
Building Anti-Phishing Browser Plug-Ins: An Experience Report

Thomas Raffetseder, Engin Kirda, and Christopher Kruegel
Secure Systems Lab, Technical University of Vienna

{tr,ek,chris}@seclab.tuwien.ac.at

Abstract

Phishing is an online identity theft that aims to steal
sensitive information such as user names, passwords, and
credit card numbers. Although phishing is a simple social
engineering attack, it has proven to be surprisingly effec-
tive. Hence, the number of phishing scams is continuing
to grow, and the costs of the resulting damages is increas-
ing. Researchers as well as the IT industry have identified
the urgent need for anti-phishing solutions and recently, a
number of solutions to mitigate phishing attacks have been
proposed. Several of these approaches are browser plug-
ins.

In 2005, we implemented a Firefox anti-phishing
browser plug-in called AntiPhish. After releasing An-
tiPhish, we decided to port it to the Microsoft Internet Ex-
plorer (IE) browser. Supporting IE was important because
a majority of Internet users are accessing the web with
this browser. Our initial expectation at the beginning of
the project was that porting a browser plug-in that is writ-
ten for Firefox to IE could not be too difficult; after all,
browser plug-ins are conceptually similar. However, creat-
ing an anti-phishing browser plug-in for the IE proved to be
much more challenging than expected. In this paper, we re-
port on our experience in implementing anti-phishing (i.e.,
security) browser plug-ins and summarize five lessons we
learned from our undertaking.

Keywords: Phishing, Security, Browser Helper Objects,
.NET, Internet Explorer, Firefox

1 Introduction

Phishing is an online identity theft that aims to steal sen-
sitive information such as user names, passwords, and credit
card numbers. Identity and credential theft has been in the
portfolio of criminals since computers became part of our
lives. Today, online transactions worth billions of dollars
are initiated every day, thus making this sector a prime tar-
get to criminals all over the world. A majority of phish-
ing victims are online banking users whose credentials are

stolen. These credentials are typically used to login into
the online banking web site and to transfer money to the at-
tacker’s bank account. Although phishing is a simple social
engineering attack, it has proven to be surprisingly effective.
Hence, the number of phishing scams is continuing to grow,
and the costs of the resulting damages is increasing. For
example, the Anti-Phishing Working Group received over
35,000 unique phishing reports in November 2006, com-
pared to around 7,000 in November of the year before [2].

Figure 1 shows a phishing email that targets the cus-
tomers of a U.S. bank. The attackers have imitated the look
and feel of the Bank of America online banking web site
with the aim of fooling users into believing that the mail
is authentic. The mail is asking users to update their per-
sonal information. Once a victim follows the link, she is
prompted to enter her user ID, password, and ATM or check
card number.

Phishing is a continuing problem and both academic re-
searchers and the IT industry have identified the urgent need
for anti-phishing solutions. Recently, a number of solutions
to mitigate phishing attacks have been proposed. Several of
these approaches are browser plug-ins.

In 2005, we implemented a Mozilla Firefox anti-
phishing browser plug-in called AntiPhish [6]. AntiPhish
is a component that is integrated into the web browser. It
keeps track of a user’s sensitive information (e.g., a pass-
word) and prevents this information from being passed to a
web site that is not considered trusted (or safe). After re-
leasing AntiPhish, we decided to implement a version of
AntiPhish for the Microsoft Internet Explorer (IE) browser.
Supporting IE was important because a majority of Inter-
net users are using this browser. Our initial expectation
at the beginning of the project was that porting a browser
plug-in that is written for Mozilla Firefox to IE would be
a straight-forward engineering exercise. After all, browser
plug-ins are conceptually similar. However, creating an
anti-phishing browser plug-in for the IE proved to be much
more challenging than expected. In this paper, we describe
our experience with implementing anti-phishing browser
plug-ins for two different web browsers, and we present five
lessons we learned during this process. As more and more

Figure 1. Phishing email targeting a U.S. bank.

browser plug-in-based security solutions are being created,
we hope that our experience report will be useful for others,
especially considering the fact that small mistakes can often
lead to the complete compromise of a security solution.

