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Abstract
Web access exposes users to various attacks, such as malware
infections and social engineering attacks. Despite ongoing
efforts by security and browser vendors to protect users, some
users continue to access malicious URLs. To provide better
protection, we need to know how users reach such URLs. In
this work, we collect web access records of users from their
using our browser extension. Differing from data collection
on the network, user-side data collection enables us to discern
users and web browser tabs, facilitating efficient data analysis.
Then, we propose a scheme to extract an entire web access
path to a malicious URL, called a hazardous path, from the
access records. With all the hazardous paths extracted from
the access records, we analyze web access activities of users
considering initial accesses on the hazardous paths, risk levels
of bookmarked URLs, time required to reach malicious URLs,
and the number of concurrently active browser tabs when
reaching such URLs. In addition, we propose a preemptive
domain filtering scheme, which identifies domains leading to
malicious URLs, called hazardous domains. We demonstrate
the effectiveness of the scheme by identifying hazardous
domains that are not included in blacklists.

1 Introduction

The Internet has become indispensable social infrastructure,
and many people access the web multiple times a day
in the course of their daily lives. However, web access
exposes users to diverse types of attacks, including malware
infections and social engineering attacks. Various techniques
have been investigated and implemented to minimize the
risk of accessing malicious URLs. In particular, browsers
have become more resistant to malware infections and other
web-based attacks. For example, the Google Chrome browser
uses Google’s blacklist service, i.e., Google Safe Browsing
(GSB) [1], to minimize users’ access to malicious URLs.
However, users still reach malicious URLs through web
browsing.

To better understand how users reach malicious URLs
and to improve user protection, in this paper, we introduce a
per-user data analysis scheme and demonstrate its usability.
First, we collect access records of each user using our browser
extension. User-side data collection enables us to access data
that network-side data collection cannot access, i.e., user IDs,
browser tab IDs, and navigation information, which, in turn,
enable us to efficiently analyze the data in detail. Then, we
propose a scheme to extract an entire web access path to
a malicious URL, called a hazardous path. The proposed
scheme takes advantage of collected data that identify users
and browser tabs to efficiently reconstruct the hazardous paths.
The first accesses of the paths, i.e., entry points, are identified
based on the navigation information that identifies the cause of
the navigation. With the extracted access path information, we
analyze the web access activities of users who reach malicious
URLs, i.e., victims1, to better understand them. First, we
analyze the entry points of hazardous paths to understand
the proportion of accesses via bookmarks. We then analyze
the risk level of bookmarked URLs. We also analyze the
time required to reach malicious URLs and the number of
concurrently active browser tabs to demonstrate the usability
of data collected at the user side for further analysis.

In addition, we propose a preemptive domain filtering
scheme. This scheme determines the risk level of accessing
each domain by analyzing the hazardous paths and identifies
domains that lead to malicious URLs, i.e., hazardous domains.
These domains are not blacklisted; however, the proposed
scheme suggests filtering traffic on them because, even if they
do not host any malicious contents themselves, the access
paths thereafter lead to malicious URLs.

Contributions The primary contributions of this work are
summarized as follows.

1. We describe a user-side data collection approach using
a browser extension. Differing from earlier work that

1These users are not necessarily harmed by accessing malicious URLs;
however, for convenience, we use the term "victim" for such users.
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collects traffic data on network devices, user-side data
collection enables us to access to a broader range of data,
including user IDs, browser tab IDs, and user navigation
information, allowing us to efficiently analyze user
behaviors.

2. We introduce a scheme that reconstructs hazardous paths
from the collected data. The scheme repeatedly traces
previous accesses until it reaches the entry points of
hazardous paths to reconstruct the paths. The entry
points are determined by looking up user navigation
information. Differing from earlier work that does not
discern users and browser tabs, this scheme minimizes
ambiguity by discerning them, narrowing down the lines
of logs that need to be analyzed.

3. We analyze users’ browsing behaviors to demonstrate
the usability of data obtained from browsers, i.e., tab IDs
and user navigation information. The analysis reveals
that bookmark access is the major type of initial access
on hazardous paths. In the collected data, bookmark
access occupies the largest share of entry point types on
hazardous paths, and its share is greater on hazardous
paths than the share on all paths, including hazardous
and non-hazardous paths.

4. We analyze the risk level of bookmarked URLs by
defining a parameter that indicates the certainty of
reaching malicious URLs, We show that there are
bookmark entries that surely lead to malicious URLs,
which indicates that reviewing and sanitizing bookmark
entries may minimize the risk of reaching malicious
URLs.

5. We introduce a preemptive domain filtering scheme that
filters traffic before users reach malicious URLs. Our
analysis shows that there are non-malicious domains
that often lead users to malicious URLs. To identify
such domains, the scheme calculates the risk levels of
all domains appeared on hazardous paths and identifies
domains that are likely to navigate users to malicious
URLs. The scheme may filter traffic traversing on these
domains, or at least provide alerts to protect users from
reaching malicious URLs.

To the best of our knowledge, this is the first academic
paper that analyzes users’ web access records by discerning
users and browser tabs and by considering user navigation
information. In particular, we focus on the entry points
of hazardous paths, revealing the importance of reviewing
bookmarks. The proposed preemptive domain filtering
scheme is also unique, which identifies hazardous domains
that are not included in blacklists.

Organization of this paper The remainder of this paper is
organized as follows. Section 2 presents our data collection
scheme. Section 3 introduces a scheme to reconstruct an
entire hazardous path by iteratively tracing previous accesses

until reaching path entry points, and Section 4 presents an
analysis of users who reach malicious URLs, A scheme
to preemptively filter traffic based on domain risk levels is
introduced in Section 5. Section 6 considers issues that are
not addressed in the earlier sections. Related work is reviewed
in Section 7, and Section 8 concludes this paper.

