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ABSTRACT

By offering high availability and elastic access to resestchird-
party cloud infrastructures such as Amazon EC2 are rewoulizi
ing the way today’s businesses operate. Unfortunatelyndedd-
vantage of their benefits requires businesses to accept banwoh
serious risks to data security. Factors such as software, lopgr-
ator errors and external attacks can all compromise the dsmfi
tiality of sensitive application data on external cloudg,nbaking
them vulnerable to unauthorized access by malicious gartie

In this paper, we study and seek to improve the confidentialit
of application data stored on third-party computing cloud§e
propose to identify and encrypt dlinctionally encryptablalata,
sensitive data that can be encrypted without limiting thecfion-
ality of the application on the cloud. Such data would beestor
on the cloud only in an encrypted form, accessible only tosuse
with the correct keys, thus protecting its confidentialigaist un-
intentional errors and attacks alike. We desci$ikerling a set
of tools that automatically 1) identify all functionally eryptable
data in a cloud application, 2) assign encryption keys taifipe
data subsets to minimize key management complexity white en
suring robustness to key compromise, and 3) provide traespa
data access at the user device while preventing key compeomi
even from malicious clouds. Through experiments with realia
cations, we find that many web applications are dominatestdry
age and data sharingomponents that do not require interpreting
raw data. Thus, Silverline can protect the vast majorityathdn
these applications, simplify key management, and protgainat
key compromise. Together, our techniques provide a susitan
first step towards simplifying the complex process of incogting
data confidentiality into these storage-intensive cloyieations.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized Access
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1. INTRODUCTION

Third-party computing clouds, such as Amazon’s EC2 and Mi-
crosoft’s Azure, provide support for computation, data age
ment in database instances, and Internet services. By iatiow
organizations to efficiently outsource computation and caan-
agement, they greatly simplify the deployment and managénfe
Internet applications. Examples of success stories on B€lade
Nimbus Health [4], which manages and distributes patiertdioad
records, and ShareThis [5], a social content-sharing rétiat
has shared 430 million items across 30,000 websites.

Unfortunately, these game-changing advantages come wigh a
nificant risk to data confidentiality. Using a multi-tenanodel,
clouds co-locate applications from multiple organizagiom a sin-
gle managed infrastructure. This means application datalier-
able not only to operator errors and software bugs in thedclbut
also to attacks from other organizations. With unencrymtath
exposed on disk, in memory, or on the network, it is not sempg
that organizations cite data confidentiality as their biggg®ncern
in adopting cloud computing [17, 33, 48]. In fact, researshe-
cently showed that attackers could effectively target drgkove in-
formation from specific cloud instances on third party cle{4D].
As a result, many recommend that cloud providers shouldrrimve
given access to unencrypted data [6, 41].

Organizations can achieve strong data confidentiality loyygt-
ing data before it reaches the cloud, but naively encryptiata
severely restricts how data can be used. The cloud canriotper
computation on any data it cannot access in plaintext. Fpli-ap
cations that want more than just pure storagg, web services
that serve dynamic content, this is a significant hurdle. r&laee
efforts to perform specific operations on encrypted datd s
searches [1, 11, 12, 15, 25, 30, 43, 44]. A recent proposafldfya
homomorphic cryptosystem [24] even supports arbitrary maar
tions on encrypted data. However, these techniques arer ¢ith
costly or only support very limited functionality. Thus,eus that
need real application support from today’s clouds must sbdxe-
tween the benefits of clouds and strong confidentiality of thega.

In this paper, we take a first step towards improving data con-
fidentiality in cloud applications, and propose a new apgino®
balance confidentiality and computation on the cloud. Oyrdie
servation is this: in applications that can benefit the mashfthe
cloud model, the majority of their computations handle datan
opaque wayj.e. without interpretation. For example,SELECT
query looking for all records matching userfCBob’ does not
need to interpret the actual string, and would succeed i§ttieg
were encrypted, as long as the value in the query matchechthe e



crypted string. We refer to data that is never interpretekl.da
used in a computation) by the applicationfasctionally encrypt-
able i.e. encrypting them does not limit the application’s function-
ality. Consider for example, ShareThis [5], which uses Aoméz
SimpleDB for attribute search and list management. Its owou
tation states “aggregators sum instances of each evenbyypeb-
lisher and update SimpleDB on day boundaries.” With ShasTh
users search for events by matching specific attributeshewtoud
does not interpret the value of the attributes and simpbtsrthem
as opaque data. Similarly, the report generator functitgnahly
computes count of events of a particular type but ignoreadhgal
value of those “opaque” types. Similar operations are comino
other applications like social networks or shopping carts.