The paper is structured as follows. The next section pro-
vides a brief overview of existing anti-phishing solutions.
Section 3 presents techniques for writing Mozilla and In-
ternet Explorer plug-ins. Section 4 discusses JavaScript at-
tacks that a security plug-in needs to protect against. Sec-
tion 5 describes our experience and the lessons-learned,
while Section 6 concludes the paper.

2 Overview of Anti-Phishing Solutions

Several approaches have been proposed to protect users
against phishing attacks. Some techniques attempt to pre-
vent phishing mails from being delivered [11, 18], others
blacklist malicious URLs [9], and yet others analyze web
pages that a user visits [4]. All of solutions have advantages
and disadvantages.

One of the main reasons why phishing attacks are possi-
ble is because mails can be spoofed easily. Clearly, it would
be desirable to prevent malicious, spoofed mails from being
delivered to users. Fortunately, it is possible to treat phish-
ing mails as spam. However, although spam filters work
quite well today, they cannot guarantee that all phishing
mails are intercepted.

One anti-spam (and hence, anti-phishing) proposal is to
authenticate the sender of an mail, thus preventing attack-
ers from using hijacked mail addresses. Microsoft is imple-

menting the so-called ”Sender ID Framework” [11], and Ya-
hoo is using it is own technique called ”DomainKeys” [18].
Currently, Yahoo and other industry leaders are in the
process of standardizing a technique called DKIM (Do-
mainKeys Identified Mail), which is a direct descendant
of DomainKeys [18, 14]. There were discussions on legal
problems for open source software implementations due to
patent issues. For example, Microsofts Royalty-Free Sender
ID Patent License Agreement terms were a barrier to any
Linux Debian package that wished to implement Sender
ID or include Sender ID support [5]. However, Microsoft
changed the licence terms of relevant patents to the ”Mi-
crosoft Open Specification Promise,” which is widely seen
to be compatible to the GPL [12].

An approach that is analogous to the use of signatures
in anti-virus products is to maintain a blacklist of sites that
contain malicious content. Whenever the user tries to ac-
cess a web site that has been blacklisted, the appropriate
warnings are generated. Microsoft has chosen to use this
approach (combined with some heuristics) in their phishing
filter for the Internet Explorer 7 [9]. Verisign’s approach to
mitigate phishing attacks is to crawl millions of web pages
to identify all web sites that closely imitate one of their cus-
tomers’ site. Once a web site is identified as a phishing
site, the necessary steps are taken to shutdown the site as
soon as possible. The problem with crawling and black-
listing proposals is that the anti-phishing organizationswill
find themselves in a race against attackers. This problem
is analogous to the challenges faced by anti-virus and anti-
spam companies. There is always a window of vulnerability

during which users are susceptible to attacks. Furthermore,
blacklisting approaches are only as effective as the quality
of the lists that are maintained.

Two academic browser-based client-side solutions have
been proposed to mitigate phishing attacks [4, 15]. Both
solutions are browser plug-ins that have been developed at
Stanford university. PwdHash [15] is an Internet Explorer
plug-in that transparently converts a user’s password intoa
domain-specific password so that the user can safely reuse
the same password on multiple web sites. Because the
generated password is domain-specific, a password that is
phished at the attacker’s site cannot be used at the bank’s
site. Unfortunately, the proposed solution only works for
passwords but it cannot protect sensitive information that
is needed in unaltered form (e.g., credit card information
or social security numbers). SpoofGuard [4] is a plug-
in solution specifically developed to mitigate phishing at-
tacks. The tool is symptom-based. That is, the plug-in looks
for “phishing symptoms” such as similar sounding domain
names and masked links in the web sites that are visited.
Alerts are generated based on the number of symptoms that
are detected.