2 User-Side Data Collection

Web access records are collected at the user side using
a browser extension developed in-house [2]. The browser
extension runs on the Chrome browser, and anyone who
agrees to the terms and conditions can install and use the
browser extension. This browser extension works as a sensor
that records each user’s web access activities and periodically
shares the recorded information to a server. The browser
extension is in Japanese; therefore, we assume that the users
are primarily Japanese speakers. In this section, the list of the
collected information, the ethical considerations, the access
log complementation, and the dataset generated for analysis
are elaborated.

2.1 Collected Data
Our browser extension uses Google Chrome’s APIs [3] to
collect web access data of a user from the web browser. The
browser extension uses the chrome.webRequest API [4] to
observe and analyze traffic and the chrome.webNavigation
API [5] to receive notifications about the status of navigation
requests. The following data are collected.

1. URL: the URL of the requested document obtained from
the HTTP request header

2. Timestamp: the UNIX time when the request is issued
3. Referer: the referer value obtained from the HTTP

request header
4. Tab ID: the identifier of a browser tab. Its uniqueness is

only guaranteed during the session.
5. Tab URL: URL shown on the browser tab
6. Resource type: the type of resource defined by the

chrome.webRequest API. It takes one of the following
values: "csp_report," "font," "image," "main_frame,"
"media," "object," "ping," "script," "stylesheet,"
"sub_frame," "websocket," or "xmlhttprequest." Note
that main frame, which is identified by the value
"main_frame," is a document that is loaded for a
top-level frame.

7. Transition type: the cause of the navigation defined
by the chrome.history API [6]. It takes one of the
following values: "auto_bookmark," "auto_subframe,"
"form_submit," "generated," "keyword,"
"keyword_generated," "link," "manual_subframe,"
"reload," "start_page," or "typed."
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In addition to the data listed above, the browser extension
and server provide the following supplementary information.

1. User ID: unique user identifier
2. Source tab ID: the identifier of the tab that has

generated the current tab. It is recorded when a new
window is generated, for instance, by target="_blank"
and window.open().

3. GSB evaluation results: an indicator whether the URL
is listed by GSB. The server aggregates all URLs
collected in a single day and queries GSB regarding
their maliciousness once a day.

4. Alexa Traffic Rank: traffic rankings provided by Alexa
Top Site [7]. The server aggregates all URLs collected in
a single day and queries Alexa Top Site regarding their
ranking. Note that we check up to the top 1,000 sites.

One access record consists of the above 11 items. Note that
our browser extension can collect a broader range of data;
however, data not relevant to this work have been omitted.

2.2 Ethical Considerations
We worked with our Internal Review Board to ensure that
our usage of the logs was ethical and respectful of users’
privacy. We defined the terms and conditions for our browser
extension [2]. All collected data are listed, and we stipulate
that we analyze the data collected from the browser extensions
to detect and prevent access to malicious URLs. Users
installing the browser extension need to agree to the terms
and conditions.

The collected data contains privacy-related details;
therefore, we have strict restrictions on its use. Any personally
identifiable user information was expunged or coded before
records were stored on the servers. The user ID recorded in
the log is an internal number unique to each user and cannot
be directly linked to any personally identifiable information.
Raw URLs cannot be shared with external parties. Therefore,
we do not use VirusTotal [8], which requires us to submit raw
URLs. Instead, we use GSB to evaluate the maliciousness of
URLs because it does not require us to upload raw URLs. In
addition, we delete all records of users who request that their
records be deleted.

The logs we use in our analysis are stored on a server in
a secure facility, and only registered users from registered
machines that implement adequate security measures can
access them. No raw data are allowed to be copied outside the
machines; therefore, all analyses must be conducted on the
secure servers. Only aggregated results were exported from
the secure server for further analysis.

2.3 Access Log Complementation
Our scheme collects users’ web access data on a granular
scale, which enables us to analyze their behavior in detail.

Figure 1: Number of unique active users per month

However, we sometimes fail to collect certain data. We have
identified three factors influencing these failures. First, the
implementation of the data collection module was imperfect.
A user may take an explicit action to move to another page
before the browser receives a response to a request. In this
case, some fields of the access record are left blank, or the
entire record is not recorded. Second, users can specifically
avoid data collection for certain cases. Users can specify the
list of URLs and domains that they do not want our browser
extensions to record. The browser extension also does not
record logs if a user accesses the web in incognito mode.
These functionalities are provided to protect users’ privacy.
In addition, some users may deactivate the browser extension
when accessing sites that they do not want us to monitor.
Third, the Chrome browser does not provide the intended
records when its processing burden becomes high.

Our scheme complements missing main frame entries in
the log because these entries play a core role in our analysis.
Typically, access to a tab URL produces a series of requests
for multiple content, e.g., main frame, subframe, image, script,
and style file. However, the log sometimes lacks main frame
that should appear. In this case, we generate a complementary
main frame entry, where its tab URL and URL are both set
to the tab URL. Here the timestamp is set to that of the first
entry in the consecutive access records for the tab URL.

2.4 Dataset
The dataset we used consists of data collected from February
1, 2019 to January 31, 2020 (12 months). During the
experimental period, 4,306,529,287 access records were
collected, among which were 76,474 accesses to malicious
URLs. Figure 1 shows the number of unique active users
per month. Note, a user is considered active if any browsing
activity of the user is logged. On average, 831 users accessed
the web at least once a day, 1,650 users accessed the web
at least once a month, 1,013 users accessed the web more
than seven days a month, and 115 users (victims) accessed
malicious URLs at least once a month.
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Figure 2: Process flow for tracing previous accesses

3 Access Path Reconstruction

This section introduces our access path reconstruction scheme.
It extracts a hazardous path by recursively tracing previous
accesses until the entry point to the path is identified. We
also present case studies in this section to demonstrate the
effectiveness of the scheme.