Leveraging the observation that certain data is neverpraézd
by the cloud, our key step is to split the entire applicatiatadnto
two subsets: functionally encryptable data, and data thest me-
main in plaintext to support computations on the cloud. Adater
show, a large majority of data in many of today’s applicasiosn
functionally encryptable. As shown in Figure 1, such dataldde
encrypted by users before uploading it to the cloud, and ifldvbe
decrypted by users after receiving from the cloud. Whils tea
sounds conceptually simple, realizing it requires us toeskithree
significant challenges: 1) identifying functionally enptgble data
in cloud applications, 2) assigning (symmetric) encryptieys to
data while minimizing key management complexity and rislks d
to key compromise, and 3) providing secure and transpasat d
access at the user device.

Identifying functionally encryptable data. ~ The first challenge
is to identify data that can be functionally encrypted withbreak-
ing application functionality. To this end, we present atoeated
technique that marks data objects using tags and tracksusesje
and dependencies through dynamic program analysis. Wefiden
functionally encryptable data by discarding all data teanvolved
in any computations on the cloud. Naturally, the size of shisset
of data depends on the type of service. For example, for progr
that compute values based on all data objects, our techmigilie
not find any data suitable for encryption. In practice, hasveve-
sults show that for many applications, including sociameks
and message boards, a large fraction of the data can be &ttryp

Encryption key assignment. ~ Once we identify the data to be
encrypted, we must choose how many keys to use for encryption
and the granularity of encryption. In the simplest case, areen-
crypt all such data using a single key, and share the key Wlith a
users of the service. Unfortunately, this has the probleahatma-
licious or compromised cloud could obtain access to theygtion
key, e.g.by posing as a legitimate user, or by compromising or col-
luding with an existing user. In these cases, confidentialitthe
entire dataset would be compromised. In the other extrenee, w
could encrypt each data object with a different key. Thiseases
robustness to key compromise, but drastically increasgsrien-
agement complexity.

Our goal is to automatically infer the right granularity fdata
encryption that provides the best tradeoff between rolesstiand
management complexity. To this end, we partition the data in
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Figure 1: A depiction of our approach. The cloud stores en-
crypted data, and the organization stores decryption keysThe
clients fetch the two and decrypt the data locally to obtain he
application’s service.

scribe a key management system that leverages this infiomrat
assign to each user all keys that she would need to propergsac
her data. Since key assignment is based on user accessipatter
we can obtain an assignment that uses a minimal number of en-
cryption keys necessary to “cover” all data subsets withirdis
access groups, while minimizing damage from key compromise
Key management is handled by the organizatiade also develop
mechanisms that we need to manage keys when users or obgects a
dynamically added to or removed from the application oriserv

Secure and transparent user data access. Client (edge) de-
vices,e.g. browsers, are given decryption keys by the organization
to provide users with transparent data access. Of coursss the-
vices (and users) must protect these keys from compromisex-
ample, an untrusted (or compromised) cloud can serve cigtdm
attack code to obtain encryption keys and decrypted datavard

off these attacks, we propose a client-side component fwriias

in the users’ browsers) that allows users to access clowicesr
transparently, while preventing key compromise (even feoma-
licious cloud). Our solution works by leveraging alreadgitable
features in modern web browsers such as same-origin pokcid
support for HTML5 postMessageealls. As a result, our solution
works without any browser modifications, and can be easily de
ployed today.

Prototype and evaluation.  We implemented our techniques as
part of Silverline, a prototype of software tools desigredimplify
the process of securely transitioning applications in® ¢loud.
Our prototype takes as input an application and its datagqdto a
database). First, it automatically identifies data thatirfionally
encryptable. Then, it partitions this data into subsets aha ac-
cessible to different sets of users (groups). We assigngacip a
different key, and all users obtain a key for each group that be-
long to. This allows the application to be run on the cloudilevall
data not used for computation is encrypted. Since popul& &
plications like ShareThis are all proprietary, we apply system to
several popular open-source applications, and show thatstem
can partition data and assign keys to maximize data proteatith
a minimal number of keys. In addition, we find that a large migjo

subsets, where each data subset is accessed by the sam@Qroup ot gata can be encrypted on each of our tested applications.

users. We then encrypt each data subset using a differenakey
distribute keys to groups of users that should have accesedb
on the desired access control policies). Thus, a maliciobsiggy
cloud that compromises a key can only access the data that is e
crypted by that key, minimizing its negative impact. Wedatuce a
dynamic access analysis technique that identifies usepgratio
can access different objects in the data set. In additiondeve

In summary, the main contributions of this paper are:

e We introduce a novel approach to provide data confidential-
ity on the cloud while maintaining the functionality of cidu

LIn this paper, we use “organization” to refer to the entittivants
to securely deploy its application and data on the cloud.
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Figure 2: An example message board application’s DB schema.

applications. Our approach works by automatically idgntif
ing subsets of an application’s data that are not directylus
in computation, and exposing them to the cloud only in en-
crypted form.