Our anti-phishing solution, AntiPhish for the Mozilla
Firefox browser, is similar to PwdHash and SpoofGuard
in that it is a browser plug-in-based anti-phishing solution.
One of its advantages is that it does not rely on a blacklist
or any sort of symptom filter. Instead, we bind the sensitive
information of a user (e.g., her password) to domain names.
Then, we keep track of this sensitive information within the
browser and generate warnings whenever it is typed into a
form on a web site that is considered untrusted. Typically, a
site is considered untrusted with respect to a piece of infor-
mation when this information was not previously bound to
the site. Because AntiPhish is user input-based, it can guar-
antee that sensitive information will not be transferred toa
web site that is untrusted. For a more detailed description
of AntiPhish, the reader is referred to [8].

3 Writing Browser Plug-ins

Different vendors are currently providing various mecha-
nisms and APIs to enable third party software developers to
integrate components into their browsers. Unfortunately,no
standard exists, and the provided API functions that a plug-
in can access differ between web browsers. In this section,
we briefly discuss the implementation techniques for plug-
ins for the two most popular browsers, Mozilla Firefox and
the Internet Explorer.

3.1 Mozilla Firefox Extensions

The Mozilla Firefox browser offers a flexible and easy
technique to write plug-ins. A so-called Firefoxextension

(i.e., plug-in) can access the resources within the browser
and enhance the browser’s functionality.

A Firefox extension is defined in an XPI (Cross-Platform
Install) file that contains the plug-in source code and the
corresponding installation information. XPI files are com-
patible with ZIP files. The installation information for the
plug-in is defined in a file called “install.rdf” in the XPI
archive.

The Firefox browser uses the Extension Manager (EM)
to manage extensions. By looking at the “install.rdf” file in
the XPI archive, it can obtain general information about the
extension such as its name, the version of the browser that
it is compatible with, and its unique identification number.

All Mozilla extensions are written in JavaScript. The
JavaScript language [7] is widely used to enhance the client-
side display of web pages. It was developed by Netscape as
a light-weight scripting language with object-oriented ca-
pabilities and was later standardized by ECMA [1]. When
an extension is executed, it is interpreted by the Mozilla
JavaScript engine that is embedded within the browser. Be-
cause extensions are written in JavaScript and no native
code is generated, all Mozilla extensions by definition are
“open source”. That is, it is possible to download any
Mozilla extension and inspect its source code1.

By writing an extension, the developer can react to and
access events created by the browser. These events are typ-
ically created in response to user input or when a web page
completes loading. For example, an extension can sub-
scribe to key-press events to intercept all keys that are be-
ing pressed, or it can intercept all form data that is being
submitted. Furthermore, the extension can also modify the
contents of a page by accessing its Document Object Model
(DOM) representation.

The Graphical User Interface (GUI) of an extension (if it
has any) is created and defined using the XML User Inter-
face Language (XUL). XUL is an eXtensible Markup Lan-
guage (XML) dialect, which allows other XML standards
such as XPath or XSLT to be used. The Gecko rendering
engine interprets the XUL definition and displays the GUI
within the browser.

A detailed overview of XUL can be found in [17], and
the reader is referred to the Mozilla Developer Center web
site [13] for detailed information about Mozilla extensions.

3.2 Internet Explorer Browser Helper Ob-
jects

Developing a Browser Helper Object (BHO) on Mi-
crosoft Windows is the most popular technique to integrate
a plug-in component into the Internet Explorer (IE). Using

1It is not surprising that the Mozilla foundation has chosen this open
approach to creating plug-ins when one considers that its browser is open
source.

BHOs, the developer has access to the event mechanism of
IE and can also create user interface elements such as tool-
bars.

Browser Helper Objects and toolbars are binary ob-
jects that conform to the Component Object Model (COM).
COM is a binary standard developed by Microsoft to sup-
port, among other things, a component-based software mar-
ket [16]. Every COM object implements a set of interfaces,
each of which is a well-defined contract that describes what
functionality the object provides. The COM standard guar-
antees that the virtual tables of interfaces remain the same
across compilers, allowing COM objects to be implemented
and used by any language that supports calling functions
through a table of function pointers. TheIUnknown in-
terface must be implemented by all COM objects. It con-
tains the functionQueryInterface, which allows one
to query for the other interfaces that an object might imple-
ment.

