 publicly available samples, while the
other contains 18,840 private samples. Our datasets cover a period
spanning more than eight years—albeit malicious actors started to
leverage Excel 4.0 macros on a large scale only in the past few years.
SYMBEXCEL performs significantly better than existing tools, deob-
fuscating correctly 23,931 (instead of 12,375) out of 24,537 samples.
Moreover, if we restrict our analysis to the samples that make heavy
use of obfuscation and machine-specific variables, SYMBEXCEL
can deobfuscate correctly 7,239 (instead of 410) malware samples.

In summary, our paper makes the following contributions:
• We present SYMBEXCEL, a symbolic execution engine for

Excel 4.0 macros that can deobfuscate advanced malicious
documents.

• We evaluate our system on a dataset of more than 25,000
malicious samples, covering a period of more than 8 years.

• We present an in-depth overview of the most common evasion
technique adopted by malware authors, and a study of the
malicious behaviors observed.

We believe that our results help to shed light on the XL4 malware
ecosystem, and that SYMBEXCEL will help incident response and
malware analysts to understand XL4 malware successfully. To
foster more research in this field, we make our code available at
https://github.com/ucsb-seclab/symbexcel.

II. BACKGROUND

Excel File Formats. Microsoft Excel supports tens of different file
formats, but only four of them can contain Excel 4.0 macros and
are routinely used to deliver Excel 4.0 malware. For this reason, in
this paper we will only focus on the following file formats: Excel 97
- Excel 2003 Workbook (.xls), Excel Binary Workbook (.xlsb),
Excel Workbook (.xlsx) and Excel Macro-Enabled Workbook
(.xlsm). The first two formats are binary file formats, also known
as Binary Interchange File Format 8 (BIFF8) and Binary Interchange
File Format 12 (BIFF12), respectively. Microsoft released these
format specifications in 2008 [44], [45]. On the other hand, xlsx
and xlsm files are based on XML. Despite the differences between
these formats, from an application standpoint, every Excel file
consists of a workbook and one or more spreadsheets. A workbook
is a collection of spreadsheets, which in turn contain the cells
where formulas and values are stored. A spreadsheet can be
further classified as a macro sheet or as a worksheet, with the only
difference being that macro sheets are the only type of spreadsheet
that can contain Excel 4.0 macros. Finally, a workbook can contain
one or more globally defined variables called defined names, which
have an associated value and are shared across the spreadsheet.
Excel 4.0 Macros. This feature of Microsoft Excel was released
in 1992, and it was soon widely adopted in numerous organizations.
Interestingly, despite the introduction of VBA macros as a replace-
ment for XL4 macros, the latter are still supported by the latest
version of Microsoft Excel. Excel 4.0 macros are a super-set of the

traditional Excel functions [43] and offer a large set of functions to
interact with an Excel workbook and with the external environment.

To avoid any confusion, in the rest of this paper, we will refer
to the distinct Excel 4.0 macro functions (e.g., EXEC, CHAR)
as functions. We will instead use the term formulas to denote
expressions that always start with an equal sign and use one or more
functions (e.g., =EXEC("calc.exe")). Finally, we will refer to
sequences of formulas that are stored in a macro sheet as macros.

In particular, unlike traditional Excel functions (such as SUM)
used in spreadsheets, Excel 4.0 macro functions have access to the
Windows API and can be used to interact with the operating system.
For example, the formula =FILES(directory) lists all the files
in a given directory, and an attacker can use =EXEC(program)
to launch an external program. In practice, Excel 4.0 macros are
nothing less than a sequence of Excel 4.0 macro formulas, just like
binary programs are a sequence of instructions.

XL4 macros cannot reside in regular worksheets. Instead, they
must be stored in specific Excel 4.0 macro sheets, one formula
per cell. The execution of XL4 macros starts from a cell—called
AutoOpen—and continues executing the underlying cells until either
a terminating function is encountered (i.e., =HALT()) or until a
control-flow transferring function is executed (e.g., GOTO(CELL)).
In the latter case, the execution continues with the code stored in the
target cell. Using the functions FORMULA and FORMULA.FILL,
Excel 4.0 malware can also generate formulas on-the-fly, and store
them in a macro sheet for later execution.
Execution Environment. As mentioned previously, Excel 4.0
macros can interact with the operating system. Advanced XL4
malware makes heavy use of this capability and frequently checks
the environment to fingerprint sandboxes and to deobfuscate
additional layers of the malicious payload. In this paper, we define
as execution environment every information that is not directly
contained in a workbook. For example, XL4 malware often uses
the GET.WORKSPACE function to access information from the
execution environment, such as the total memory available to
Microsoft Excel, the name of the underlying operating system, and
the version of Microsoft Excel. Similarly, any information about
a window—such as its name, size, and position—can be accessed
using the =GET.WINDOW function. Finally, some samples execute
the function NOW to retrieve the current timestamp and use this
information to deobfuscate a malicious payload.
Current Defenses. Excel 4.0 malware is a threat that has surged
only recently. Hence, only a few defenses are currently available.
To the best of our knowledge, the only runtime defense designed
explicitly for Excel 4.0 malware is the Microsoft AMSI integration,
released by Microsoft in 2021 [47]. The Microsoft AMSI integration
deploys hooks inside a running Excel process and, whenever certain
Excel 4.0 functions are executed, it forwards the macro to an external
antivirus engine, which decides whether it is malicious or not.

Another approach, mainly used for deobfuscation and post-
mortem analysis of malicious documents, is based on the emulation
of Excel 4.0 functions. This analysis technique works by interpreting
all the instructions executed by the malware sample without running
the sample itself on a physical machine. An example of such an
analysis tool for XL4 macros is XLMMacroDeobfuscator [53], an

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

1 Sandbox fingerprinting

[A1] =IF(GET.WORKSPACE(19), SET.VALUE(K1, K1+1),
SET.VALUE(K1, 0))

[A2] =IF(GET.WORKSPACE(42), SET.VALUE(K1, K1+1),
SET.VALUE(K1, 0))

[A3] =IF(K1<2, CLOSE(TRUE),)

2 Key calculation and payload decryption

[A4] =FORMULA(DAY(NOW())+K1, K2)
[A5] =FORMULA(CHAR(B1-K2) & .. & CHAR(B20-K2), C1)

3 Payload execution

[A6] =GOTO(C1)

[B1-B20] DL_LJ/)wv˜lyzolss55)0

[C1] =EXEC("powershell..")
[C2] =HALT()

Fig. 1: Example of a malicious Excel 4.0 macro payload.

2

open-source project that we leverage as the foundation for our work.
In general, these emulator-based tools parse the malicious Excel file,
find the correct entry point, and then emulate all the instructions,
trying to replicate the original Excel 4.0 macro behavior.

A significant limitation of these tools is using a default config-
uration to model the environment. Some samples might not show
their true behavior when executed under the default environment
configuration, and inferring a priori the environment expected by
the malware is challenging. For example, some samples run their
malicious payloads only when executed on a specific date or when
the width of the Excel window is larger than a particular threshold.

Recently, Leibovich and Ciuraru presented an approach based on
machine learning to identify Excel 4.0 malware families [41]. The
authors use t-SNE and k-means with a set of 253 features, spanning
from the length of the strings contained in a document to the count
of occurrences of each Excel 4.0 function. While this approach can
be used to detect variations of previously seen malware samples,
it does not provide any actionable forensics information on samples
that were not previously observed.
Symbolic Execution. Symbolic execution is a program analysis
technique that executes the program in the abstract domain of
symbolic variables, forking the execution after every conditional
instruction and keeping track of all the constraints introduced during
the execution. For example, when reading an integer environment
variableX, this variable is initially unconstrained and can assume any
possible integer value. However, after the execution of a conditional
instruction with a guarding condition X�0, the analysis will fork
into two new branches and constrain the variable’s value to be
either positive (where the constraint is X�0) or negative (where the
constraint is X<0). This type of analysis allows one to determine the
inputs that trigger the execution of a particular branch in the program.

III. MOTIVATION

Although Excel 4.0 macros offer several functions that malware
authors can trivially use to infect a system, malicious payloads
have evolved notably over time. In particular, malware authors have

deployed a series of evasion techniques that utilize the execution
environment to hinder static and dynamic analysis.

Figure 1 shows an example of these techniques. The first two
formulas (cells A1 and A2) call the function GET.WORKSPACE,
which retrieves some information about the execution environment.
In particular, the effect of these two formulas is to check whether the
machine has audio and mouse capabilities and—if these capabilities
are detected—to increment the value of the cell K1. The formula
in cell A3 checks if the value of K1 is less than 2, and it aborts the
execution when this condition is true. The macros in cellsA4 andA5
are responsible for decrypting the malware payload. In particular, the
formula in cell A4 adds the current day of the week to the value of
cell K1, and stores this result in cell K2. The malware then subtracts
the value of K2 to the characters from the range B1–B20, which
are then concatenated and stored in C1. After this operation, cell C1
will contain the decrypted malware payload, which, in our example,
calls the EXEC function to execute a command using powershell.
Finally, the formula in A6 transfers the control flow to the decrypted
payload (stored in C1) before halting the execution (cell C2).

Concrete Analysis. This analysis technique works by interpreting
each formula of a malicious document, using a default execution
environment. The example in Figure 1 clearly shows the limitations
of this approach. In particular, before the analysis, we do not know
whether the malware expects to run in an environment where
mouse and audio capabilities are present. These anti-analysis
checks are generally used to detect whether a sample is running
in a sandbox environment or not. For our example, we could create
an environment that pretends that basic capabilities are present.
However, we would not be able to easily determine the correct date
that the malware expects. This date is retrieved using the formula
NOW() (cell A4 in the previous example) and is used to decrypt the
malware payload (cell A5). Using a “wrong” value will generate an
invalid payload, which will hide the real behavior of the malware.
A similar technique has been observed in real malware samples,
and it is intended to hinder any dynamic analysis that runs on a day
different than the intended one [28].