We present a technique to partition encrypted data ints part
that are accessed by different sets of users (groups)liintel
gent key assignment limits the damage possible from a given
key compromise, and strikes a good tradeoff between robust-
ness and key management complexity.

their keys safely while preventing cloud-based servicenfro
stealing the keys. Our solution works today on unmodified
web browsers.

We describe Silverline, a prototype toolset that impleraent
our ideas, and discuss the results of applying Silverline to
three real-world applications.

2. OVERVIEW OF SILVERLINE

Our overarching goal is to improve the confidentiality of &pp
cation data stored on the cloud. We assume that the thitgi-par
computing cloud provides service availability accordingérvice
level agreements, but is otherwise untrusted. More spatiifieve
assume cloud servers may be compromised or may malicioolsly ¢
lude with attackers to compromise data confidentiality.

Our solution to improving data confidentiality on the clowdls
for end-to-end encryption of data by its owner (the orgatiora
and its consumers (the users). In this paper, we concereloass
with the data persistently stored in the databases. Ounimabs
apply to both traditional relational databases on the ¢laund to
databases specifically designed for the cloud [3, 34, 14¢eés to
encrypted data is granted through selective distributfoenaryp-
tion keys, but only to users that have legitimate accessetaléta.
We usesymmetric key$o encrypt the data — symmetric keys are
highly efficient and provide confidentiality with low comptional
overhead.

2.1 An lllustrative Application

We illustrate our approach using an online message boaid app
cation, where users use topic-based forums for exchanges m

We present a technique that enables clients to store and use

Today, an organization would deploy the above message board
on the cloud by directly running it on the cloud infrastruetuData
would be stored in plaintext in a database, and queries flem t
users would be executed directly on this database. In thiplsi
approach, user data confidentiality can be compromisedverale
ways. The cloud operators have access to cloud hardwaréhand t
application data. A bug in the software managing the clougt ma
reveal user data to attackers. Finally, the multi-tenatinezof the
cloud brings a unique challenge: a compromised application
ning in the cloud can “infer” data that belongs to the userstbér
applications running on the same hardware [40]. Recentegurv
papers [13, 35] describe these and other threats in mor#. deta

2.2 Proposed Approach

In Silverline, we improve data confidentiality by encrygfias
much of the application data as possible on the cloud (withou
breaking the application’s functionality). This enablagamiza-
tions to use existing clouds and protect their data and thee afa
their users. The key ideas of our approach are shown in Figure

Storing and querying data on the cloud.  In Silverline, data in
the database (running on the cloud) is encrypted, but keysatr
revealed to the cloud. The keys are stored by the organiz#tet
“outsources” its application and user data to the cloud. efohf
data from the cloud, the user first contacts the organizatiaret
the appropriate key(s), and then sends the query to the ¢toud
fetch the data. The input parameters to the query are alsarsen
encrypted form. The cloud executes the query using thisyptex
input and then sends back the results, also in encrypted fbinen,
the user’s device decrypts the data and displays it.

For example, consider the queISELECT » FROM Users WHERE
User Nane = ' Bob’ . Here, Bob queries the cloud for his detailed
profile information. In current systems, the username waeldh
plaintext. In Silverline, the username is encrypted, usirgym-
metric key that is known only to the organization and Bob. Bob
obtained this key when he registered with the organizatidus,
the query use& (Bob, Kz.s) as the input parameter for the field
User Nane. The query (the SQL code itself) does not need to be
modified. The results returned from the cloud are also enedyp
with the symmetric keyX 5,5, which Bob decrypts upon receipt.

Similarly, if some data is to be known to a group of users, then
all the users in the group share the same key. For examplbgeall
members of the groupi t er at ur e would obtain the keyKr,;+
when they join the group. A query to fetch the messages séhitsto
group GELECT * FROM Messages WHERE Groupld='Literature’)
would use the encrypted valug(Li t er at ur e, K1) as the input
parameter foiGr oupl d. If a member wants to post a message to
the group, the message would be encrypted before sending it t
the cloud, using the group’s key. The cloud would then stbee t
encrypted blob of text in the database (instead of the gzimhes-
sage itself). Once the keys are received, the clients cdgm to
reduce future key requests to the organization, and thdscecthe
load induced on the organization.