3.1 Previous Access Tracing
Our access path reconstruction scheme traces previous
accesses by using user IDs and tab IDs provided by our dataset
to minimize the scope of analysis. Figure 2 shows an overview
of the tracing process. If the transition type of an access record
is set to "reload," the access is considered as a page reload,
and the reload tracing method is run to identify the access
record of the reloaded page. Otherwise, if source tab ID is set,
this access is considered to be originated from another tab,
and the source-tab tracing method is run to identify the record
of previous access on the source tab. Otherwise, the in-tab
tracing method is run to identify the previous access record
within the current tab. If no proper record is found, the global
tracing method is run to identify the previous access record
from the user’s entire past access records. In most cases, our
scheme analyzes a single user’s access records in one browser
tab, so the analysis is more efficient than the one that do not
minimize the scope of the analysis. The details of the four
methods mentioned above are elaborated below.

Reload tracing A "reload" transition type indicates that
the page is reloaded. This includes the following cases: (1)
The reload button/menu on the browser was pressed/selected,
(2) the same URL as the previous access was entered in the
address bar of the browser, (3) the session was reconstructed
by selecting one of the recently closed tabs in the browser’s
history menu, and (4) a browser set to continue where its user
left off on startup was started. In all cases, the tab URL and

URL of the previous access record remain the same as these
of the current access record. For the first two cases, the tab
ID remains the same; however, the latter two cases do not
guarantee that the tab ID remains the same. If the transition
type of an access record is set to "reload," our access path
reconstruction scheme runs the reload tracing method, which
determines the latest past access record with the same tab
URL and URL values as the current access record. It first
retrieves the past access records of the user within the same
browser tab, and then retrieves all past access records of the
user if no matching entry is found.

Source-tab tracing When an access record provides a
source tab ID, our access path reconstruction scheme runs
the source-tab tracing method, which analyzes the past access
records of a user on the source tab to identify the previous
access record. When the access record provides a referer
information, the method traces the records between the current
access and the latest past main frame access and determines
the latest past access record whose URL matches the referer
as the previous access record (referer tracing). If referer
information is unavailable or no suitable record is found, the
method determines the latest past main frame access record
as the previous access record (main frame tracing).

In-tab tracing When an access record does not provide a
source tab ID, our access path reconstruction scheme runs
the in-tab tracing method, which analyzes the past access
records of a user on the current tab to identify the previous
access record. As with source-tab tracing method, the in-tab
tracing method analyzes the records by running referer tracing
and main frame tracing techniques to identify the previous
access record. Note that most previous access records will
be identified by this method because new tab creation is less
frequent than access on the current tab.

Global tracing When no previous access was found by the
in-tab tracing method, our access path reconstruction scheme
runs the global tracing method, which analyzes the past access
records of a user on all tabs to identify the previous access
record. As with the source-tab and in-tab tracing methods,
the global tracing method first runs referer tracing if referer
information is available. There are cases the referer contains
only its origin information. The global tracing method uses it
if no suitable entry is found by referer tracing. The method
determines the latest past main frame access record whose
URL value includes the referer, i.e., origin, as the previous
access (origin tracing). If referer information is unavailable or
no suitable record is found, the method may run main frame
tracing; however this does not necessarily provide a reliable
trace and is not used in the analysis of this paper. Note that the
origin tracing is not used by the source-tab and in-tab tracing
methods because they can identify a reliable previous access
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record by running the main frame tracing technique.

3.2 Identifying access path entry points
The processes described in Section 3.1 are iterated until they
identify the first access of the hazardous path, i.e., the entry
point. We regard an access that do not follow links and is
discontinuous from the previous access as an entry point. The
following types of accesses are considered as entry points.

Bookmark access A user may jump to the desired page by
selecting a bookmark entry on the browser. We determine that
the user came to the page by selecting a bookmark when the
transition type is set to "auto_bookmark."

Session reconstruction Sessions can be reconstructed, for
example, by selecting one of the recently closed tabs in the
browser’s history menu. We determine that the user came to
the page by reconstructing a past session if the transition type
was set to "reload" and no access was found on the same tab
for more than a predefined amount of time. Note that we do
not include the access records prior to session reconstruction
in the hazardous path in this paper, but we could include such
access records in the path for different analyses.

Web search A user can find various pages of interests by
submitting a new search query on general web search engines.
We determine that a new web search is initiated if (1) the
URL is one of the top pages of major search engines2, or (2)
the transition type is "form_submit" and the URL is a search
result page of major search engines3. Access records with a
source tab ID are excluded because there must be precedent
accesses in the specified tab. Note that site-specific search
engines that are often available for many streaming services
and pornography sites are not included.

Omnibar access The omnibar on the Chrome browser
combines an address bar with the Google search box. Users
can use the omnibar to initiate a web search or access
their browsing history. The omnibar also suggests keywords
to improve search results. The transition type "generated"
identifies access that is based on the selection of choices
provided by the omnibar.

2In this work, we use the following URLs to determine the top
pages of major search engines: https://www.baidu.com/, https://www.
bing.com/, https://duckduckgo.com/, https://www.google.co.jp/,
https://www.google.com/, https://www.yahoo.co.jp/, and https:
//www.yahoo.com/.

3In this work, we determine URLs containing one of the following strings
as search result pages: https://www.baidu.com/s?, https://www.bing.
com/search, https://duckduckgo.com/?q=, https://www.google.co.
jp/, https://www.google.com/search?, https://search.yahoo.co.
jp/search, or https://search.yahoo.com/search.

Address typing Users often enter a new URL to initiate
another browsing activity; however, as part of ongoing
browsing activity, they also often modify the current URL
in the address bar to browse another page, e.g., the top page
of the current site. Therefore, we consider the page with the
"typed" transition type as an entry point if the domain of the
page differs from the previous page. Note that if the typed
URL is one of the major search engines, we see it as an
initiation of a new access path; however, we label the access
as a web search rather than new URL typing.

Start page access When the Chrome browser starts, the
page specified by the program argument or set as the default
opens. If the transition type is "start_page," we consider that
the browser was launched and that the page was specified in
the program argument or set as the default page. Note that the
transition type is set to "start_page" if a user accesses a link
on an external application, e.g., an email application, because
the Chrome browser is then launched with the URL of the
link as its argument on the OS.

3.3 Case Studies
We extract hazardous paths by applying the techniques
described in Sections 3.1 and 3.2. Two cases are described in
this section to demonstrate their effectiveness.