In general, to overcome the problems related to the unknown
environment, concrete analysis can be coupled with forced
execution. This technique forces the execution to take different
branches on conditional instructions, using brute-force to iterate
over different environment variables. This technique allows one to
partially side-step the environment configuration problem, but not
without limitations. First, forced execution only allows to bypass
simple checks (conditions), but it does not guarantee the correct
environment configuration when forcing the execution down a
particular branch. In our running example of Figure 1, if the value
of K1 is equal to 1 when executing the formula in A3, forced
execution can divert the execution towards the false branch, and
avoid the CLOSE function. Even though this diversion will make the
execution reach the deobfuscation routine in cell A5, the value of K1
will be wrong (leading to an incorrectly decrypted payload in C1).
Similarly, brute-forcing requires identifying the subset of relevant
environment variables and finding an efficient strategy to triage
several combinations of their values. As we show in the evaluation
in Section V, this approach can be useful to test different values

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

of the date used in cell A4. However, when the malware sample
uses a more complex environment configuration, the search space
quickly increases in size, and this approach becomes infeasible.
Symbolic Analysis. As described in the paragraphs above, concrete
analysis has several limitations, mainly related to its inability to
reason about unknown environment variables. On the other hand,
symbolic execution is a suitable technique to keep track of how
environment variables are generated, propagated, and used during
execution. This information can be used to reason more formally
about the environment, and to represent any possible value of the
environment variables. For example, when SYMBEXCEL executes
the GET.WORKSPACE function in cell A1, symbolic execution
postpones the decision on the concrete value that this function should
return, and instead returns a symbolic variable. Then, since this
symbolic variable is used as a condition in an IF function, symbolic
execution forks the execution and generates two separate states: one
that follows the true branch, while the other follows the false branch.
The memory of the states will be updated accordingly—i.e., the
first state contains K1=1 while the second one contains K1=0. A
similar process is then repeated for the formula in cell A2. Only one
of the four generated states will contain K1=2, and it will therefore
reach the deobfuscation routine, while all the other three states will
be terminated after executing the formula in A3. Moreover, since
we consider the date as part of the environment, also cell K2 will
contain a symbolic variable, and the decrypted formula stored in
C1 will also be a symbolic expression. When the execution will
reach C1, our system, using a smart concretization technique, will
concretize the symbolic variable and execute the malicious payload.

IV. SYMBEXCEL

This section discusses the architecture of SYMBEXCEL, our
symbolic execution engine to analyze Excel 4.0 macros. Figure 2
provides an overview of the different components of our system.
In order to analyze a document containing Excel 4.0 macros,
SYMBEXCEL first needs to parse the document itself. To achieve
this goal, we use a Loader component (either the Static Parser or
the COM Loader) that understands the underlying file format (e.g.,
BIFF8 [56]) and extracts the information that is needed to run
the sample in our analysis environment. The second component
of SYMBEXCEL, which we call the Execution Engine, implements
the symbolic analysis engine. This is the core component of our
system, which is responsible for interpreting the formulas contained
in the document—using symbolic variables to model the execution
environment—and for guiding the symbolic exploration. The third
and last component of SYMBEXCEL is the Solver Backend. This
component is a wrapper around an SMT constraint solver, and is
responsible for checking the satisfiability of the collected constraints
(for example, when executing a conditional instruction) and for
translating expressions from the symbolic to the concrete domain.
The output of our system, once the symbolic exploration terminates,
is a report containing any security-relevant formulas (SRFs)
observed during the execution, which can be parsed to extract IoCs
such as filenames, URLs, shell commands, registry keys, crypto-
graphic hashes of dynamically generated files, etc. For example,
in Figure 1, the formula EXEC("powershell..") can be
trivially parsed to extract the shell command "powershell..".

In this paper, we define the following formulas as SRFs: EXEC,
CALL, REGISTER, FOPEN, FWRITE, FWRITELN.

In the following paragraphs, we describe the three main
components of SYMBEXCEL in more detail, explaining our design
and implementation choices.

A. Loader

This component is responsible for parsing the Excel document
and extracting all the information needed to start the analysis. Such
information includes the name and content of all the sheets in the
workbook, the analysis entry points, the defined names, the values
and formulas in each cell, and the properties of each cell (e.g., font
information, background color). We then import this information
into our analysis environment by creating an Execution Engine
instance and by initializing its memory and environment to reflect
the contents of the original Excel file.

SYMBEXCEL can load an Excel document file using either a
Static Parser or the COM Loader. The static parser leverages public
knowledge [44], [45] about the structure of the BIFF and XML
file formats to parse an Excel document. This approach makes the
loader faster, but at the same time, less robust. As described in more
detail in Section V, correctly implementing an Excel file parser
is inherently hard, and malicious actors are routinely finding new
ways to break such analysis tools’ parsers while preserving the
validity of the file with respect to Excel. An example of a statically
implemented loader is the Python library called xlrd2 [57], an
open-source and regularly maintained project that we improve and
use in this paper to parse malicious Excel files.

An alternative approach to parse and load such files is based on
the Microsoft COM functionality2, which can be used to directly
interface with Excel. This approach allows deferring most of the
work to the Excel parser implementation, which is inherently robust
and faithfully mirrors the outcome of a normal execution scenario.
Our COM Loader uses the Microsoft COM interface to load the
Excel file into a running instance of Excel. It is, therefore, more
resistant to some of the evasion techniques used in current Excel
4.0 malware samples (such as xlrd2 parsing confusion, as discussed
in Section V-B), albeit an order of magnitude slower than the static
loader—on average, the loading time with the Static Parser is around
3 seconds, while the COM Loader can take as much as 30 seconds.
Entry point. Excel malware has different ways to start the execution
of malicious Excel 4.0 macros. For this reason, a crucial piece of
information extracted by the loader is the entry point, which is used
by the Execution Engine to start the analysis. The first category
of entry points are related to built-in functionalities of Excel 4.0
macro sheets. For example, the Auto Open label specifies a macro
that is automatically executed when the macro sheet is opened.
Quite similarly, Auto Close, Auto Activate and Auto Deactivate
execute a macro when the spreadsheet is closed, when a workbook
is activated and when a workbook is deactivated, respectively.
Extracting these triggering macros is generally straightforward,
since they are stored under well-known (constant) names.

2The Microsoft Component Object Model (COM) was introduced by Microsoft
in 1993 and is a platform-independent, object-oriented binary-interface standard
for creating binary software components that can interact with each other.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

SYMBEXCEL

Malicious
Documents

...

COM
Loader

Static
Parser

Execution
Engine

Solver
Backend

IoCs

...
Loader

Fig. 2: System overview of SYMBEXCEL.

On the other hand, some of the latest malware samples first
execute VBA code that, in turn, triggers the execution of Excel
4.0 macro. Handling such cases in a generic way would not only
require a fully-functional VBA engine, but also the logic to handle
the interactions between VBA code and Excel 4.0 macros. For this
reason, SYMBEXCEL currently extracts Excel entry points only from
single-statement VBA functions that contains the Application.Run
method. Specifically, SYMBEXCEL extracts the VBA code using
oletools [39], and then parses it to extract the Excel entry points.
Since we did not observe any obfuscation in these VBA functions,
we use a regular expression to extract the Excel 4.0 entry point.

B. Execution Engine

This component is responsible for orchestrating the symbolic
exploration of a sample. In particular, the execution engine parses
and dispatches the Excel 4.0 formulas to the proper function
handlers, forks the execution when a conditional formula is
executed, and invokes the solver backend to concretize symbolic
values. The implementation of our execution engine builds on
the open-source implementation of XLMMacroDeobfuscator [53].
The most important additions we made to this tool are related to
symbolic execution: from supporting the creation and propagation
of constraints to keeping track of multiple execution states.
Moreover, we improved the formula parser to support Unicode
characters, and we also implemented new function handlers.
Formula Parsing. In order to interpret an Excel 4.0 formula,
SYMBEXCEL first parses the formula string from the target cell
and generates an Abstract Syntax Tree (AST). The AST is a
representation of the formula that makes its syntactic structure
explicit. The formula parser used by our system is based on extended
Backus–Naur form rules (EBNF), which describe the syntactic
structure of the XL4 grammar. SYMBEXCEL implements several
function handlers each implementing a non-terminal symbol of the
XL4 grammar. Since each function handler replicates the behavior
of a function on the execution state, after parsing the XL4 formula
into an AST, we then walk the AST and dispatch the execution to
one or more function handlers in a recursive descent fashion.
Execution States. When an Excel macro does not use any symbolic
value, a single execution state can be used to represent the execution
of the macro. The execution state is created at the beginning of the

analysis, and the same state will be used until the macro terminates,
since every formula will have only one valid successor.

On the other hand, when executing a conditional instruction (e.g.,
IF) that operates on at least one symbolic variable in its condition,
a state can have two or more valid successors. For example, the
IF function in cell A3 of Figure 1 uses a symbolic variable (K2)
in its condition, and both branches are potentially valid since such
symbolic variable is unconstrained. To handle these cases, the
Execution Engine must duplicate the state and follow one or both
branches, depending on the state’s constraints. The results of this
duplication process are new execution states, which follow different
execution paths and eventually explore the macro’s entire behavior.

Since these execution paths are independent of each other,
every state contains its own copy of the memory, environment
configuration, and constraints:
1) The memory holds the values and formulas contained in

cells, the information regarding cells’ properties (e.g., font
information), and the defined names.

2) The environment contains accessory information that is not
directly stored in a workbook. For example, the window height
and the current operating system version are both environment
variables. Malware authors use environment variables for
sandbox detection and evasion. Therefore, depending on the
environment, the same malware sample can show different
behaviors. For this reason, we associate a symbolic variable
to each of these environment variables, allowing us to explore
every possible malware behavior.