Unfortunately, our approach might not be able to encrypagadl
plication data. For example, the message board might watitto
play the average age of the users in the system. To compste thi

sages and discussions. We show a sample database schema f&p€ application must access the date-of-birth (DOB) fieldhia

this application in Figure 2, and we will use this exampletigh-

out the paper to discuss our approach. The schema consiats of
User s table to store user profile information such as name, userid
or email, aGr oups table to store information about discussion
groups, aUser sToGr oups table that maps users to the groups
they are members of, andMessages table that contains individ-
ual messages sent to the groups.

database, calculate the age of each user by subtracting@&e D
with today’s date, and then perform a summation to calcutee
averag@. Since this involves computation, Silverline identifieisth
field asnotfunctionally encryptable and leaves it in plain text.

2Such computations could be performed on encrypted data usin
homomorphic encryption schemes [24]. Unfortunately, timeyr
very high overhead, which we want to avoid.



Storing and managing keys in the organization.  In our ap- application needs to be run in a modified runtime on the cloud,
proach, the role of the organization is to store all keys sgguand which implements our techniques, rather than in the regular
to provide users with only the keys that they should havesscce time. This modified runtime performs simple, light-weigtading
to. We take a fine-grained encryption approach to providangtr of data between the DB and the application.
confidentiality guarantees. Finally, after running this application on the cloud, thegami-

A database consists of tables; tables consist of rows; amsl ro  zation needs to perform key management, while the clientdsv
consist of cells. In Silverlingifferent parts of a single table (even  perform data encryption and decryption.
individual cells) may be encrypted with different key®or exam-
ple, in theUser s table above, consider a situation where all users
can see all users’ Userld and UserName in the system. However
only the user herself should see her email address, DORjdoca
and gender. In this scenario, the ideal key assignment wmeitd
encrypt all Userld and UserName cells in the table with ome-sy
metric key, and give that key to all the users. But the cellsezo
sponding to email, location, and gender of a user, say Bobt hai

encrypted with a keyK o) that is accessible only to Bob. 2.3 Confidentiality vs. Key Management

The organization is responsible for securing the creatfarser fore di ina the desi f hi .
accounts. For instance, a university deploying a messagyel hor Be ore |scussmg.t € design of our system, we use thisosecti
its em Io.ees is in char’ e of ensuring that each applicaeount to introduce and define some terminology: A user has access to

pioy g 9 PP set of database cells, and hence, is given a set of keys tbigipde

'Sr;glrjliiltlgeog;':fg frbgma (:ifrﬁ(ier:en;ci?sﬂ%eaell. k;’hslsblsclrn;gg;mt these cells. We describe the tradeoffs involved in assigttiese
P 9 g ys by oy keys to the cells starting with some basic definitions.

users in the application's database to perform a Sybil la{&(j. Our main goal is to maintain the confidentiality of the datsba

mizg?hoeriaen'Zaastsl?nn'rsnglnstoSr,?;zcmz'iekfgrsus;% ts(;lvfg\[;i]g:g& on the cloud. This is achieved as long as the confidentialigaoh
y g ' yS: P cell is protected. A cell’s confidentiality is defined as:

keys to users, as they need them. Of course, all keys musbiteel st
by the organization in a secure fashion. Since symmetris keg DEFINITION 1. Theconfidentialityof a cell is maintained when

small in size, and they can be cached on users’ machinemdbe |, iser that does not have access to the cell is able to deitrypt
on the organization is quite low, and so is the hardware debt.

Outlook. The key questions to answer when implementing
our approach are the following: 1) Which portion of the dada c

be encrypted without breaking the application’s functidpa?)

which keys are used to encrypt what portions of the data and ho
are they managed, and 3) how is encrypted data managed at the
end users’ devices. The answers to these questions arsskstin

more detalil in Section 3.

fectively, the organizations can use external clouds, govesthe We use the notion of thecope of a kego quantify the confiden-
confidentiality of their data, and only incur a small costrirhiouse tiality properties in Silverline.
hardware.

DEFINITION 2. The scope of a key is the number of cells in the

Data access on user devices. In our model, users store and re-
database that the key can decrypt.

trieve (encrypted) data on the cloud, and they obtain thesis krom
the organization. Data is encrypted and decrypted localhere-
fore, protecting decrypted data and user keys is criticaskiop
applications can protect keys locally using standard tiegtas. For
example, by storing and isolating the keys on disk with psrmi
sions given only to the user that represents the organizatiow-
ever, we need an approach to provide similar isolation piigsein

web applications, where data, code and keys are combind®int g reduce the management overhead on the organizationand th

A user may receive multiple keys to decrypt all her cells. Mhe
her scope is the sum of all her keys.