Table 1 shows an entire hazardous path that reaches a
URL labeled "SOCIAL_ENGINEERING" by GSB. First,
the in-tab tracing method identified access to a subframe
page in the same tab at 16:14:40 as its previous access using
referer information. It then identified access to a main frame
page in the same tab at 16:14:39 as its previous access using
referer information. Then, the global tracing method identified
access to a main frame page at 16:14:13 in another tab as
its previous access using referer information. The in-tab
tracing method then identified access to a main frame page at
16:13:54 in the same tab as its previous access using referer
information. Now, we see that the page’s transition type was
set to "auto_bookmark;" thus we consider this page as the
initial access of the hazardous path.

Table 2 shows an entire hazardous path that reaches a URL
labeled "MALWARE" by GSB. Our in-tab tracing method
identified the latest past main frame access in the same tab
at 15:33:37 as its previous access. Note that the record of
the main frame access was complemented using the scheme
mentioned in Section 2.3. Our in-tab tracing method then
identified the latest past main frame accesses in the same tab
at 15:33:26, 15:32:35, and 15:32:08 as the previous accesses.
The source-tab tracing method then identified the latest past
main frame access on the source tab at 15:31:50 as its previous
access. Similarly, the in-tab tracing method identified previous
accesses by monitoring main frame and referer information.
Identification of these previous accesses led to the initial
access, which was accessed from a bookmark, at 15:26:57.
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Table 1: Hazardous path on August 19, 2019 ("SOCIAL_ENGINEERING" label was set by GSB)
Time Tab URL(cropped) Source Transition Resource Tracing method
(JST) ID tab ID type type
16:13:54 193 https://avgle.com/video/UNXIII — auto_bookmark mframe in-tab (referer)
16:14:13 193 https://avgle.com/search/video — form_submit mframe global (referer)
16:14:39 200 https://avgle.com/video/odaqWq — link mframe in-tab (referer)
16:14:40 200 https://olmsoneenh.info/ajWpZ. — auto_subframe sub_frame in-tab (referer)
16:14:41 200 https://10-81.s.cdn15.com/cr/3 — — image —

mframe: main_frame

Table 2: Hazardous path extracted on August 28, 2019 ("MALWARE" label was set by GSB)
Time Tab URL(cropped) Source Transition Resource Tracing method
(JST) ID tab ID type type
15:26:57 182 http://javtorrent.re/category/ auto_bookmark mframe in-tab (referer)
15:27:14 182 http://javtorrent.re/?s=080819 form_submit mframe in-tab (referer)
15:27:26 182 http://javtorrent.re/uncensore link mframe in-tab (mframe)
15:28:28 182 http://javtorrent.re/?s=HEYZO- form_submit mframe in-tab (mframe)

(omitted 18 access records)
15:31:50 182 http://javtorrent.re/uncensore link mframe source-tab (mframe)
15:32:08 403 https://www.google.com/search? 182 link mframe in-tab (mframe)
15:32:35 403 https://7mmtv.tv/zh/uncensored link mframe in-tab (mframe)
15:33:26 403 https://www.google.com/search? link mframe in-tab (mframe)
15:33:37 403 http://javhuge.com/Momoki%20 — complemented in-tab (mframe)
15:33:37 403 http://javhuge.com/zb_users/th — stylesheet —

mframe: main_frame, o_referer: origin-only referer

4 Unveiling User Behavior

Web access data collected at the user side reveals user IDs and
browser tab IDs, enabling us to efficiently reconstruct access
paths, as described in Section 3. It also provides data that are
not collected on the network, such as transition type. With
the transition type information, we can identify access path
entry points as described in Section 3.2, and such information
can be used to analyze user behavior. In this section, we
demonstrate the usability of the data collected on the user side
by analyzing them and unveiling user behavior. Specifically,
we answer the following questions: (1) what are the initial
accesses of hazardous paths? (2) what is the risk level of
bookmarked URLs? (3) how long does it take for users to
reach malicious URLs? and (4) how many active browser tabs
do users open when accessing malicious URLs? Answers
to these questions may not directly provide any solution
for improving user protections; however, they will deepen
understanding of victims and will be a basis for future studies.

4.1 Path entry point analysis
Considering the measures implemented by recent browsers,
accidentally reaching a malicious URL from the ISP’s portal
site or via a major search engine has become increasingly
infrequent; however, users still reach malicious URLs through

Table 3: Types of path entries (February 2019–January 2020)
Types of Entries of Entries of
initial accesses hazardous paths all paths
Bookmark access 3,213 (48.7%) 1,331,170 (38.6%)
Web search 955 (14.5%) 541,046 (15.7%)
Session reconstruction 814 (12.3%) 600,366 (17.4%)
Omnibar access 689 (10.4%) 581,223 (16.8%)
Address typing 646 (9.8%) 89,966 (2.6%)
Start page access 179 (2.7%) 307,536 (8.9%)
Link access 107 (1.6%) —
Total 6,496 (100%) 4,403,471 (100%)

web browsing. To understand their browsing activities, we
analyze the types of initial accesses on hazardous paths, i.e.,
hazardous path entry points. Table 3 shows the breakdown
of the types of initial accesses on hazardous paths over 12
months. These types are identified based on the definition
provided in Section 3.2. For reference, it also shows the
breakdown of the types of initial accesses on all paths
including hazardous and non-hazardous paths.

"Bookmark access" was the most frequent entry point.
Many users reach malicious URLs via a bookmark, which
shortens the path from a portal site or search engine to
malicious sites. "Web search" was the second most frequent
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entry point. Users enter a hazardous path by submitting a
query to a general search engine. One typical scenario of this
entry type was that users obtained a keyword from the web
before they submitted a query to a search engine. For example,
while browsing the adult section of a legitimate shopping
site, a user found the identifier of a pornographic video, e.g.,
product code. The identifier was used to retrieve the web
and, consequently, the user reached an illegitimate site, which
eventually lead to a malicious URL. "Session reconstruction"
accounted for third most frequent entry points. If we combine
the paths before and after the session reconstructions, the path
will become lengthy. Naturally, a lengthy path has a higher
probability of reaching malicious URLs because more sites
are visited, including those that are many hops away from the
search engine result pages or browsers’ start pages. "Omnibar
access" was the fourth most frequent entry point, followed by
"address typing." All of these path entry types shorten the path
between the portal site or search engine and the malicious
site. In this context, they are shortcuts in the access path to a
malicious URL. "Start page access" was also found to be an
entry point to hazardous paths; however, the number of this
type of entry point is small compared with the other types.