A Browser Helper Object is in essence a simple COM
object that implements theIObjectWithSite interface.
Toolbar objects work in a way similar to BHOs but imple-
ment a few more interfaces and include a graphical compo-
nent.

Whenever the Internet Explorer is started, it queries
the registry key HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion\Explorer\Browser
Helper Objects and loads all object whose Class
Identifiers (so-called CLSIDs) are stored there. By using
theIObjectWithSiteinterface that the BHO implements, the
IE browser provides the BHO a pointer to itsIUnknown
interface. The BHO can store this pointer and subsequently
use it to query the IE for more specific interfaces (for
example, IWebBrowser2, IDispatch, or IConnection-
PointContainer[10], which can then be used to access
user-triggered events and browser functions). Figure 2
shows a diagram from the Microsoft Developer Network
(MSDN) documentation that depicts the Internet Explorer
loading and initializing helper objects [10].

One of the main differences of Internet Explorer BHOs
and Mozilla Firefox extensions is that BHOs run asnative
code within the browser process. Hence, they have unlim-
ited access toall resources of the operating system (such as
network sockets, files, and processes) that the Internet Ex-
plorer can access. As a result, BHOs are also often used by
spyware authors. Using a BHO, it is easy to intercept all
user interaction and store it somewhere on the user’s com-
puter.

4 JavaScript Attacks

A common and important task for most anti-phishing
plug-ins is to check user input for the presence of sensi-
tive information. The idea is to ensure that such informa-

Figure 2. MSDN documentation that depicts
the Internet Explorer loading and initializing
helper objects.

tion is only provided to trusted sites but never submitted
to untrusted servers. A plug-in can easily carry out this task
when the malicious phishing server only sends static HTML
pages. In this case, sensitive information is only leaked
when the user transmits her data to the attacker’s site, for
example, by submitting a web form. Clearly, the plug-in
has the opportunity to intercept and cancel this operation
before the form data is actually sent to the attacker.

Unfortunately, the situation gets more complicated when
the attacker embeds malicious JavaScript into his phishing
page. JavaScript is a powerful language that provides the at-
tacker with a wide range of possibilities for bypassing mon-
itoring plug-ins such as AntiPhish or SpoofGuard. For ex-
ample, one approach is to use JavaScript hooks to listen for
key-press events. Instead of waiting for the user to press
a submit button to send the information, the attacker could
intercept each key that is pressed and send the information
character by character back to his server. Thus, before the
plug-in can detect that sensitive information is entered, most
of the data is already transmitted to the attacker.

Listing 1 shows JavaScript code that implements the
aforementioned attack. In Lines 18 and 23, the attacker has
defined a functionkeysEvent()that is invoked every time a
“key up” event is generated (i.e., a pressed key is released).
In the example code, a dialog box is displayed (Line 10) that
contains the values of the user name and password fields. In
a real attack, the attacker would send this information to his
server. Of course, JavaScript does not allow network con-
nections to be opened. Note that the newer Ajax technol-
ogy allows connections to be opened using XMLHttpRe-
quest objects, but with the constraint that the ”domain of
the URL request destination must be the same as the one
that serves up the page containing the script [3].” However,
the attacker can easily leak out the information by modify-
ing the URL of a (hidden) image embedded in the page so
that the web browser requests this image from a web server
under the attacker’s control. Of course, arbitrary informa-

tion can be embedded into this URL. For example, if the
key “z” is pressed, the URL of an embedded image could
be set tohttp://evil.example/log?key=z.

Instead of hooking key strokes, the attacker could also
leverage the JavaScriptsetTimeout()method. Using this
method as a trigger, the attacker can periodically capture
the current values of all form fields on the page.