DEFINITION 3. The scope of a user is the union of the scopes
of all her keys.

same browser. To accomplish this, Silverline provides atsmi users, the number of keys given to each user should be migimiz
tha_t works without browser modifications. To leverage thspli- The obvious solution is to give no key to any user. Howevas, th
cations on user devices must request keys on behalf of the use s not valid because it does not provide any functionalityttte
decrypt data from the cloud before displaying it to the uaed user. Of course, the applicatiorfisnctionality must be preserved
encrypt any user data before sending it to the cloud. after applying our mechanisms. That is, there is a tradeb#rev
Application modifications and responsibilites. ~ The goal of ~ the organization aims to distribute as few keys as possibtaput
our work is to enable organizations to easily migrate exgstn- denying any user access to data that this user is entitled to.

ternet applications to a more secure model, where the rhajufri
application data is protected from vulnerabilities in thaud using
end-to-end encryption.

To leverage this model, the organization’s developers rieed
make three minor changes to the application before depjoiyin
on the cloud. First, the developers need to add routinesdrypn
data before uploading it to the cloud and routines to decdgpa
before the clients can consume it. But theradsneedo make any
changes to the application logic. Second, the developerd t®
make minor changes to the database schema. The Silvertitge to
inform developers which fields can be encrypted on the claitit- w
out affecting the application. Then, these encrypted fighdsild be
modified to an appropriate type in the databasg,ani nt now be-
comes al ob of text (to store the encrypted integer value). These
database schema changes can be completely automated.tféird

DEFINITION 4. A user is said to have minimal keys, when re-
ducing or increasing her keys any further leads either tcakieg
the application’s functionality or to a loss of data (celprdfiden-
tiality.

The end points in the spectrum of choices to tradeoff between
confidentiality and key management overhead do not meetesur r
quirements. A key with absolute scope on the entire databiase
olates confidentiality (as a user with that key can decryptcatl
in the DB). On the other hand, a key per cell (with a scope oj one
leads to high key management overhead. For a given datahase,
best tradeoff is the one where each user has minimal keysdicco
ing to Definition 4. If each user has minimal key assignmémdnt
the key assignment for the entire database is said toptienal
Silverline aims to achieve thigptimal key assignment



Finally, the cloud’'s scope must be zero. If the cloud colkide
with a small set of users, then its scope is the union of thpesod
all users it colludes with. As long as the organization sesuhe
account creation process, the cloud cannot gain access emtiie
database by performing a large-scale Sybil attack.

2.4 Integrity of the Data on the Cloud

In this paper, we focus on data confidentiality but set asisleds
of verifying the integrity of data and computation on theuzlo
This is because clients can use several existing techntquesify
that the cloud is not tampering with their data: First, déeoan
add an HMAC (hash-based message authentication code)d10] t
the encrypted blob that is stored on the cloud. This can lager
used by the receivers to verify the blob’s integrity.

Second, the clients can use proof of storage [7, 29] tecksiqu
to verify that the cloud is not performing denial-of-serviattacks
and that the cloud is actually keeping all the data the distured.
Even dynamic data [22] can be verified with this approach.s&he
techniques work with very low computational overhead, agd b
transferring little data between the clients and the server

Finally, techniques to protect against consistency astédgkun-
trusted cloud servers [31] can further help the clients tify¢he
consistency of the data obtained from the cloud — in pasicthat
the data received is the most up-to-date version, and thetlie
one seen by other clients concurrently querying the cloutkesé
techniques need to exchange small amount of informatiat as
the root of a Merkle hash tree [32], with the users, which can b
done in our model via the organization.

3. SYSTEM DESIGN

Silverline includes three techniques to help automaterdresi-
tion to a more confidential application model. Bjcrypted data
tracking identifies functionally encryptable data. Ratabase la-
beling and key assignmepartitions functionally encryptable data
into different groups and assigns encryption keys. Thie #@is
cludes mechanisms to handle dynamic database updatepappro
ately. Finally, 3)client-side key managemeptotects keys from
compromised clouds. We describe these techniques in deteil

3.1 Encrypted Data Tracking

Silverline uses a combination of information tagging and dy
namic analysis to determine the types of date. (the database
fields) that are functionally encryptable. We apply our téghes
by modifying the application runtime environment (for ovakia-
tion, the PHP interpreter) to tag information associateith @iffer-
ent database fields, and propagate them throughout theafqti
logic. By training Silverline with a representative set ppécation
queries, we expose the computational requirements of thk-ap
cation and determine whether each database field is furdijon
encryptable or not. We show a simple example in Figure 3, and
describe details of our approach below.