3) The constraints characterize the malware behavior and
are propagated from one state to its successors during
the execution. For example, a possible constraint is
GET.WORKSPACE(14)>390, which constrains the symbolic
variable representing the window height to be greater than 390.

Function Handlers. The function handlers replicate the original
behavior of a formula. The handlers can thus modify the execution
state by updating the memory, accessing the environment, and
adding new constraints:
1) Updating the memory: After executing an XL4 formula,

SYMBEXCEL updates the memory of the state to store the
formula’s result and to reflect any side-effects in the state’s
context. For example, the formula in cell A1 of Figure 1, updates

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Number of functions observed over time.

the value in cell K1 (when executing the SET.VALUE macro)
and writes either TRUE or FALSE in cell A1, depending on
which branch is executed.

2) Accessing the environment: As mentioned, XL4 malware
samples use the environment values for sandbox detection
and fingerprinting. For example, when executing the formula
=FORMULA(DAY(NOW())+K1, K2) from our running ex-
ample (Figure 1, cell A4), SYMBEXCEL starts by calculating
the result of the expression DAY(NOW())+K1. Thus, the NOW
function will access the environment to read from the execution
state’s context the symbolic value associated with the current
time. Finally, the FORMULA function will write the expression’s
value to the destination cellK2. As a result, the symbolic variable
is propagated from the environment to memory and will be used
later in the execution for further computation.

3) Generating new constraints: As previously explained, when
executing a conditional instruction with a symbolic operand,
SYMBEXCEL will fork the execution state, update the states’
contexts, and generate the correct guarding constraints. For
example, the formula =IF(K1<2, CLOSE(TRUE),)
(Figure 1, cell A3) will generate the two guarding constraints
K1<2 and K1>=2, which will be added to the respective states.

Delegations. In order to make our approach more resilient, we
implement an additional mechanism that allows SYMBEXCEL to
delegate the execution of an XL4 formula to Excel. The Excel
4.0 function reference [58] contains hundreds of functions, and
implementing each of them inside SYMBEXCEL would basically
require reproducing the entire Excel formula engine. Moreover,
as seen in Figure 3, the number of functions used by the malware
authors increases dramatically over time. For this reason, when our
system tries to execute a function that is not implemented in our
engine, we offload the execution to the COM server. In particular,
SYMBEXCEL uses the COM functionality to communicate with a
running instance of Microsoft Excel, and it synchronizes the current
state context, which includes the content of the spreadsheets, macro
sheets, and the defined names. It then executes the target formula,
and finally, it fetches the resulting context back into our execution
engine. This delegation mechanism allows our approach to scale
even when some of the Excel functions used by a sample are not
implemented in our execution engine.

Currently, SYMBEXCEL can only delegate instructions with
concrete arguments. However, since only a subset of the formulas
used in current malware samples has symbolic arguments, this
technique dramatically reduces the implementation overhead when
threat actors start using a new formula.

[A1] =FORMULA((GET.WORKSPACE(14)>390)+84, B1)
[A2] =FORMULA("=HAL" & CHAR(B1) & "()", C1)
[A3] =GOTO(C1)

Fig. 4: Execution of a symbolic expression (stored in cell C1).

Summary. The Execution Engine is the core component of our
system: it parses each formula during the execution, generates the
corresponding AST, and invokes the function handlers to reproduce
the original formula’s behavior. When one of the AST nodes is
symbolic (i.e., refers to an environment variable), the function
handlers will propagate this symbolic value and generate a new
symbolic expression.

C. Solver Backend
The final component in our architecture is the Solver Backend,

which is a custom wrapper around the Z3 SMT solver [26]. This
component allows SYMBEXCEL to accumulate the constraints
associated with an execution state, check their satisfiability, and
concretize symbolic expressions.

SYMBEXCEL can concretize the path constraints to allow multi-
path exploration, as well as the symbolic memory addresses and
formulas to enable the analysis of self-modifying macros. Take as an
example the formula =FORMULA(..., C1) from Figure 4, cell
A2. The FORMULA function will evaluate the expression specified
as the first argument and write its result into the destination cell,
specified as the second argument. In this case, the corresponding
handler will concatenate the string "=HAL" with the symbolic
character stored in cellB1, append the string"()", and finally write
the result into cell C1. The formula =GOTO(C1) will then redirect
the execution to cell C1, which contains a symbolic expression.

Since a symbolic expression can have multiple possible concrete
values, SYMBEXCEL will concretize the symbolic expression and
generate a set of concrete solutions that our symbolic execution
engine can execute. Translating an expression from the symbolic
domain to the concrete domain allows us to continue executing the
malware sample, exploring all its possible behaviors.

As mentioned before, there are often multiple concrete solutions
to a symbolic expression. The expression used in cell A1 of Figure 4
is a symbolic expression based on the environment variable returned
by GET.WORKSPACE(14). However, such variable is a symbolic
integer variable with 232 concrete solutions. Therefore, after execut-
ing cell A3 and transferring the execution to the symbolic expression
stored in cell C1, a naı̈ve concretization strategy would fork 232

execution states, overloading our symbolic execution engine. For this
reason, we implement two optimizations that make our concretiza-
tion strategy more efficient: Observers and Smart Concretization.
Observers. To make constraint solving more practical, we introduce
additional symbolic variables during the symbolic exploration.
An observer variable is an intermediate variable that represents a
symbolic sub-expression. In particular, when we execute a symbolic
comparison operation, a symbolic boolean operation, or when
handling an IS_NUMBER formula on a symbolic string index
(e.g., ISNUMBER(SEARCH(...))), we represent the resulting
Boolean expression with a freshly created symbolic variable. This
process is crucial when our system has to concretize a symbolic
formula, since it dramatically reduces the concretization space.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

For example, we assume that SYMBEXCEL needs to retrieve
all possible concrete models associated with the symbolic
expression in cell C1. When concretizing the symbolic expression
(GET.WORKSPACE(14)>390)+84, our solver backend
recognizes that this expression uses a symbolic integer variable.
As a result, the number of possible models is 232—i.e., all the
possible values associated with the symbolic integer variable
GET.WORKSPACE(14). On the other hand, if we strategically
introduce a symbolic Boolean variable OBSERVER_1 to represent
the expression GET.WORKSPACE(14)>390, then the symbolic
expression becomesOBSERVER_1+84. As a result, this expression
can have only two concrete solutions, 84 and 85, and our solver
backend can concretize the expression without additional overhead.
Smart Concretization. Even after introducing one or more ob-
server variables, it is possible to have many concrete solutions asso-
ciated with a symbolic expression. To limit the number of generated
states, SYMBEXCEL uses the XL4 grammar to decide whether a con-
crete string is a valid formula or not. In other words, after retrieving
every concrete model of a symbolic expression, we use this grammar
as an oracle to filter any invalid formula. In the previous example in
Figure 4, the two possible concretizations of the string stored in cell
C1 are "=HALT()" and "=HALU()". While the first concretiza-
tion represents a valid XL4 formula, the second one is invalid and
thus is discarded by SYMBEXCEL. This smart concretization strategy
is without loss of generality, since Excel also aborts the execution
when it encounters an invalid formula. In other words, malware
authors cannot deceive our system into discarding their otherwise
legitimate payload by intentionally using an invalid formula.

V. EVALUATION

We combine two different datasets of malicious Excel 4.0 macros
to evaluate our approach. The first one, which we will refer to as
the public dataset, is a collection of 5,697 samples retrieved from
VirusTotal (VT). The second dataset, which we will refer to as the
private dataset, contains instead 18,840 samples that are not publicly
available and that were collected by a security vendor. Overall, these
two datasets contain 24,537 malicious samples. Using the submis-
sion date, we estimate that our dataset covers more than eight years,
since the earliest observed sample was submitted to VT in March
2013 and the latest observed sample was submitted in July 2021.

In the following sections, we describe the ecosystem behind
Excel 4.0 malware, how it evolved over time, and how malicious
actors continuously find new ways to hinder the analysis of XL4
macros. In particular:

• We present the results of our comparison with other publicly
available tools. Specifically, we compare SYMBEXCEL with
XLMMacroDeobfuscator [53], the state-of-the-art open-source
concrete analysis tool for Excel 4.0 macros.

• We study the mechanisms used to trigger the execution of
Excel 4.0 macros, and the most common evasion techniques
that malware samples use to prevent the parsing of Excel files.

• We study the security-relevant formulas used by malware
samples to execute malicious payloads, and the IoCs extracted
from these formulas.

• We study the evolution of Excel 4.0 malware samples over
eight years and present the results of our temporal study.

A. Approach Comparison
To assess the effectiveness of our approach, we compare

our system with the state-of-the-art concrete deobfuscation tool
XLMMacroDeobfuscator (version 2.0, released in November 2021).

The results of this comparison are presented in Table I where,
for each tool, we report the number of samples that are successfully
analyzed. We consider a sample to be successfully analyzed when
the macro executes at least one of the following three functions:
EXEC, CALL, or REGISTER. Malicious XL4 macros typically
use these functions to implement the malware behaviors, such as
calling a WinAPI function to download a file from a remote server,
or to execute an external program. When one of these functions
is encountered, we assume that the deobfuscation stages have been
successfully executed and that the environment configuration is
adequate to reveal the malicious behavior.

In Table I, we have divided the samples into two categories,
Concrete and Symbolic, depending on whether or not a sample
reads any information from the environment that is represented with
a symbolic variable (e.g., the size of the window or the current day).
This allows us to show the difference in the analysis results based
on whether the execution of a sample relies on external inputs.