Apart from these, several entry points are labeled as "link
access." These are cases where the transition type of the
access record is "link," though no appropriate previous access
is found within the log we analyzed, making the access
record discontinuous. Considering the meaning of the label
"link" assigned by the Google API, there should be some
previous accesses prior to the entry. The lack of previous
accesses may occur due to either of the following reasons.
First, previous access was performed prior to the first log
record. Accesses prior to the first day of the month could not
be traced because we conduct per-month analysis in this work.
Second, the collected logs are incomplete, be it intentionally
or accidentally, as we discussed in Section 2.3.

Figure 3 shows the breakdown of the types of initial
accesses on hazardous paths for each month. The general
trend of the breakdown is the same during these months
except July 2019. There were several users who typed
many URLs in the address bar of the browser in July 2019
and reached malicious URLs, though their motivations were
unknown.

4.2 Bookmarked URL analysis
Table 4 shows the domains of bookmarked URLs, i.e.,
bookmark domains, that most frequently reach malicious
URLs in descending order of the number of accesses. Note
that only the accesses through the selection of bookmark
entries are counted. As can be seen, the list includes
pornography sites, illegal book/manga sharing sites, and file
sharing sites. However, it also contains legitimate search
engines, such as google.com and yahoo.co.jp. Considering
the total number of accesses on any path, the percentage of

Figure 3: Breakdown of the types of path entries

Table 4: Top 10 bookmark domains that most frequently reach
malicious URLs (February 2019–January 2020)

Bookmarked Access counts on Risk
domains hazardous paths all paths level
avgle.com 2,184 3,566 61.25
xbooks.to 136 1,260 10.79
google.co.jp 113 69,878 0.16
yahoo.co.jp 89 191,297 0.05
bejav.net 79 79 100.00
javmost.com 37 37 100.00
mac-torrent-download.net 34 68 50.00
13dl.net 33 3,389 0.97
smv.to 19 251 7.57
youtube.com 18 95,572 0.02

accesses that reach malicious URLs remains very small; thus
the risk level is small. Therefore, the risk level of domains
cannot be evaluated by the number of accesses that reach
malicious URLs.

To identify untrustworthy bookmark domains, we define
the risk level of a domain that shows the certainty of reaching
malicious URLs as follows:

R(domain) =
NbrAccessmalurl(domain)

NbrAccessall(domain)
(1)

where R(domain) represents the risk level of a domain,
NbrAccessmalurl(domain) is the number of accesses to
the domain that eventually reach malicious URLs, and
NbrAccessall(domain) is the number of all accesses to
the domain. Note that these parameters ignore whether a
malicious URL is in the next hop or in multiple hops away.
With this risk level, we evaluate the risk level of bookmark
domains.

Table 5 shows the bookmark domains that most frequently
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Table 5: Top 10 untrustworthy bookmark domains
(February 2019–January 2020)

Bookmarked Access counts on Risk
domains hazardous paths all paths level
bejav.net 79 79 100.00
javmost.com 37 37 100.00
xdytt.com 8 8 100.00
91mjw.com 6 6 100.00
incestflix.com 6 6 100.00
theyoump3.com 6 6 100.00
gofucker.com 5 5 100.00
anipo.tv 3 3 100.00
javbraze.com 3 3 100.00
avdvd.tv 2 2 100.00

Table 6: Top 10 Bookmark domains (February 2019–January
2020)

Bookmarked Access counts on Risk
domains hazardous paths all paths level
yahoo.co.jp 89 191,297 0.05
youtube.com 18 95,572 0.02
google.co.jp 113 69,878 0.16
amazon.co.jp 8 45,326 0.02
google.com 6 33,494 0.02
twitter.com 3 29,159 0.01
facebook.com 2 27,387 0.01
nicovideo.jp 5 25,216 0.02
livedoor.jp 1 20,829 0.00
rakuten.co.jp 1 17,692 0.01

reach malicious URLs between February 2019 and January
2020 in descending order of the risk level. As can be seen,
legitimate sites that appeared in Table 4 do not appear in
the table. The top 10 bookmark domains accessed between
February 2019 and January 2020 are listed in Table 6. As
can be seen, the risk levels of the domains in Table 5 are
significantly higher than the risk levels in Table 6.

Based on these analyses, we could review bookmarks to
minimize the risk of users. As discussed in Section 4.1,
bookmark access is a major entry point to hazardous paths.
Therefore, we can expect to minimize the number of accesses
to malicious URLs by sanitizing bookmarks. It can be difficult
to prevent users from adding hazardous URLs to bookmarks
or to block access to hazardous bookmarked URLs. However,
simply showing alerts when accessing hazardous bookmarks
may help to improve the situation. Regularly reviewing the
list of bookmarks and providing alerts will be effective.

4.3 Time to reach malicious URLs
Figure 4 shows the cumulative histogram of the time to reach
a malicious URL from users’ first access of the paths. Among
all the hazardous paths between February 2019 and January

Figure 4: Normalized cumulative histograms of the time to
reach a malicious URL in February 2019–January 2020 (left:
complete histogram, right: first hour excerpt of the histogram)

2020, 87.03% reached a malicious URL within 24 hours from
their initial accesses, 80.03% within 6 hours, 68.75% within
an hour, and 60.31% within half an hour. We conjecture that
many accesses to malicious URLs occur within an hour, or
even within half an hour, because victims already have the
URLs that are close to malicious URLs in their bookmarks,
or they already know hazardous keywords that may lead to
malicious URLs when initiating a web search, as seen in
Section 4.1.