1 <html>
2 <head>

3 < t i t l e>J a v a S c r i p t A t tack< / t i t l e>

4 < / head>

5

6 <body>
7 <s c r i p t type =” t e x t / j a v a s c r i p t ”>
8 f u n c t i o n keysEven t ()
9 {

10 a l e r t (” username : ” +
11 document . t e s t f o r m . username . v a l u e
12 + ” \npassword : ” +
13 document . t e s t f o r m . pwd . v a l u e) ;
14 }
15 < / s c r i p t>
16 <form name=” t e s t f o r m ”>
17 Username :
18 <input type =” t e x t ” name=” username ”
19 onKeyUp=” keysEven t () ”>
20

21 Password :
22 <input type =” password ” name=”pwd”
23 onKeyUp=” keysEven t () ”>
24 < / form>

25 < / body>
26 < / html>

Listing 1. Intercepting key strokes using
JavaScript.

Obviously, the easiest solution to mitigate JavaScript at-
tacks is to deactivate JavaScript on pages that contain forms.
This approach, unfortunately, is not feasible because many
web sites make use of JavaScript to submit forms. Further-
more, JavaScript is also often used for client-side input val-
idation purposes.

The solution we used in the Mozilla Firefox version of
AntiPhish was to deactivate JavaScript every time the focus
is put on a form element (e.g., an input field), and to reac-
tivate it whenever the focus is lost. Using this technique,
we can ensure that an attacker cannot capture key strokes
or launch timing attacks before AntiPhish can examine any
input for sensitive data.

5 Lessons Learned

After finishing a prototype of AntiPhish for Mozilla Fire-
fox in 2005, we started to implement an Internet Explorer
(IE) version. We expected to have an IE prototype in a short
period of time. As discussed in Section 3, although plug-
ins for various browser platforms are implemented slightly
different, they are conceptually similar. If a developer is
familiar with browser events (e.g., page not found event,
document loaded event, etc.), porting a plug-in from one
browser to another should not be difficult. Unfortunately, in
real life, creating an anti-phishing browser plug-in for the
IE proved to be much more difficult than expected.

In this section, we describe five lessons we learned dur-
ing the development of AntiPhishIE, the AntiPhish solution
for the Internet Explorer. We discuss the problems we en-
countered and the workarounds we developed.

Lesson 1: JavaScript cannot be deactivated
temporarily on IE

As discussed in Section 4, JavaScript attacks pose a se-
rious threat to anti-phishing plug-ins. On Mozilla Firefox,
we were able to temporarily disable the JavaScript engine
by appropriately setting a boolean flag in its configuration.
Every time the boolean value was modified, the changes be-
came effective immediately. The idea is to intercept user
interface focus events and to disable the JavaScript engine
each time the focus is put on a form element. In this way,
we disable the JavaScript whenever a user is typing data into
a form, making it impossible for an attacker to steal data
while it is entered. Note that this approach also effectively
mitigates timer-based Javascript attacks with which the at-
tacker can steal the data entered into a form. In this attack,
the attacker might use a Javascript timeout function that is
automatically invoked after a specified amount of time has
elapsed. Because Javascript is deactivated while the user is
entering information into the form and because AntiPhish
checks if sensitive information is being typed into an un-
trusted domain after each key press, such a timer-based at-
tack cannot succeed.

We expected the IE to work the same way. Unfortu-
nately, we discovered that this was not the case. Instead, itis
only possible to turn off JavaScript on a system-wide basis.
To achieve this, the registry settings for IE have to be mod-
ified, and the new settings become active only after restart-
ing the browser. Because we were not able to temporarily
disable the JavaScript engine of IE, we had to implement a
workaround. The idea was to intercept all keyboard events
before they reach the JavaScript engine. In other words, we
aimed to disable the delivery of events to the JavaScript en-
gine while the input focus was on a form element. In this
fashion, no JavaScript code is triggered while the user fills

out a web form. The implementation is not trivial and uses
Win32 API functions to implement keyboard hooks. More
precisely, the plug-in uses theSetWindowsHookEx(), Un-
hookWindowsHookEx()andCallNextHookEx()functions to
insert itself between the Windows messaging system and
the JavaScript engine. Whenever the user is typing input,
no events are delivered to the JavaScript engine. While this
could interfere with legitimate JavaScript code, it is neces-
sary to prevent the attacks mentioned in the previous sec-
tion.