We also run SYMBEXCEL with two different configurations: one
where the malicious documents are parsed with an improved version
of the xlrd2 static parser (SYMBEXCELSTATIC), and one where
this task is offloaded to our COM Server (SYMBEXCELCOM). The
results for SYMBEXCEL reported in the top part of the table show the
union of the results for these two configurations. For our experiment,
we also group similar samples together by using the sequence of
executed formulas as an equivalence metric and presenting the
results in terms of structurally distinct samples (right side of Table I).

The first key result presented in Table I is that SYMBEXCEL—in
either configuration— deobfuscates significantly more samples
than XLMMacroDeobfuscator (23,931 compared to 12,375
samples). Our better results are due to a number of factors. The
first difference between the two approaches is that SYMBEXCEL’s
execution engine currently implements 103 function handlers, while
XLMMacroDeobfuscator supports 73 functions. Moreover, using
the COM server to load and parse the samples allows SYMBEXCEL
to sidestep some of the evasion techniques that are used to interfere
with the static parsers, as we will discuss in-depth in the Evasion
Techniques section. Finally, SYMBEXCEL can infer additional entry
points from the VBA code included in the Excel documents, which
can be used to trigger the malicious XL4 functionality.

However, the most interesting results emerge from the analysis
of the subset of samples that make heavy use of obfuscation and
environment-specific variables. For this subset of symbolic samples,
XLMMacroDeobfuscator can only deobfuscate 410 samples.
It is interesting to understand why XLMMacroDeobfuscator
manages to analyze any symbolic samples at all. We find that the
analysis can be successful either because the concrete environment
values used by the tool happen to satisfy the values expected
by the malware sample, or because the sample uses only the
value returned by the function DAY to deobfuscate the payload.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

Tool All Samples (24,537) Structurally Distinct Samples (2,265)

Concrete Symbolic All Concrete Symbolic All

XLMMacroDeobfuscator 11,965 410 12,375 225 363 588
SYMBEXCEL 16,692 7,239 23,931 1,020 1,081 2,101

SYMBEXCELSTATIC 16,644 7,231 23,875 1,014 1,078 2,092
SYMBEXCELCOM 16,660 7,236 23,896 1,018 1,079 2,097

TABLE I: Comparison of the number of samples deobfuscated correctly by SYMBEXCEL and XLMMacroDeobfuscator.

Interestingly, XLMMacroDeobfuscator implements a brute-force
strategy specifically for the return value of this function. On
the other hand, SYMBEXCEL can automatically find the correct
environment configuration and deobfuscate 7,239 samples. In this
case, the performance difference is primarily due to the symbolic
implementation of the function handlers, which allows SYMBEXCEL
to accumulate constraints and solve them when executing a symbolic
formula to infer the correct environment configuration.

In our experiments, we use a 60-minute timeout, and none of the
samples exceed this timeout. Overall, the median analysis time is
12s per sample for SYMBEXCELSTATIC, 32s for SYMBEXCELCOM,
and 1s for XLMMacroDeobfuscator.
Triggering Mechanisms. As previously discussed in Section IV-A,
malware authors can leverage different ways to start their malicious
macros. Figure 5 presents an overview of the triggering functionality
we observed in our dataset. The vast majority of documents (15,020
samples) use the Auto Open built-in name to start the execution,
while only a few of them leverage instead Auto Close (384) and
Auto Activate (6). On the other hand, Figure 5 shows that VBA code
(9,001 samples) has become a popular triggering mechanism to-
wards the beginning of 2021, clearly in an attempt to evade analysis
tools. Moreover, Figure 5 also shows how malicious documents (18
samples) leverage DCONN records, which allows Excel to perform
a web query and insert new formulas inside a spreadsheet. Despite
not being an entry point per se, we observed that samples use a
combination of DCONN and Auto Open. In these cases, a part of the
malicious macros is downloaded using the DCONN functionality,
while the execution is started with Auto Open.

These alternative triggering mechanisms have been used
recently—we observed VBA code used as an entry point starting
from March 2021—by the malware authors to create samples
that are harder to analyze. For instance, at the time of writing,
XLMMacroDeobfuscator does not support the parsing of VBA
entry points. Similarly, the analysis of any sample that uses the
DCONN functionality is complicated by the fact that part of the
Excel 4.0 payload is stored remotely and, thus, cannot be retrieved
unless the analysis sandbox is connected to the Internet and the
remote server is still reachable.

B. Evasion Techniques
This section discusses the evolution of the evasion techniques

used in different waves of Excel 4.0 malicious macros. Initially,
we observe such malicious macros separately using hidden macro
sheets, control-flow obfuscation, data-flow obfuscation, and
sandbox detection checks. However, in later waves, we observe a
particular interleaving of sandbox detection checks and data-flow

obfuscation that makes the correctness of the deobfuscated code
depend directly on the system configuration of the host machine.

Finally, in the latest waves of Excel 4.0 macros, we observe
a series of evasion techniques that break the parsing logic of
the xlrd2 parser, as well as the Excel grammar and evaluation
logic implemented in XLMMacroDeobfuscator, making the
samples harder to analyze. In the following paragraphs, we
classify the evasion techniques observed in our dataset into seven
categories: hidden macro sheets, control-flow obfuscation, data-flow
obfuscation, sandbox detection, xlrd2 parsing confusion, Excel
4.0 macro grammar confusion, and evaluation logic confusion.
Hidden Macro Sheet. Hidden macro sheets are one of the first
types of evasion techniques observed in malicious Excel 4.0
macros [28]; our dataset contains samples submitted as early as 2013
that leverage this technique. The visibility of an Excel sheet can be
set to Visible, Hidden, or Very Hidden. In particular, while the Hidden
setting can be changed using the standard Excel User Interface, the
Very Hidden setting can only be changed using a VBA macro or by
manually modifying the binary representation of the macro sheet.
Control-Flow Obfuscation. Multiple functions are used to
obfuscate the original control flow of the malicious macro, making
the control flow harder to follow by human analysts. First, the
GOTO and RUN functions are used as a trampoline to transfer the
execution to target cells, which can reside in different macro sheets.
Calls to subroutines—which are linked to either a cell or a defined
name—are used along with the RETURN function to execute
program routines, such as a subsequent stage in a multi-stage macro
or a cipher implementation. Finally, the REGISTER function is
heavily used to register functions from the Windows API with
custom names and evade any static deobfuscator attempts to extract
strings representing function names, DLL names, URLs, etc.
Data-Flow Obfuscation. We observe several techniques used to
obfuscate the data flow of malicious macros. In particular, functions
such as CHAR or MID are heavily used in combination with
both basic arithmetic and the FORMULA.FILL and FORMULA
functions to concatenate sets of characters and dynamically generate
additional malicious formulas. Moreover, many samples use the
defined names as a form of temporary storage for strings and
intermediate values in general. Finally, recent samples use various
types of ciphers to re-arrange, shift, and combine the values in the
document to generate the malicious macro.
Sandbox Detection. Malicious Excel 4.0 samples use various
strategies to detect a sandbox environment during execution. For
example, as described in previous sections, samples use functions
such as GET.WINDOW, GET.WORKSPACE, GET.DOCUMENT,

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Distribution of the number of malicious samples using each entry point over time.

GET.CELL, etc., to read values from the environment configuration.
Moreover, we observed malicious samples that check multiple prop-
erties of the host system, such as the existence of a working system
clock and a functional file system implementation, or the presence of
Alternate Data Streams (ADT), a file attribute specific of NTFS that
is commonly leveraged by other types of Windows malware. Some
of the samples export and check the contents of theExcel Macro
SecurityWindows registry key. Finally, some of the samples use
the Xlcall32:Excel4 API to fork the execution and continue
executing the macro in a new process, in an attempt to confuse
dynamic analysis techniques that monitor the process execution.

What makes these techniques particularly interesting for SYM-
BEXCEL is that they evolved from being used as mere environment
fingerprinting/evasion mechanisms to playing a key role in the
generation of the final malware payload. Instead of simply aborting
the execution, these evasion mechanisms provide values that are used
to generate the final payload and, therefore, lead to a subtle incorrect
deobfuscation of the malware sample. However, SYMBEXCEL can
correctly analyze these samples because it treats values related to
the execution environment configuration as symbolic.
Static Parsing Confusion. Some samples in our dataset tamper
with the Excel file format to cause the static parsing logic to fail.
However, at the same time, these samples remain compliant with
the parser implemented in Excel, which executes the malicious
macro without errors. For example, a common strategy among
malware authors is to insert null bytes to alter the representation of
the defined names and Shared String Table (SST)—which causes
the parsing library to process the malicious file incorrectly (e.g.,
because of missing defined names).
Excel 4.0 Macro Grammar Confusion. Instead of tampering
with the parsing logic, some samples alter the formulas to confuse
the XL4 grammar implementation. In fact, the grammar commonly
used to parse malicious formulas is a manual approximation of the
grammar used by Excel. This approximation allows malware authors
to leverage imprecision in the implementation and cause the analysis
to fail. For example, Cyrillic and Unicode characters were initially
not supported, and parsing a formula with one such character would
cause the analysis to abort. Similarly, an incorrect specification of
the comparison operator in the grammar resulted in the incorrect
parsing of formulas such as =TRUE=TRUE=TRUE (a sequence of
two comparisons). After noticing this problem, we improved the
grammar used by SYMBEXCEL to support such formulas.
Evaluation Logic Confusion. Finally, some samples target
the analysis tools at a higher level and introduce functions for

which the handlers are either partially implemented or incorrectly
implemented. For example, some of the samples observed by the
VMware Threat Research Unit [28] make heavy use of arithmetic
operations on floating-point numbers to test the correctness of the
underlining engine.

C. Malware Evolution
This section discusses how we can leverage the data extracted

by SYMBEXCEL to analyze the malware samples contained
in our dataset, and classify them into behavioral clusters. This
analysis aims to show how malware families evolve, and to identify
sub-clusters that represent variations of the same malware family.