4.4 Number of active browser tabs
This section analyzes the number of active browser tabs. A
browser tab is considered active if some activities of a user is
observed on the browser tab. We assume that the number of
active browser tabs does not change before or after accessing
ordinary URLs. However, it is observed that many malicious
sites and some other sites open browser tabs unnecessarily.
To confirm that, we analyzed the number of active browser
tabs before and after malicious URL accesses.

Figure 5 shows a histogram of the number of active browser
tabs within 10 minutes before and after malicious URL access.
Over 99% of victims use 1–2 browser tabs before and after
visiting malicious URLs. The figure also shows the number
of active browser tabs within 10 minutes before a malicious
access. Over 91% of victims use 1–4 browser tabs within 10
minutes before accessing malicious URLs4.

The difference in the number of active browser tabs
between the above two histograms indicates that there could
be browser tabs generated to reach malicious URLs, e.g.,
redirection pages opened in a new browser tab. This difference
cannot be used as a feature for detecting malicious URL
access because it requires access records after the malicious
URL access, but it could be analyzed further to devise a

4Note that the maximum number of active browser tabs was 39; however,
the frequency was negligible. Thus active browser tabs greater than 18 are
not present in the histogram.
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Figure 5: Histogram of the number of active browser tabs
(February 2019–January 2020): browser tabs active within 10
minutes before and after malicious URL accesses and those
before malicious URL accesses

domain A

domain B

domain D domain E

URL 4

URL 2

(blacklisted)

URL 7
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URL5
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domain C
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URL 3

URL 6
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Figure 6: Concept of preemptive domain filtering scheme

feature to detect malicious URL access.

5 Preemptive Domain Filtering Scheme

The hazardous paths generated by the scheme proposed in
Section 3 could be used to improve user protection. In this
section, we propose a preemptive domain filtering scheme
based on the risk level evaluation of domains on the hazardous
paths.

Malicious URLs are included in blacklists; however, there
are non-blacklisted URLs that lead to malicious URLs. We
refer to domains that have high probability of leading to
malicious URLs as hazardous domains. Access to malicious
URLs can be minimized by identifying such domains and
taking countermeasures, e.g., adding the domains to blacklists
or alerting users. Figure 6 shows the concept of the proposed
preemptive domain filtering scheme. In this figure, an access
path tree consisting of multiple access paths that reach
seven different URLs is described, and four of the URLs are
included in a blacklist. The proposed scheme calculates the
probability of reaching malicious URLs from a domain and
identifies the domain as hazardous if the probability is greater
than a certain threshold value. Accesses through domains B
and C reach only blacklisted URLs; thus they are regarded

Table 7: Top 10 newly identified untrustworthy domains with
a risk level above 50% (February 2019–January 2020)

Bookmarked Access counts on Max Number
domains hazardous all risk of

paths paths level months
avgle.com 26,971 80,766 50.27 12
xbooks.to 1,185 11,138 66.66 4
codeday.me 991 1,105 100.00 11
ero-advertising.com 323 1,950 52.72 6
aphookkensidah.pro 272 1,043 100.00 12
tubepornclassic.com 109 782 77.14 5
highporn.net 105 152 69.07 1
erodoujin-index.net 82 109 75.22 1
fbk.tokyo 39 228 66.66 10
avli.me 38 58 65.51 1

Table 8: Top 10 newly identified untrustworthy domains with
a risk level of 100% (February 2019–January 2020)

Bookmarked Access counts on Number
domains hazardous all of

paths paths months
codeday.me 991 1,105 11
aphookkensidah.pro 272 1,043 12
collectionanalyser.com 32 65 3
vidia.tv 27 33 3
livetotal.tv 27 104 4
jqaaa.com 27 28 3
eimusics.com 25 63 5
dentaint.pro 23 30 5
livetotal.net 22 52 4
javbraze.com 20 20 2

as hazardous domains. Accesses through domain E reach
both blacklisted and non-blacklisted URLs; however this
domain is regarded as hazardous because the probability is
greater than the threshold value. Other domains are regarded
as non-hazardous because the probability is less than the
threshold value. These hazardous domains are not included
in the blacklist; however, we could block access to these
hazardous domains or alert users to minimize the risk of users’
accessing malicious URLs.

To realize this preemptive domain filtering, we first
reconstruct hazardous paths using the proposed scheme
described in Section 3. We then extract all domains on the
paths. Note that all domains on the path reach more than
one malicious URL, while domains that did not appear on
hazardous paths are not known to reach any malicious URLs.
Finally, we analyze the risk levels of the URLs on hazardous
paths using the risk level R(domain) defined in Section 4.2.
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5.1 Identifying hazardous domains
We evaluated risk levels of all domains on hazardous paths
using the proposed preemptive domain filtering scheme. Table
7 shows the top 10 newly identified domains with a risk level
above 50%, and Table 8 shows those with a risk level of 100%
over 12 months. Note, domains already identified by GSB
have been excluded. The maximum risk level column shows
the maximum value of monthly risk levels of a domain during
the 12 months, while the number of months column shows
the number of months the domain appeared on hazardous
paths5. As can be seen, the proposed scheme can identify
non-blacklisted domains that most likely navigate users to
malicious URLs.

Table 9 shows the breakdown of the number of domains
on hazardous paths by risk levels. To protect users, if the risk
level of a domain is above a certain threshold, we could filter
traffic on a domain or issue alerts. If the threshold is set to
80%, 355 domains are identified as hazardous domains in
addition to 619 domains that have already been identified by
GSB.

5.2 Blocked URLs
By enforcing the proposed preemptive domain filtering
scheme and blocking access to hazardous domains,
some URLs will become unreachable. To determine the
effectiveness of the blocking, we identified URLs that would
have been blocked if we have enforced the scheme using the
dataset. Note that the scheme needs to know the threshold
value to identify hazardous domains that need to be filtered
as we have seen in Section 5.1, and we set the value to 80%
in this section. URLs that became unreachable fall into one
of the following types.