Unfortunately, although intercepting key events at the
operating system level mitigates JavaScript key logging at-
tacks, timer-based attacks are still possible. We did not
manage to find an elegant solution around this problem. In
our current prototype, AntiPhishIE inspects the JavaScript
code in the HTML page and displays an alert whenever it
detects that the JavaScriptsetTimeout()command is being
used. In this case, a dialog is displayed to the user that in-
forms of possible security issues. This could lead to false
alarms because there might be sites that legitimately use the
JavaScriptsetTimeout()function.

Lesson 2: Using .NET for BHOs has disad-
vantages

Microsoft recently introduced the .NET framework, a
new development and runtime environment where machine-
independent byte-code is executed by a virtual machine.
Multiple programming languages can be used with the
.NET framework (e.g., VB.NET, C#, C++, etc.). The idea is
that programs in any of these languages are compiled into a
Common Intermediate Language (CIL), which is hardware-
neutral byte-code. The bottom layer of the architecture con-
sists of the Common Language Runtime (CLR). The CLR
is a virtual machine that interprets and executes the .NET
byte-code. Programs that are written in the common inter-
mediate language are referred to asmanaged code.

Using managed code when developing an application
has many advantages. Managed code runs entirely inside
a sandbox. Hence, it cannot make calls outside of the .NET
framework and this permits applications built with managed
code to run safer. We implemented AntiPhishIE as a man-
aged .NET application, assuming that using .NET would
allow us to build the prototype faster and easier.

Unfortunately, the downside of using managed code was
that fact that it was significantly more difficult to use low-
level Windows functions. In particular, it was difficult to
invoke the Windows API functions that implement the in-
terception of keyboard events (as discussed in the previous
lesson). One problem was that these API functions were
not declared in the .NETSystem.Runtime.InteropServices
namespace and had to be redefined as managed C# inter-
faces. This task is tedious and error-prone, as it requires the

programmer to provide a mapping between native Win32
data types and .NET types. We learned that implement-
ing BHOs in .NET is not always as straightforward as one
thinks, especially when native Windows support is required.

Lesson 3: BHOs provide more flexibility
than Mozilla extensions, but this comes at
a price

One advantage of BHOs in comparison to Mozilla ex-
tensions is that native Windows code may be used within
a BHO. A BHO, in essence, is an “independent” Windows
thread that is running in the same address space as the Inter-
net Explorer. Hence, the programmer can create processes,
files, and network connections or invoke existing legacy
code. While this flexibility is certainly an advantage, the
downside is that more care needs to be taken when writing
(or integrating) native code. In particular, when using native
code (e.g., C or C++) in a BHO, one needs to ensure ro-
bust input validation and memory management. In compar-
ison, when writing Mozilla extensions, such considerations
are not necessary because JavaScript is an interpreted lan-
guage2. Thus, according to our experience, coding Mozilla
extensions is easier in the sense that it is less likely to make
programming mistakes that crash the browser.

Lesson 4: Mozilla extensions are more te-
dious to maintain

Once a BHO is created, one can be quite certain that it
will work as expected also in future releases of the Inter-
net Explorer. Mozilla extensions, in comparison, need to
define the versions of Mozilla browsers that the extension
supports. The idea of this feature is to prevent extensions
from not working properly when newer versions of Mozilla
are released. If the extension detects that the current version
of Mozilla is not supported, a warning is displayed and the
extension is deactivated. Thus, we have to release a new in-
stallation (i.e., XPI) package every time a new Mozilla ver-
sion is released. This overhead can be reduced by defining a
yet non-existing, future version of Firefox that the extension
claims supports. Of course, the downside of this approach
is that the extension might not work properly when installed
because of modifications in the browser APIs.

Lesson 5: IE passes control to BHOs after
scripts have been invoked

Both BHOs and Mozilla extensions have similar event
notification mechanisms when a web page has been loaded.
However, one interesting difference that we noticed was

2Note that the JavaScript engine itself may have a buffer overflow prob-
lem. However, such errors are less common.

that Firefox delivers control to an extensionbefore the
JavaScript on the page is executed, whereas the IE delivers
control to the BHOafter the JavaScript is executed.