Figure 7 in the Appendix presents an overlay of two triangular
matrices representing the behavioral (below the diagonal, in the
lower triangle) and structural (above the diagonal) similarities
between different malware samples. Lighter shades of red indicate
lower similarity, while darker shades indicate higher similarity.

In particular, to compute the behavioral similarity clusters, we first
pre-process the SRFs, extracting the function names and relevant ar-
guments (e.g., CALL urlmon URLDownloadToFileA). We
then transform such tokens using the Term-Frequency Inverse-
Document-Frequency (TF-IDF) and calculate their cosine similarity.
Finally, we perform hierarchical agglomerative clustering using the
nearest point distance algorithm (i.e., single linkage) with Euclidean
distance, and show the resulting hierarchically-clustered heatmap in
the lower triangle in Figure 7. With a cutoff threshold of 2, we obtain
40 behavioral clusters (of which 13 are singletons) with an average
size of 57 samples. We exclude the clusters with less than 20 samples,
and identify nine distinct behavioral clusters with an average size of
239 samples (highlighted in Figure 7) that cover 95% of the distinct
samples in our dataset. Specifically, the distinct behaviors identified
by the hierarchical clustering can be recognized by observing red-
colored blobs close to the diagonal of the matrix, which are marked
with incremental numbers ranging from one to nine.

To compute the structural similarity clusters, we similarly process
the list of all functions executed by each sample. We then preserve
the ordering from the lower triangle (below the diagonal) and overlay
the structural similarities in the upper triangle (above the diagonal).
This representation allows us to observe clusters of samples with
similar behavior and, at the same time, to compare their structure.

Figure 6 presents a timeline with the number of observations per
cluster over time. For the sake of clarity, we only include the six
clusters with more than 50 distinct samples in the timeline. Interest-
ingly, this timeline shows that samples belonging to the same cluster

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Timeline of the number of clusters observations over time.

are focused around a given time. This distribution supports our
observation that the malware authors will develop new variants as
the previous ones are detected and, therefore, are no longer effective.

In the following sections, we present our study of the identified
clusters and provide insights into the temporal evolution of the
observed behaviors.
Cluster 1. The samples in Cluster 1 display different behaviors
depending on the architecture of the machine where the sample is
executed. On a 32-bit system, the samples download and execute
a malicious DLL file. On the other hand, if a 64-bit system is
detected, these samples create on the file-system two VBScripts
using the FOPEN and FWRITELN functions, and execute them
using explorer.exe. The first script file downloads a malicious DLL
from a remote server, while the second one executes this DLL
using the rundll32.exe executable. We observe two variants of the
samples belonging to Cluster 1. Both variants use three consecutive
stages, and heavily use the SET.NAME function to update the
values of the defined names during the deobfuscation. The first
two stages are used to detect sandboxes and to deobfuscate the
third stage using values from the environment. The only difference
between these two variants is their usage of different functions (e.g.,
FORMULA.FILL instead of FORMULA) to write the third-stage
payload in the macro sheet.

We first observed Cluster 1 on November 2020 and—considering
their structural and behavioral similarity—it likely represents an
evolution of the first cluster described by the VMware Threat
Research Unit in October 2020 [67].
Cluster 2. The behavior of the samples in Cluster 2 is equivalent
to that of the samples in Cluster 1, as also observed in Figure 7.
However, the structure of these samples shows some different
characteristics. In particular, samples from Cluster 2 use a first
stage with two nested loops that combine values from both the cells
and the environment to generate the second stage. As a result, the
correct execution of both the second and third stages depends on the
correctness of the environment values. Similarly, we observe three
variants of this cluster. The main difference between these variants is
the usage of different functions—such as TRIM, CONCATENATE,
SUM, MAX, MIN—during the deobfuscation stage. One of the vari-
ants, in particular, uses the MIN and MAX functions with symbolic
arguments in a loop to generate additional possible behaviors.

Cluster 2 was first observed on December 2020 and is likely an
evolution of Cluster 1, given their behavioral similarity. Moreover,
the timeline presented in Figure 6 shows how this cluster was
deployed after Cluster 1 retired, and our observations suggest that

these two events are correlated.
Cluster 3. The samples in Cluster 3 are behaviorally similar to the
samples observed in Cluster 2, but introduce a two-stage structure
with two distinct deobfuscation routines. Also, there is a common
second stage that is executed for both 32-bit and 64-bit systems.
Cluster 3 was first observed on February 2021, when the number
of reports for Cluster 2 started to decrease. Indeed, after a closer
comparison, we observe that Cluster 3 exhibits a behavior similar
to Cluster 2, but uses a Javascript (.js) file instead of VBScript to
download and run a DLL.
Cluster 4. The samples in Cluster 4 were first observed in a
simplified form in December 2019. Interestingly, they use two
distinct deobfuscation routines and novel evasion techniques in
the deobfuscation stage, such as checking the value of the Excel
Macro Security Windows registry key. The samples of this
family evolved around February 2021 and started using more
sophisticated evasion techniques, such as the Xlcall32:Excel4
API to fork the execution. We then observe a wave of samples
belonging to this cluster starting on February 2021, at the same
time as Cluster 3. In fact, we observe that this cluster also uses two
distinct routines to deobfuscate its four stages.
Cluster 5. The samples in Cluster 5 all share a simple structure
(on average, 18 formulas) and display a behavior that consists of
the download and execution of one or more files. The distinctive
trait of this cluster is its heavy usage of the REGISTER function.
In particular, the majority of these samples use the REGISTER
function to register a custom function that downloads a file, call
the custom function, and finally execute the file with the EXEC
function. However, some of the samples in this cluster additionally
use the NOW function to retrieve the current timestamp and generate
the target URLs. Cluster 5 was first observed on January 2021.
These samples do not use sophisticated evasion or deobfuscation
techniques, likely as a way to blend in with other benign samples.
Cluster 6. The samples in Cluster 6 are samples that are currently
unsupported by SYMBEXCEL (for example, because of imprecisions
in the implementation of our functions handlers). That is why
the corresponding behavior is shown as a white area in Figure 7.
However, SYMBEXCEL can partially execute these samples, which
offers a way to measure their structural similarity with other
samples in our dataset. In particular, by looking at the structural
similarity matrix (above the diagonal in Figure 7), we observe that
many of these samples are structurally similar to the samples in
Cluster 1, indicating that more than 50% of the samples in this

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

cluster could belong to a new cluster that is a variant of Cluster 1.
Cluster 7. We observe two main variants of Cluster 7, respectively,
in March 2020 and May 2020. Both the variants first check the Ex-
cel Macro Security settings (a technique already observed
in Cluster 4). Then, they request the office-msi-non-security-updates
web page from docs.microsoft.com, possibly to mimic a benign
behavior. Finally, the samples download and execute a malicious file.

The first variant of Cluster 7 (observed in March 2020) has
a very simple structure (32 formulas) that first deobfuscates a
sequence of environment checks and then executes them. The
second variant (first observed in May 2020) introduces multiple
stages of deobfuscation interleaved with the environment checks.
This variant is generally more complex (244 formulas) and also
makes heavier use of control-flow obfuscation (RUN and GOTO
functions). Finally, we observe a third variant first used in February
2020 and then deployed again in April 2021. This third variant is
less prevalent and uses a series of calls to the SET.NAME function
during the deobfuscation stage.
Other Clusters. We observe some smaller clusters in the bottom
right part of Figure 7, namely Cluster 8 and Cluster 9. The samples
in Cluster 8 are behaviorally very similar to the samples observed in
Cluster 5. However, these samples do not use the REGISTER func-
tion, but only download and execute an executable file. Despite being
behaviorally similar, the samples from Cluster 8 do not share a sim-
ilar structure. Instead, we observe that such samples often use func-
tions that are otherwise rarely used, such as CEILING.PRECISE,
RADIANS, SUMPRODUCT, ACOS, SUMXMY2, etc., possibly as a
way to break existing analysis techniques.

Cluster 9 contains samples that heavily use control-flow
obfuscation (out of 157 formulas executed, 135 use the
RUN function). The behavior displayed by these samples is
straightforward and consists of the creation of two nested directories
using the Kernel32:CreateDirectoryA API followed by
the download and execution of an executable file.

D. Malware Families
To study the malware families in our dataset, we retrieve and an-

alyze the VT labels of the public samples. In particular, we find Mi-
crosoft Defender to be the most reliable for XL4 malware samples.

We first assign a family name to each sample by parsing the
Microsoft Defender labels and matching them against a list of
verified family names from multiple sources [1], [59], [63]. Quite
interestingly, we observe that 15% of the public samples are
unlabeled, and 36% have a generic, non-meaningful label (e.g.,
TrojanDownloader:O97M/EncDoc). This clearly shows that XL4
malware remains difficult to analyze, and even authoritative engines
are not always able to correctly label these samples, and correlate
them with a specific threat actor. Nonetheless, from the remaining
49% of the samples, we identify nine different families— Donoff,
Dridex, Gozi, Hancitor, IcedID, Mailcab, Qbot, TrickBot, and
Zloader—suggesting that multiple threat actors have abused this
infection vector. We select the three most prominent families and
present their observations timeline in Figure 8 in the Appendix.

Excel 4.0 malware samples often do not directly infect the
host machine, but rather download a secondary infection payload.
For this reason, while our behavioral clustering is based on the

Cluster IcedID Qbot TrickBot Zloader O GEN UL

1 · · · 99% · · 1%

2 · · · 58% · 25% 18%

3 · · · 89% · · 11%

4 · · · 29% · 16% 55%

5 32% 11% 5% · · 40% 11%

6 · 3% 1% 25% 2% 57% 13%

7 · · · · 2% 50% 48%

8 25% 27% 2% · 2% 32% 13%

9 · · · · · 68% 32%

TABLE II: Distribution of malware families for each behavioral
cluster. O: other, GEN: generic, UL: unlabeled.

malicious behaviors observed in the XL4 macro, this does not
always correlate with the observed secondary infection payload (i.e.,
the malware family). As a result, we expect our clusters to loosely
match with the VT labels, and we also expect different families to
share similar XL4 payloads.