Dynamic program analysis.  To find functionally encryptable
data, one can perform static or dynamic program analysibotn
cases, the goal is to find database fields that are used byhesap
tion in computations, such as string operators, numeripaiaiors,
and comparators. To this end, one needs to track the useutifsres
from the database and analyze their usage.

In this paper, we usedynamicapproach, based on a set of train-
ing queries that exercise the application. Given a set a@fitrg
queries that are representative of application-to-damlupieries,
we modify the interface between the database and the afipiica
runtime to automatically extract meta-information as datae-

Request

Response Package Result

Q1 Q3
User Q2 Q4

Fetch Result

Log File With
Warnings

Application Running in a Modified i D:

Figure 3: Encrypted data tracking: We train Silverline with

a set of user inputs to the application that generate querieto
the database back-end. The database responds with data, and
the modified application runtime tags each data with a unique
field number. The application runtime then propagates tags
through computational dependencies, and logs warnings wime
ever a tagged piece of data is involved in a computation.

turned from the database. Note that these modificationgpatieation-
independent and only need to be performed once for a paaticul
programming environment (such as PHP, Python, or Java).sé/e u
this to build a table that maps the signatures of specificigsi¢éo
fields accessed in the DB.

Data tagging and propagation. At a high level, Silverline tags
all data entering the application from the database. It thacks
this data while it is used by the application, until a dataecbjs
involved in a computation or returned to the user withoutease
ing its values. Data is sent from the database to the apiolicat
response to application queries. As each piece of datariewed
from the database, it is tagged witlfield numbetthat corresponds
to the field read. Field numbers are positive integers thafuety
identify a field in the DB.

As operations are performed on data, the modified applicatio
runtime or interpreter propagates the tags as follows. Aigas
ment (data move) operation propagates the union of all thtfseo
right-hand side (RHS) operand to the left-hand side (LH&)yapd.
Any previous tags for the LHS are overwritten. For arithmeti
string, logical, or comparison operations, tags are prafeain
the same way. However, in addition, if any of the operandshen t
RHS are tagged, then a warning event is generated for eagbdag
operand. This event includes field numbers of all taggedaomkr
and their source code location.

After all queries in the training set have been executede8ihe
collects the logs containing all warnings generated in thgiea-
tion. We aggregate all warnings to produce a unique list dd fie
numbers that tagged non-encryptable data. Using the prgyio
produced table (which maps field numbers to field details & th
DB), we produce a list of all database fields whose values brist
exposed in plaintext for the application to function prépefhese
fields are not functionally encryptable. All other fields.are

Modifying application runtime. We demonstrate our tech-
niques on PHP applications, by modifying the PHP interpratel
the PHP-MySQL interface to support data tagging and prapaga
We store the tags by extending theval_structdata structure that
is at the base of all data types in the PHP interpreter. Thigres
that tags propagate correctly for all data types and peasisbng
as an object remains.

An alternative approach. A static analysis approach is an al-
ternative to our dynamic approach. It requires additioesktbper
effort, which we aim to avoid. In particular, the developaezd
to annotate the queries in the source code with the fieldssede
The static approach might be more appropriate when a tgaseh



is not easily available. The tag propagation policies, h@awere-
main the same in both approaches.

3.2 Database Labeling and Key Assignment

We now explain how Silverline addresses the challenge of as-
signing encryption keys to sets of data objects with the dipro-
ducing a minimal key assignment for each user. To do so, we nee
to automatically determine the appropriate scope for iifiekeys.

Again, we solve the problem by relying on a (relatively com-
plete) training set of application requests. We assumenbdtave
access to a snapshot of the application database, eitfear fiadm
a running instance of the application, or produced by a segpief
recorded or synthetic user requests. We use the trainiransgethe
snapshot to generate a workload of database queries, afjasito
infer user access patterns and to perform optimal key as&gts.

3.2.1 Labeling Algorithm

Given a sufficiently detailed set of requests, we can idgiatiif
database cells accessible to each user. By modifying tbeae
between the application runtime and the database, we caa use
“database labeling” technique to capture and store theerps.
These labels are then used to produce a minimal key assignmen
Figure 4 depicts labeling with an example.