This behavior might be problematic for security plug-
ins that need to control and intercept the execution of the
JavaScript code in a page. One possible remedy is to de-
activate JavaScript globally as soon as the BHO is started.
This approach, however, may have adverse effects on some
web pages, which may not behave as expected once the
JavaScript is restarted.

6 Conclusion

Phishing is an online identity theft that aims to steal sen-
sitive information such as user names, passwords, and credit
card numbers. Although a simple attack, phishing has be-
come a large problem for organizations that are doing online
business. The number of phishing scams are continuously
growing, and the cost of the resulting damage is increasing.
Researchers as well as the IT industry have identified the
urgent need for anti-phishing solutions and recently, a num-
ber of solutions to mitigate phishing attacks have been pro-
posed. Some of these anti-phishing solutions are browser-
based and have been implemented as plug-ins.

In many scientific papers, the authors present a small
prototype and claim that their tool can be extended or ported
easily to run on any platform that is actually used in the real-
world. In fact, often, such a task is only considered an en-
gineering exercise. In 2005, we developed an anti-phishing
browser plug-in for Mozilla Firefox. Before porting this
plug-in to the Internet Explorer, we expected such an engi-
neering exercise. Unfortunately, the task proved to be more
difficult than expected. In this paper, we described our ex-
periences when implementing security browser plug-ins for
Mozilla and Internet Explorer. We hope that the difficul-
ties we faced, the lessons we learned, and the experiences
we reported in this paper will be useful for other developers
who are in the same situation.

Acknowledgments

This work has been supported by the Austrian Science
Foundation (FWF) under grants P-18764, P-18157, and P-
18368, and the Secure Business Austria Competence Cen-
ter.

References

[1] ECMA-262, ECMAScript language specification, 1999.
[2] Anti-Phishing Working Group. Phishing Activity Trends

Report.http://www.antiphishing.org/, 2005.

[3] Apple Inc. Dynamic HTML and XML: The XMLHttpRe-
quest Object. http://developer.apple.com/
internet/webcontent/xmlhttpreq.html, 2007.

[4] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and
J. Mitchell. Client-side defense against web-based identity
theft. In11th Network and Distributed System Security Sym-
posium (NDSS), 2004.

[5] Debian. DEPLOY: Debian project unable to deploy Sender
ID. http://www.debian.org, 2006.

[6] Engin Kirda, Christopher Kruegel. Protecting Users
Against Phishing Attacks with AntiPhish.http://www.
seclab.tuwien.ac.at/software/antiphish/,
2006.

[7] D. Flanagan.JavaScript: The Definitive Guide. December
2001. 4th Edition.

[8] E. Kirda and C. Kruegel. Protecting Users against Phishing
Attacks. The Computer Journal, Oxford University Press,
2006.

[9] Microsoft. Anti-Phishing Technologies.http://www.
microsoft.com, 2005.

[10] Microsoft. Browser Helper Objects: The Browser the Way
You Want It.http://msdn.microsoft.com, 2005.

[11] Microsoft. Sender ID Framework Overview.http://
www.microsoft.com, 2005.

[12] Microsoft. Microsoft Open Specification Promise.
http://www.microsoft.com/interop/osp/
default.mspx, 2007.

[13] Mozilla Foundation. Mozilla Developer Center: Extensions.
http://developer.mozilla.org, 2006.

[14] Mutual Internet Practices Association. DomainKeys Identi-
fied Mail (DKIM). http://www.dkim.org/, 2007.

[15] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell.
Stronger Password Authentication Using Browser Exten-
sions. In14th Usenix Security Symposium, 2005.

[16] S. Willliams and C. Kindel. The Component Object Model:
A Technical Overview. Microsoft Technical Report, Octo-
ber 1994.

[17] XULPlanet. XULPlanet. http://www.xulplanet.
com, 2005.

[18] Yahoo. Yahoo! Anti-Spam Resource Center.http://
antispam.yahoo.com, 2006.