Nonetheless, we still observe some correlation between the
assigned family names and the behavioral clusters presented in
Figure 7. We present our results in Table II and distinguish three
cases: clusters that belong primarily to one family, clusters that
belong to multiple families, and clusters where most samples are
unlabeled or have generic labels. In the first case, we observe that
clusters 1, 2, and 3 mostly belong to the Zloader family. Since the
samples in these clusters show a complex behavior, we speculate
that they were exclusively deployed by Zloader threat actors. In the
second case, we observe that clusters 5, 6, and 8 contain samples
from different families. We speculate that the simplicity of the
behavior observed in such samples justifies its use by multiple and
different threat actors. Finally, clusters 4, 7, and 9 mostly contain
unlabeled or generically labeled samples. We manually investigate
such samples and observe that many are labeled with the generic
labels kryptik (in cluster 4) and abracadabra (in clusters 7 and 9).
Other Variants. The previous discussion focused on the most recent
samples in our dataset, but, as shown in Figure 5, our dataset also
contains samples submitted during 2013 and 2014. We trace these
five structurally distinct samples back to different variants: Poppy,
NetSnake, Laroux, and Yagnuul. Interestingly enough, NetSnake
shows a more advanced behavior than some of the newest samples in
our dataset: it extracts from a hidden macro sheet column the content
of a VBA script, and executes such script. In turn, the VBA script
writes a Cabinet (.cab) file on disk, unpacks it, and gains persistence
by overriding several registry keys to point to the unpacked files.

E. Malicious Behavior Study
This section presents an overview of the different techniques that

malware authors use to infect the target system. In Section V-C and
Section V-D, we observe that the vast majority of the samples in
our datasets are droppers—i.e., a type of malware that downloads
and executes an executable file or a DLL [37]. Despite this shared
behavior, malware authors use different techniques to download
a secondary infection payload from remote hosts. In particular,

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

the samples in our dataset either use: (1) powershell scripts, (2)
the ExtExport.exe executable from Internet Explorer, (3) a
Visual Basic script that is executed using explorer.exe, or (4)
a JavaScript script that is executed using explorer.exe.

On the other hand, the most common ways to start the
downloaded executable are: (1) via the explorer.exe binary,
(2) by calling the WinAPI function ShellExecuteA, (3) by invoking
rundll32, or (4) by executing regsvr32. Moreover, we noticed
a peculiar technique in some samples which combines both the
download and the execution in a single step, and utilizes a custom
configuration file for WsatConfig.exe, a tool normally used
to manage transactions between distributed applications [46]. In
this configuration file, the malware authors include a reference
to a remotely hosted DLL, which is loaded and executed when
WsatConfig.exe starts. This technique is particularly interest-
ing since it is significantly different from most observed malicious
behaviors, and represents an example of DLL injection [31].

During our analysis, we found that some samples reveal different
behaviors when executed in different environments. For example,
some samples detect whether the architecture is 32-bit or 64-bit, and
execute a different payload accordingly. Other samples use a backup
strategy when downloading a secondary infection payload: when
the connection to a remote server fails, the sample tries to connect to
other servers, one after the other, and sometimes even using different
methods (e.g., WinAPI, VBScript, JavaScript). Since SYMBEXCEL
uses multiple states to keep track of different execution paths, it can
effectively capture all of these different behaviors. In our dataset,
we observe that samples with multiple behaviors are common: 47%
of the structurally distinct samples show two or more behaviors,
while 38% show three or more behaviors.

F. IoC Study
While security-relevant formulas can suggest malicious behavior,

IoCs are the de-facto standard when responding to security incidents
or conducting forensics investigations. For this reason, in this section,
we focus on traditional IoCs—i.e., URLs, filenames, domain
names, and IP addresses. Our knowledge and control over the SRFs
logging format make it straightforward to extract such IoCs from
SYMBEXCEL. Similarly, in the case of XLMMacroDeobufuscator,
we extract these IoCs by analyzing its execution logs.

The result of this process is presented in Table III. The number
of URLs extracted from the output of XLMMacroDeobufuscator
and SYMBEXCEL is, respectively, 1,087 and 1,806. We also extract,
respectively, 758 and 3,231 filenames, and the most common file
extensions are .vbs, .txt, .html, .reg, and .exe.

We observe that XLMMacroDeobufuscator appears to extracts
some IoCs that are not extracted by SYMBEXCEL. The only source
of difference between the two tools is their different concretization
strategy for timestamps and random numbers. For instance, while
SYMBEXCEL uses a fixed value when concretizing a timestamp,
XLMMacroDeobufuscator always uses the current timestamp,
resulting in different IoC values over time. Considering this
difference, we confirmed that SYMBEXCEL’s IoCs are a super-set
of the IoCs extracted by XLMMacroDeobfuscator.

Finally, we further break down the observed URLs by extracting
the unique domain names (451 and 635, respectively) and the unique

Tool URLs Filenames Domains IPs

XLMMacroDeobufuscator 1,087 758 451 133
SYMBEXCEL 1,806 3,231 635 215

Total 2,202 3,346 635 215

TABLE III: Breakdown of the IoCs observed in our experiments.

IP addresses (133 and 215, respectively). After resolving the domain
names using historical DNS records from VT, we found that there is
no overlap between the domain names and the IPs. We also query the
VT intelligence API to verify the reputation of the extracted domains
and IP addresses. The results of these queries reveal that 403 out
of 635 domains and 212 out of the 215 observed IPs are reported as
malicious by at least one antivirus engine. The median detection rate
of the public samples is 28 out of 75 engines. However, the median
detection rate for the domains and IPs extracted from such samples
is 2 out of 90 engines and 5 out of 90 engines, respectively. This
result suggests that antivirus engines aggressively label XL4 samples
as malicious, but do not properly extract and label the relevant IoCs.
To analyze the remaining 232 domains that are classified as benign
by VT, we use a combination of two services: urlhaus [2] and
AlienVault OTX [6]. The first service flags 141 of such domains
as malicious, and the second reports that 39 domains are blocked
by Akamai, 22 are not resolved, 12 are automatically generated
(DGA), five are generic malicious domains, two are whitelisted,
and one is sinkholed. We speculate that the remaining ten domains
could be legitimage websites that were likely compromised.

VI. DISCUSSION

Loader. The loader represents a crucial component of our system.
Although SYMBEXCEL uses two different strategies—i.e., the
static parser and the COM loader—to load Excel files, neither of
them is perfect. As discussed in Section V-B, malware authors are
continuously devising new ways to break the parsing logic, and
sometimes even using the COM functionality is not enough to
handle these evasion techniques. This is a known problem in the
malware analysis world, and it is not limited to Excel malware.
For instance, Nisi et al. [55] recently described the intricacies of
the Windows Portable Executable file format, with a focus on the
PE loader. The authors found evidence that malware samples can
bypass analysis tools by leveraging discrepancies between a tool’s
loader and the Windows loader, which clearly mimics the evasion
techniques we highlighted in this paper. The authors also argue that
a de facto reference implementation of a loader does not exist, and
how different versions of the Windows loader behave in different
ways when dealing with the same binary file.
Formula Parsing. Being able to parse the XL4 formulas correctly
is crucial to analyze these malicious documents. This process could
seem straightforward at first, but the syntactical features of Excel
formulas are quite complex. To date, although several attempts have
been made to solve this problem [4], [5], [8], we still lack a complete
Excel 4.0 formula parser. These attempts have been tailored to
benign formulas, but, as discussed in Section V-B, malware authors
were able to find limitations in the manually reproduced grammar
that we use in SYMBEXCEL. A more precise grammar—ideally,

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

a grammar that matches completely the one implemented in
Excel—is therefore needed to handle complex Excel 4.0 malware.
VBA vs. Excel 4. In the latest batches of samples that we analyzed
during this research, we noticed that malware authors have started
distributing documents containing both Excel 4.0 macros and VBA
code in a clear attempt to hinder available tools. The first samples
were quite straightforward to analyze and support in SYMBEXCEL,
since the VBA code was only used as a “trampoline” to Excel
formulas. Unfortunately, this behavior quickly evolved, and the
malicious payload started to be laid out over both representations.
In particular, we manually analyzed samples where the control flow
jumps back-and-forth from Excel 4.0 formulas to VBA procedures.
Supporting these samples would require including a VBA engine
in SYMBEXCEL, such as ViperMonkey [38].
Microsoft Policy Change. Microsoft has taken note from the
security advisories related to this threat ecosystem and has recently
announced that it plans to disable Excel 4.0 Macros by default,
although users can still decide to enable this feature. While this
change certainly represents a move in the right direction, it is only
limited to Microsoft 365 customers and does not apply to all Excel
users. Moreover, despite this announcement, malware authors are
still leveraging Excel 4.0 to infect users and systems, as seen in
several samples found in the wild related to the SquirrelWaffle
campaign [13] (October 2021), to the WIRTE campaign [73]
(November 2021), to the Dridex malware family [54] (December
2021), and to Emotet [75], [76] (January 2022).