In Silverline, the modified application runtime accessqdiap-
tion userIDs, and associates all queries to the databakeheitD
of the user whose request generated that query. This alldves-S
line to assign to each cell in the databadalzl. A label is a set
of all userlDs (users) who have access to that cell. For a:gdts
label can be written ab., = {01, 02, ..., 0; }, whereo; is the ID of
a user that can accessBy definition, a user who runs a query has
access to all cells returned as the result of that query. fbe,
we can build up a label for each cell in the database by running
our training set of application requests. As each user runsay
that accesses a cell, her userID is appended to the celésifab
is not already there. For example, if the queBELECT Userld
FROM Users where Gender=0" is executed by two user&ob
and Admin, Silverline will label theUser | d cells of all male
users( Gender =0) in the table with labe{ogos, 0 Admin }-

Our approach uses a training set of either logged or syetheti
user inputs (SELECT statements) to drive the databaseats|-|
ing process. For extremely large databases with complesnsab,
it can be difficult for a training set to cover the bulk of theeus
cell combinations possible in the application. In this ¢ase pro-
pose to augment an existing training set with additionattsstic
requests using an approach similar to protocol input fuz#i9],
dynamic input generation for testing Web applications B8j,and
dynamic input generation for high-coverage tests in datatze-
plications [21, 45]. For example, we can add queries to thayqu
above withGender as input parameter for all values Génder ,
e.g.{0, 1}. For fields with a large number of potential valueg.a
long type, we can use sampling guided by the applicationldpve
ers. To provide comprehensive coverage, we can continuaingd
cell labels until the query has been executed for all (orifigamt
sample) of parameter values and user accounts.

Of course, even after using the aforementioned techniquiss,
possible that our training data is incomplete. In this casers
are not provided keys to cells that they have access to. \Whige
does not interfere with the confidentiality of data, it migteny
legitimate users access. We handle omissions due to inetenpl
training in the same way as dynamic updates to the database (i
both cases, some new information is added or discoveredg Th
mechanism to handle this is described in Section 3.3.

Handling access hierarchies.  Finally, most applications con-
trol data access using different hierarchies of usegstheadmi n
user versus regular users. Silverline mechanisms sugpsmat-
urally because they infer a user’s access privileges basedtoal
queries, rather than user names. For example, regulareesersin
the qUerySELECT = FROM users WHERE User | d=" xxx' for their
own userlD,admni n can run the qUergELECT = FROM user s to
get data on all users. When these queries run during thertgain
phase, Silverline naturally addsim n to the labels of all the cells
in the users table. This easily extends to a complex hieyaoth
users with different access privileges.

3.2.2 Key Assignment

Once the labeling step has finished, all cells will have Isltieht
represent users who can access them. Our key assignmees@roc
uses this information to assign keys to groups of databdksticat
have common access patterns. Keys are then distributecete us
based on their accessibility to groups of cells. The goab igro-
duce a minimal number of keys in the application while guaran
teeing that each user can 1) decrypt all the cells she owng)bu
cannot decrypt any cell that she does not own.

The key assignment is a simple process. We want an assignment
that satisfies the constraint that each user’s keys prowedevith
access to all cells she has access to (based on our trainajg lola
no more. We also want to use a minimal number of total keys. We
compute the initial key assignment by examining all celelakin
the entire database. We group all cells together that sharsame
label, and assign these cells a single, unique key. Thislebvall
cells into a number of groups, each defined by a common lalkel an
a common key. Cells that share a common label are accessed by
the same set of users, and thus, share the same encryption key

There is an additional constraint to consider. Cells in colg
that queries use to perforjoin on tables need to be either unen-
crypted, or encrypted using a single key. This is necessaaiidw
users to join tables without decrypting the involved tald&imns.
This means that giving a user access to a single cell in therools
the same as giving her access to all cells in the column. Weveel
keeping these join columns unencrypted is generally redden
since joins are mostly performed on columns representirggdD
entities, and would not expose real valuable data.

Once assignment finishes, we create an encryption key for eac
cell group, encrypt the cells, and then distribute the keglltasers
identified in the group label. This ensures that each usealhtse
keys necessary to access all cells she should have access to.

Key assignment properties.  As defined in Section 2.3, optimal
key assignment for a database is the one that assigns theaahini
number of keys to each user, such that the keys for this user 1)
decrypt all her cells, and 2) do not decrypt any cell that sieschot
have access to. For a given database, our key assignmeevexhi
these optimality and confidentiality properties. Thisdals from
the three key steps that we perform in our assignment altgporit
1) cells with same labels are assigned the same key, 2) citis w
different labels are assigned different keys, and 3) a kgjen to
a user only when this user (her ID) is included in the corradpw
label.

Key minimality From the key assignment algorithm, it follows
that the total number of keys assigned to encrypt the erdii@dse
is equal to the number of unique labels in the database. Fliis i
deed the optimal number of keys: if there is a key assignnireit t
uses fewer keys than the total number of unique labels, sisiga-
ment can only occur ifwo different labelare given the same key,
which our algorithm never does. Hence, our algorithm adsev
key minimality.
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Figure 4: Database labeling in action. The application exages in a modified runtime that implements database labelingThe results

produced after performing database labeling on theUser s table

for two queries: SELECT User Name from Users and SELECT

Location from Users WHERE User|d="id are shown. The first query returns all users’ names, while thesecond returns only the

querying user’s location.