1. Blacklisted URLs: The proposed scheme blocks
accesses to the hazardous domains that are located on
the way to the blacklisted URLs. Therefore, users cannot
reach the URLs, though access to these URLs are anyway
blocked by the existing blacklists. Note that we used
GSB for the blacklist, but other blacklists can be used in
place of GSB to select domains for preemptive filtering.

2. URLs included in other blacklists: These were not
blacklisted by GSB but were known to be malicious
by the other blacklists. Here, we used a proprietary
blacklist that identifies malicious URLs based on the
signatures on URL strings. However, the number of
these URLs remains small. We conjecture it is because
policies of blacklists differ each other on what is
detected as malicious. Indeed, GSB identifies more
social-engineering type URLs and less malware-related
URLs than the proprietary blacklist we used.

5Note that the GSB periodically revises the evaluation results of
blacklisted entries.

3. Non-blacklisted URLs whose domains are the same
as the blacklisted URLs: It may take some time for the
GSB to register a malicious URL; therefore the URL
may not be registered when a user visits it. These URLs
will or should be blacklisted. Sometimes, its domain
instead of the URL could be registered on the blacklist.

4. Unreachable URLs: These URLs are already
unreachable at the time of writing this paper. Malicious
URLs often disappear after a period of time. Therefore,
the likelihood that these URLs are malicious is not too
small.

5. URLs with illegitimate or harmful content: Many of
the blocked URLs that do not fall into any of the above
four categories deal with pornography, scanned manga
and books, and music and video files. None of these
URLs are listed in the Alexa Top 1,000 sites on a global
basis [7] during the entire observation period. Although
the proprietary blacklist we used did not recognize
these URLs as malicious, determination of maliciousness
largely depends on the policy of each blacklist, and these
pages are not necessarily legitimate even if they are not
included in the blacklist. These pages are likely to be
irrelevant for the daily lives of most users. Therefore, the
impact of those pages becoming unreachable is limited.

These URLs that were made unreachable are either
malicious, unreachable, illegitimate, or harmful; thus blocking
them would help improve user protection without impairing
their legitimate activities.

6 Discussion and Analysis

Each technique has been discussed and evaluated in earlier
sections. This section discusses issues related to our data
collection and analysis approaches, limitation of our dataset,
and directions for further analyses.

6.1 Advantages of user-side data collection
The uniqueness of our overall approach stems from our
user-side data collection, which provides various data of
browser users that cannot be collected on the network. These
data provide two types of advantages: analytical efficiency
and access to user-side data.

1. Analytical efficiency: The collected data includes user
IDs and browser tab IDs. We can narrow down the
data we need to look into by filtering with a user ID
and a browser tab ID. In this way, the complexity and
ambiguity of the data will be minimized, leading to more
accurate analysis. As a result, the cost and time required
for the analysis are also minimized.

2. Access to user-side data: We can obtain data that
are unavailable from data collected on the network,
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Table 9: Evaluation of domains on hazardous paths (February 2019–January 2020)
Risk level Blacklist Number of domains

coverage 2019 2020 Total
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

100% full 51 58 60 72 61 289 28 44 50 74 69 47 903
partial 1 2 3 1 1 3 0 1 1 2 0 1 15
none 41 42 44 24 42 69 53 24 30 32 38 28 467

[80%-100%) partial 0 2 1 1 2 2 1 0 0 3 1 2 15
none 7 1 3 2 2 1 4 1 1 3 3 1 29

[60%-80%) partial 3 2 1 2 0 6 4 0 1 0 2 1 22
none 8 10 5 0 5 11 11 7 4 10 9 4 84

[40%-60%) partial 0 1 1 1 0 6 0 0 0 1 1 1 12
none 24 35 25 12 20 29 23 12 19 15 18 14 246

[20%-40%) partial 3 0 2 3 1 3 2 0 1 1 0 1 17
none 34 53 34 26 20 36 30 27 24 26 33 22 365

Others partial 6 5 4 1 4 5 1 2 2 0 0 1 31
none 333 398 218 192 193 250 250 160 192 183 163 173 2,705

Total 511 609 401 337 351 710 407 278 325 350 337 296 4,912

e.g., users’ navigation information, which enables us
to analyze users in detail. Indeed, our browser extension
can collect data that are not listed in Section 2.1, such
as the list of installed browser extensions and process
information.

This paper demonstrated the usability of our data collection
and analysis approach, and we hope this paper will encourage
per-user data analysis to better protect users.

6.2 Attracting and Motivating Users
In this work, the primary is the number of users who install
our browser extension and continue using it. The browser
extension collects user’s privacy-related information, which
may reveal information they do not want anybody to know.
Although the terms and conditions state that we do not link
the data and the user’s identity, this may discourage people
from installing the browser extension.

To motivate users to install our browser extension, we
implemented a campaign in the past, where a user can obtain
a JPY 2,000 Amazon gift card. The campaign was successful
from the standpoint of encouraging users to install the browser
extension; however, over half of the users stopped using the
browser extension within three months, indicating that the
campaign was unable to motivate users to continue using the
software.

Rather than asking people to install and use the browser
extension, we redesigned the browser extension so that people
would be interested in installing and continuing to use it
by using a popular character, called Tachikoma, a popular
character in the Ghost in the Shell universe [9]. By continuing
to activate the browser extension, users can see Tachikoma in
their browser. People who like the story or the character are

motivated to install the browser extension and continue using
it. We then prepared a web page where people can download
and install the browser extension. We also advertised our
data collection activities at large IT events. As can be seen
in Figure 1, the current approach was successful from the
standpoint of maintaining the number of active users, i.e.,
motivating users to continue using the browser extension.

6.3 Limitation of our dataset

The dataset we used has some limitations. When conducting
further analysis, these limitations should be considered.