VII. RELATED WORK

Malware Analysis. In the past few decades, in a joint effort, both
industry and academia have extensively studied malware and the
surrounding ecosystems. The main focus of this research has been
targeted towards malware affecting Microsoft Windows, from
studying the behavior of such malware [11], [36], [40], [62], to
packing mechanisms [3], [19], [30], [42] and detection of ongoing
threats [17], [20], [61], [74]. Moreover, mobile platforms, such as
Android, were also studied in the context of malware analysis [16],
[60], [71]. Finally, the focus has more recently been targeted at
Linux [18], [22] and IoT devices [12], [23], [69], [70], since they
became a target for malicious actors. Despite the amount of research
on this topic, to the best of our knowledge, we are the first to
extensively study Excel 4.0 malware.
Symbolic Execution. Symbolic execution is a powerful analysis
technique, and it has been applied to a variety of problems: from
automatically revealing the security impact of fuzzer-generated
crashes in the Linux kernel [77], to finding vulnerabilities in
embedded devices [25] and vetting USB device firmware [29].

In recent years, symbolic execution has also been used in the
context of malware analysis [14], [15]. For example, Baldoni
et al. [9] developed a tool based on angr [65] to automatically
analyze a remote access trojan (RAT) and extract its Command
and Control (C&C) communication protocol. In a similar vein,
Gritti et al. [27] proposed Symbion, a tool based on interleaved
execution that is able to study specific malware behaviors. The idea
behind interleaved execution is to concretely execute a malware
sample until the target behavior is reached, and only then switch the
analysis to symbolic reasoning. This approach, amongst other things,

allows Symbion to track the routines responsible for the generation
of C&C domains, and to bypass malware evasion techniques.

Symbolic execution has also been applied to the problem of
automatically unpacking malware binaries. Ugarte-Pedrero et
al. [68] presented Rambo, a tool based on multi-path exploration
that can be used to unpack shifting-decode-frames packers— i.e.,
a strategy where a piece of code is unpacked on-demand. Similarly,
others [15], [21], [24] have researched the problem of identifying
dormant malicious behavior. In particular, Comparetti et al. [21]
records specific behaviors observed while dynamically executing a
malware sample to identify similar functionality in other programs.
Furthermore, Alrawi et al. [7] presented Forecast, a tool that
combines memory forensics of an infected system with symbolic
execution, to predict future malware behaviors.

Sebastio et al. [10], [64] transform symbolic execution traces into
a system call dependency graph (SCDG), which summarizes the
behavior of the software under analysis, and then uses supervised ma-
chine learning to classify the sample into a specific malware family.

The detection and analysis of evasive behavior in malware has
been vastly studied [32], [33], [35]. In particular, Kirat et al. [35]
automate the differential analysis of evasive malware samples, and
present MalGene, a technique for automatically extracting analysis
evasion signatures. Moser et al. [52] leverage forced execution
to achieve multi-path exploration on malware. One important
limitation of this work is that it cannot handle self-modifying code.
Symbolic analysis of self-modifying code is a challenging problem
that, to the best of our knowledge, has been addressed only in a very
restricted scope— i.e., via the concretization of jump targets in x86
binary code [72]. Thanks to the nature of the XL4 grammar and
its memory model, we show that this problem becomes solvable
in the domain of XL4 macros.

While most of these approaches leverage symbolic execution
to drive the execution to specific portions of the code, our approach
uses symbolic execution to handle the unknowns about the
environment and deobfuscate the malicious code. In this respect,
our approach is more similar to approaches, such as Rambo [68],
that focus on unpacking. However, our approach is different in its
ability to combine metainformation about the structure of the Excel
grammar to drive the concretization process and obtain code that
can be successfully executed.

VIII. CONCLUSIONS

This paper studies the malware ecosystem surrounding Excel
4.0 macros, a malware distribution vector that recently became
popular amongst malicious actors. To achieve this goal, we
developed SYMBEXCEL, a tool that can automatically deobfuscate
complex Excel 4.0 malware. Our system is based on symbolic
execution, a powerful program analysis technique that we use to
model interactions between the macro and the environment. This
model enables our system to represent the values coming from
the environment as symbolic variables and to cope with sandbox
detection and formula decryption techniques that are embedded
in modern Excel 4.0 malware. Our evaluation highlights how our
system represents a clear step forward in the fight against malicious
Excel 4.0 macros, since it supports the analysis of a much larger
number of samples when compared to state-of-the-art tools.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We want to thank the anonymous reviewers for their valuable
feedback. We would also like to thank Sebastiano Mariani and
Jason Zhang for their help with the evaluation of our work.
Finally, we would like to thank Amirreza Niakanlahiji (also
known as DissectMalware) for developing and maintaining
XLMMacroDeobfuscator and xlrd2. Among the authors,
Christopher Kruegel is VP Security Services at VMware, Inc.
Giovanni Vigna is the Sr. Director of Threat Intelligence at VMware.
This material is based upon work supported by the National
Science Foundation (NSF) under Award No. CNS-1704253,
and also by donations from Intel and Activision. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the sponsors.

REFERENCES

[1] abuse.ch. MalwareBazaar: Malware sample exchange. https://bazaar.abuse.ch/,
2022.

[2] abuse.ch. URLhaus: Malware URL exchange. https://urlhaus.abuse.ch/, 2022.
[3] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano

Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. When
Malware is Packin’Heat; Limits of Machine Learning Classifiers Based on
Static Analysis Features. In Network and Distributed Systems Security (NDSS)
Symposium 2020, 2020.

[4] Efthimia Aivaloglou, David Hoepelman, and Felienne Hermans. A grammar
for spreadsheet formulas evaluated on two large datasets. In 2015 IEEE 15th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 121–130. IEEE, 2015.

[5] Efthimia Aivaloglou, David Hoepelman, and Felienne Hermans. Parsing
excel formulas: A grammar and its application on 4 large datasets. Journal
of Software: Evolution and Process, 29(12):e1895, 2017.

[6] AlienVault OTX. AlienVault OTX. https://otx.alienvault.com/, 2022.
[7] Omar Alrawi, Moses Ike, Matthew Pruett, Ranjita Pai Kasturi, Srimanta Barua,

Taleb Hirani, Brennan Hill, and Brendan Saltaformaggio. Forecasting Malware
Capabilities From Cyber Attack Memory Images. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[8] E. W. Bachtal. Excel Formula Parsing. https://ewbi.blogs.com/develops/20
04/12/excel formula p.html, 2021.

[9] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.
Assisting malware analysis with symbolic execution: A case study. In
International conference on cyber security cryptography and machine learning,
pages 171–188. Springer, 2017.

[10] Eduard Baranov, Fabrizio Biondi, Olivier Decourbe, Thomas Given-Wilson,
Axel Legay, Cassius Puodzius, Jean Quilbeuf, and Stefano Sebastio. Efficient
Extraction of Malware Signatures Through System Calls and Symbolic
Execution: An Experience Report. hal-01954483, 2018.

[11] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher
Kruegel. A View on Current Malware Behaviors. In LEET, 2009.

[12] Calvin Brierley, Jamie Pont, Budi Arief, David J Barnes, and Julio Hernandez-
Castro. Persistence in Linux-based IoT malware. In Nordic Conference on
Secure IT Systems, pages 3–19. Springer, 2020.

[13] Edmund Brumaghin, Mariano Graziano, and Nick Mavis. SQUIRREL-
WAFFLE Leverages malspam to deliver Qakbot, Cobalt Strike.
https://blog.talosintelligence.com/2021/10/squirrelwaffle-emerges.html, 2021.

[14] David Brumley, Cody Hartwig, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, Dawn Song, and Heng Yin. Bitscope:
Automatically dissecting malicious binaries. Technical report, Citeseer, 2007.

[15] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song,
and Heng Yin. Automatically identifying trigger-based behavior in malware.
In Botnet Detection, pages 65–88. Springer, 2008.

[16] Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. Droidcat: Effective
android malware detection and categorization via app-level profiling. IEEE
Transactions on Information Forensics and Security, 14(6):1455–1470, 2018.

[17] Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai
Christodorescu, and Engin Kirda. A quantitative study of accuracy in system
call-based malware detection. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 122–132, 2012.

[18] J Carrillo-Mondéjar, José Luis Mart́ınez, and Guillermo Suarez-Tangil.
Characterizing Linux-based malware: Findings and recent trends. Future
Generation Computer Systems, 110:267–281, 2020.

[19] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting Chen, Xiaosong
Zhang, and Jean-Yves Marion. Towards paving the way for large-scale win-
dows malware analysis: Generic binary unpacking with orders-of-magnitude
performance boost. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 395–411, 2018.

[20] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E
Bryant. Semantics-aware malware detection. In 2005 IEEE Symposium on
Security and Privacy (S&P), pages 32–46. IEEE, 2005.

[21] Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens Kolbitsch,
Christopher Kruegel, and Stefano Zanero. Identifying dormant functionality in
malware programs. In 2010 IEEE Symposium on Security and Privacy (S&P),
pages 61–76. IEEE, 2010.

[22] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
Understanding Linux malware. In 2018 IEEE Symposium on Security and
Privacy (S&P), pages 161–175. IEEE, 2018.

[23] Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico, Yun Shen, Leyla
Bilge, and Davide Balzarotti. The tangled genealogy of IoT malware. In
Annual Computer Security Applications Conference, pages 1–16, 2020.

[24] Jedidiah R Crandall, Gary Wassermann, Daniela AS De Oliveira, Zhendong
Su, S Felix Wu, and Frederic T Chong. Temporal search: Detecting hidden
malware timebombs with virtual machines. ACM SIGOPS Operating Systems
Review, 40(5):25–36, 2006.

[25] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha.
FIE on firmware: Finding vulnerabilities in embedded systems using symbolic
execution. In 22nd USENIX Security Symposium (USENIX Security 13), pages
463–478, 2013.

[26] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[27] Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio Pagani, Andrea Continella,
Christopher Kruegel, and Giovanni Vigna. Symbion: Interleaving symbolic
with concrete execution. In 2020 IEEE Conference on Communications and
Network Security (CNS), pages 1–10. IEEE, 2020.

[28] James Haughom and Stefano Ortolani. Evolution of Excel 4.0 Macro
Weaponization. https://www.lastline.com/labsblog/evolution-of-excel-4-0
-macro-weaponization, 2020.

[29] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba Yavuz, and Kevin RB
Butler. Firmusb: Vetting usb device firmware using domain informed symbolic
execution. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 2245–2262, 2017.

[30] Grégoire Jacob, Paolo Milani Comparetti, Matthias Neugschwandtner, Christo-
pher Kruegel, and Giovanni Vigna. A static, packer-agnostic filter to detect sim-
ilar malware samples. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 102–122. Springer, 2012.

[31] Moonsu Jang, Hongchul Kim, and Youngtae Yun. Detection of dll inserted by
windows malicious code. In 2007 International Conference on Convergence
Information Technology (ICCIT 2007), pages 1059–1064. IEEE, 2007.

[32] Noah M Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant,
Pongsin Poosankam, Daniel Reynaud, and Dawn Song. Differential slicing:
Identifying causal execution differences for security applications. In 2011
IEEE Symposium on Security and Privacy (S&P), pages 347–362. IEEE, 2011.

[33] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn
Song. Emulating emulation-resistant malware. In Proceedings of the 1st ACM
workshop on Virtual machine security, pages 11–22, 2009.

[34] Sangwoo Kim, Seokmyung Hong, Jaesang Oh, and Heejo Lee. Obfuscated
VBA macro detection using machine learning. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages
490–501. IEEE, 2018.

[35] Dhilung Kirat and Giovanni Vigna. Malgene: Automatic extraction of malware
analysis evasion signature. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS), pages 769–780, 2015.

[36] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and
Davide Balzarotti. Does Every Second Count? Time-based Evolution of
Malware Behavior in Sandboxes. In Proceedings of the Network and
Distributed System Security Symposium, NDSS. The Internet Society, 2021.

[37] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge, and Tudor
Dumitraş. The dropper effect: Insights into malware distribution with down-
loader graph analytics. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 1118–1129, 2015.

[38] Philippe Lagadec. A VBA parser and emulation engine to analyze malicious
macros. https://github.com/decalage2/ViperMonkey.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

[39] Philippe Lagadec. oletools - python tools to analyze MS OLE2 files (Structured
Storage, Compound File Binary Format) and MS Office documents, for mal-
ware analysis, forensics and debugging. https://github.com/decalage2/oletools.

[40] Andrea Lanzi, Monirul I Sharif, and Wenke Lee. K-Tracer: A System for
Extracting Kernel Malware Behavior. In NDSS, pages 255–264. Citeseer, 2009.

[41] Tal Leibovich and Elad Ciuraru. Identifying Excel 4.0 Macro strains using
Anomaly Detection. https://www.linkedin.com/in/tal-leibovich-857bb790/,
2021. DEFCON 29, AI Village.

[42] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero, Alessio Merlo,
and Davide Balzarotti. Prevalence and Impact of Low-Entropy Packing
Schemes in the Malware Ecosystem. In NDSS, 2020.

[43] Microsoft. Excel functions. https://support.microsoft.com/en-us/office/exc
el-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188, 2021.

[44] Microsoft. Excel (.xls) Binary File Format. https://interoperability.blob.co
re.windows.net/files/MS-XLS/[MS-XLS].pdf, 2021.

[45] Microsoft. Excel (.xlsb) Binary File Format. https://interoperability.blob.co
re.windows.net/files/MS-XLSB/[MS-XLSB].pdf, 2021.

[46] Microsoft. WS-AtomicTransaction Configuration Utility.
https://docs.microsoft.com/en-us/dotnet/framework/wcf/ws-atomictransac
tion-configuration-utility-wsatconfig-exe, 2021.

[47] Microsoft. XLM + AMSI: New runtime defense against Excel 4.0 macro
malware. https://www.microsoft.com/security/blog/2021/03/03/xlm-amsi-
new-runtime-defense-against-excel-4-0-macro-malware/, 2021.

[48] Mamoru Mimura and Hiroya Miura. Detecting unseen malicious VBA macros
with NLP techniques. Journal of Information Processing, 27:555–563, 2019.

[49] Mamoru Mimura and Taro Ohminami. Towards efficient detection of
malicious VBA macros with LSI. In International Workshop on Security,
pages 168–185. Springer, 2019.

[50] Hiroya Miura, Mamoru Mimura, and Hidema Tanaka. Macros finder: Do you
remember loveletter? In International Conference on Information Security
Practice and Experience, pages 3–18. Springer, 2018.

[51] Steve Morgan. Cybercrime To Cost The World $10.5 Trillion Annually By
2025. https://cybersecurityventures.com/cybercrime-damage-costs-10-tri
llion-by-2025/, 2021.

[52] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple
execution paths for malware analysis. In 2007 IEEE Symposium on Security
and Privacy (S&P), pages 231–245. IEEE, 2007.

[53] Amirreza Niakanlahiji. XLMMacroDeobfuscator.
https://github.com/DissectMalware/XLMMacroDeobfuscator, 2020.

[54] Amirreza Niakanlahiji. https://twitter.com/DissectMalware/status/146612
4524282212353, 2021.

[55] Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
Lost in the Loader: The Many Faces of the Windows PE File Format. In 24th
International Symposium on Research in Attacks, Intrusions and Defenses,
pages 177–192, 2021.

[56] Library of Congress (loc.gov). Microsoft Office Excel 97-2003 Binary File
Format (.xls, BIFF8). https://www.loc.gov/preservation/digital/formats/fdd
/fdd000510.shtml, 2021.

[57] Library of Congress (loc.gov). Microsoft office excel 97-2003 binary file
format (.xls, biff8). https://www.loc.gov/preservation/digital/formats/fdd/f
dd000510.shtml, 2021.

[58] Philip Treacy. Excel 4.0 Macro Functions Reference.
https://www.myonlinetraininghub.com/excel-4-macro-functions/, 2017.

[59] Daniel Plohmann, Martin Clauss, Steffen Enders, and Elmar Padilla. Malpedia:
a collaborative effort to inventorize the malware landscape. In Proceedings
of the Botconf, 2017.

[60] Andrea Possemato, Dario Nisi, and Yanick Fratantonio. Preventing and
Detecting State Inference Attacks on Android. In Proceedings of the 2021
Network and Distributed System Security Symposium (NDSS), Virtual,
21st-25th February, 2021.

[61] Chandrasekar Ravi and R Manoharan. Malware detection using windows
API sequence and machine learning. International Journal of Computer
Applications, 43(17):12–16, 2012.

[62] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 108–125. Springer, 2008.

[63] Silvia Sebastián and Juan Caballero. Avclass2: Massive malware tag extraction
from av labels. In Annual Computer Security Applications Conference, pages
42–53, 2020.

[64] Stefano Sebastio, Eduard Baranov, Fabrizio Biondi, Olivier Decourbe, Thomas
Given-Wilson, Axel Legay, Cassius Puodzius, and Jean Quilbeuf. Optimizing
symbolic execution for malware behavior classification. Computers &
Security, 93:101775, 2020.

[65] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser,
Christopher Kruegel, et al. Sok:(State of) The Art of War: Offensive
Techniques in Binary Analysis. 2016 IEEE Symposium on Security and
Privacy (S&P), pages 138–157, 2016.

[66] Robert Simmons. Excel 4.0 Macros - The Risk of Hidden Threats in
Compound Files. https://blog.reversinglabs.com/blog/excel-4.0-macros, 2020.

[67] Baibhav Singh. Evolution of Excel 4.0 Macro Weaponization, Part 2.
https://blogs.vmware.com/networkvirtualization/2020/10/evolution-of-ex
cel-4-0-macro-weaponization-continued.html, 2020.

[68] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas.
Rambo: Run-time packer analysis with multiple branch observation. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 186–206. Springer, 2016.

[69] Pierre-Antoine Vervier and Yun Shen. Before toasters rise up: A view into
the emerging IoT threat landscape. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 556–576. Springer, 2018.

[70] Huanran Wang, Weizhe Zhang, Hui He, Peng Liu, Daniel Xiapu Luo, Yang
Liu, Jiawei Jiang, Yan Li, Xing Zhang, Wenmao Liu, et al. An evolutionary
study of IoT malware. IEEE Internet of Things Journal, 2021.

[71] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. Droidevolver:
Self-evolving android malware detection system. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 47–62. IEEE, 2019.

[72] Babak Yadegari and Saumya Debray. Symbolic execution of obfuscated
code. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 732–744, 2015.

[73] Maher Yamout. WIRTE’s campaign in the Middle East ’living off the land’
since at least 2019. https://securelist.com/wirtes-campaign-in-the-middle
-east-living-off-the-land-since-at-least-2019/105044/, 2021.

[74] Yanfang Ye, Dingding Wang, Tao Li, and Dongyi Ye. IMDS: Intelligent mal-
ware detection system. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1043–1047, 2007.

[75] Jason Zhang. Emotet Is Not Dead (Yet). https://blogs.vmware.com/securit
y/2022/01/emotet-is-not-dead-yet.html, 2022.

[76] Jason Zhang. Emotet Is Not Dead (Yet), Part 2. https://blogs.vmware.com
/security/2022/02/emotet-is-not-dead-yet-part-2.html, 2022.

[77] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian.
SyzScope: Revealing High-Risk Security Impacts of Fuzzer-Exposed Bugs
in Linux kernel. In 31st USENIX Security Symposium (USENIX Security 22),
Boston, MA, 2022. USENIX Association.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

1

2

3

4

5

6

7

8

9

Fig. 7: Heatmap representation of the behavioral (lower triangle) and structural (upper triangle) similarity of the malicious samples.

Fig. 8: Timeline of the number of families observations over time.

����

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 19:13:55 UTC from IEEE Xplore. Restrictions apply.