First, the demographics of the users of the browser
extension are limited because we are distributing the browser
extension to people who like the Tachikoma character. People
who like Tachikoma tend to be familiar with IT; thus their use
of the web does not necessarily accurately represent behavior
of general web users. In addition, the browser extension and
its distribution page are only available in Japanese; thus the
data analysis will not reflect the behavior of global web users.

Second, depending on the purpose of analysis, the method
used to label malicious URLs needs to be reviewed, . We
used GSB entries to flag malicious URLs; however, this is
not always desirable. Depending on the policies, users may
implement different blacklists.

Third, the scale of the dataset is limited. Although the
number of browser extension users was sufficient for the
analysis in this paper, it is very small considering the number
of web users in general. In particular, the number of victims
is too small. When conducting other types of analysis, such as
user classification, the scale of the data can be insufficient, and
one such example is discussed in Section 6.4. To cope with
this issue, measures such as effective campaigns to attract
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more users should be devised and deployed. Future works
could consider these limitations of the dataset.

6.4 Further Analyses
This paper demonstrated the usefulness of analyzing user-side
data collected through browsers. Further analyses are
encouraged to deepen the understanding of user behaviors,
including the analysis of access records before session
reconstruction as discussed in Section 3.2. In this section,
two more analysis directions are shown below.

We may use data that was unused in this paper
to reconstruct hazardous paths in detail. For example,
transition qualifiers, which can be collected through the
chrome.webNavigation API, could be used to deepen the
understanding of user behaviors. The API provides four
transition qualifiers: "client_redirect," "server_redirect,"
"forward_back," and "from_address_bar." Their usability is
demonstrated in a case, where a user browses pages in the
following manner. (1) A user visits a search engine result page
(whose transition type is set to "form_submit"). (2) The user
clicks on one of the links on the page. (3) The user pushes the
"back" button on the browser. In this case, the access record
of the access (1) is used as the access record for the access
(3), meaning that its transition type is "start_page" and the
referer does not comply with access (2). In this study, the
access path reconstruction scheme judges that the access (3)
is the path entry point; however, we could trace back further
by considering transition qualifier information.

Moreover, user behaviors can be analysed at a finer
granularity. For example, user behaviors can be analyzed
for each type of detected threats rather than using a
binary label, i.e., malicious or not malicious. Indeed GSB
provides types of detected threats, e.g., "MALWARE" and
"SOCIAL_ENGINEERING"; however, we could not use
these in this paper because our dataset did not have a sufficient
amount of access records for each type of the threats detected
by GSB. As discussed in Section 6.3, our dataset was too
small to analyze accesses based on these types.

Various other analyses can be conducted for different
purposes. These analyses will aid in building efficient
schemes to improve user protection.

7 Related Work

Various studies have been reported in the area of malicious
URL analysis. They take different approaches with different
datasets. This section introduces major such works.

Previous studies have analyzed web page content to identify
malicious sites [10–17]. A JavaScript code analysis at a
bytecode level has been proposed [11] to cope with the
obfuscation. Another study proposed a link structure analysis
technique [12] to detect compromised websites by identifying
structural anomalies. In addition, a cascading style sheets

analysis technique has been proposed [13] to detect pages
leading to malware downloads.

Lexical analysis has also been proposed to extract features
from URL strings and identify malicious sites [18–23].
Among studies that apply lexical analysis, one study [19]
attempts to achieve online learning; thus it does not use
information that requires time to obtain. That study uses
the URL string and host-related information, i.e., host name,
primary domain, TLD, whois information, AS number, and
geographical information, as features.

In addition, several studies have focused on building
and analyzing redirection chains [24–29], which are often
observed when users reach malicious URLs. For example, the
SpiderWeb system [28] analyzes HTTP redirection chains. It
uses five types of features, i.e., client, referer, landing page,
final page, and redirection graph, to distinguish chains that
correspond to malicious activity and those that are legitimate.
WarningBird [29] detects malicious URLs posted on Twitter
by analyzing the correlations of redirection chains, while
Surf [25] identifies redirects to malicious URLs that are
originated from search engine results.

Access paths followed by users who eventually fall
victim to different types of malware download attacks, called
malware download paths, have also been analyzed [30]. In
that study, the authors proposed a download path traceback
technique as well as a technique to determine whether the
path is social engineering or drive-by, using various features,
such as domain ages and the number of hops to exploit pages.
Another study focuses on social engineering URLs [31].
That study uses a random forest algorithm to determine the
occurrence of a social engineering attack from ad-related sites
by learning about such past attacks using features extracted
from the download paths. In addition, research focusing on
identifying malicious exploit kits has also been reported [32].

Other studies have focused on user behavior [33–37]. A
study analyzes traffic on a mobile cellular network to predict
whether a user will visit a malicious URL within a month
based on past browsing activities and a questionnaire [34].
The study also predicts whether a user would access a
malicious URL within a session based on information from
past records in the same session.

Various other studies have been reported in this area,
including domain reputation systems [38–40] and signature
generation techniques [41, 42]. Contrary to these, we
collected data at the user side, which enabled us to analyze
the user activities in detail by discerning users and browser
tabs. We also proposed a preemptive domain filtering scheme
that identified hazardous domains that were not included in
blacklists.

8 Conclusion

Our user-side web access record collection approach enabled
us to access to a wide range of data, such as user IDs, browser
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tab IDs, and user navigation information, which facilitated
efficient and detailed analysis of user behavior. We have
reconstructed hazardous paths from the collected data by
continuously tracing previous access records until we identify
entry points of the paths. The hazardous path reconstruction
was efficient because it was able to discern users and
browser tabs. Then, we analyzed the reconstructed hazardous
paths to deepen the understanding of users’ web browsing
activities and revealed several analysis results, including that
bookmarks are the major entry points of hazardous paths. It
indicated that sanitizing bookmark entries will minimize the
risk of accessing malicious URLs. Furthermore, we proposed
a preemptive domain filtering scheme that identifies and
filters domains that lead to malicious URLs. The effectiveness
of the proposed scheme was demonstrated by revealing
non-blacklisted domains that ultimately led users to malicious
URLs. We hope that our work in this paper will contribute to
the security of the web.
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