Cell confidentiality A cell's confidentiality is violated only if
the key to decrypt this cell is given to a user that does nairzgl
to the label of the cell. However, our key assignment alarits
based on the labels acquired during the training phasee @inser
without access to a cell is not included as a part of thisckbel,
Silverline preserves confidentiality of all cells in the aladise.

3.3 Incompleteness and Database Dynamics

whenever a label in the shadow database changes after aiguery
run (without knowing the query details). When the organarat
receives a notification, it updates the key assignment deas t@p-
propriate actions, as described next.

Changes due to database dynamics. The four possible events
due to database dynamics that impact key assignment aé iist
Table 1. Adding a user to a label and deleting a user from & abe
the two fundamental events. These occur when a user act¢esses

So far, we have described our mechanisms assuming that datagata for the first time, or when a user leaves (or is removem)fro

tracking identifies all encryptable data, and that the detahs
static. However, neither of these hold in practice. Datakira
ing might miss computations on certain fields and, as a reisult
correctly tag these fields as functionally encryptable. iy,

the system. These two events, in turn, lead to two more events
merging of two labels and splitting of a label into two. A merg
happens when the labels of two sets of cells become equak and
split happens when only a subset of an original set of celisines

databases change due to a number of reasons. For example, NneWccessible to a new user.

users join the system and are given access to existing dada, a
existing users leave the system. In addition, our trainieigod
queries may not trigger all code paths in the applications tpos-
sibly omitting some users from labels of database cells shewld
have access to.

A core part of our approach is to accept that the results of the
initial training process can be incomplete or outdated. Mf@duce
anonline monitoring componemnd deal with these two problems.

Online monitoring component on the cloud.  This component
runs inside the modified runtime deployed on the cloud. Itthas
purposes: First, the monitoring component performs a-gight

data tracking to identify any encrypted data used in contjmuns,

and, if so, alerts the organization. The organization can tise the
key to decrypt the data and properly turn the field on the clotal

plaintext. The data tracking is similar to the approachulised in
Section 3.1 (and hence, we omit the details here).

The second purpose of the monitoring component is to determi
when there are changes to the database cell labels thattikeyac
assignment. For example, a query is executed where a UBSSBSC
cells for which she does not have the proper keys yet. Anatker
ample is a user that leaves a group (and hence, her accesstaeed
be reduced). If such a change to a label is detected, theiregan
tion is notified. The organization then updates the key assant
based on the label changes. The monitoring component détect

In Table 1, we present the ideal actions required to propkral
with the changes while maintaining key minimality. Addingser
to a label, for example, means that this user should get sitodise
label's key. Fortunately, providing a key to a user is a lowrtvead
event. Removing a user from a label requires that the date-cor
sponding to this changed label be re-keyee, decrypt the data
using the old key and re-encrypt using a new key. This is rsacgs
to prevent the revoked user from accessing future updatdatéo
under this label. Data re-keying is undesirable, becausepibses
data as plaintext, and thus, must be performed on the o@féonis
own in-house computing resources rather than on the closda A
result, such an event incurs a non-trivial overhead.

Fortunately, this problem of key revocation for old membefrs
the group is well addressed in the literature, originallyhia con-
text of content distribution from untrusted servers [23,Bjovably
secure lazykey regressiorsolutions have be proposed in the past.
We reuse these techniques in Silverline to handle highbezet
events. More precisely, we handle a delete by assigning &agw
to the label from which a user was removed. This new key isrgive
to all the current members of the label, and is used to enalypt
data subsequently generated or updated under this labale\tdo,
this regressed key is special in the sense that it can be yst b
current members to derive all previous keys used to encrypt ¢
tent in this group [23, 8] and hence decrypt all content uribisr

bel changes by maintaining a “shadow” copy of the database to label with only this single key. Intuitively, the keys geated by

store the labeling results. That is, the label for a cell madhiginal
database is stored in the corresponding cell of the shadtabalse
(but the shadow does not store any other, actual data). Dieto
fact that the number of unique labelssignificantly lesghan the
number of cells, the size of the shadow database can be aptimi
to be much less than the size of the original database (g.mdbx-
ing the shadow cell content into another table). Using thalsw
database, the monitoring component just needs to generaése

this key regression approach are linked in a manner sinolar t
reverse hash chain, where given the current key, all prevkeys
can be derived, but not the other way around. This key regmress
approach has been shown to scale well in real applicatiotts wi
highly dynamic group membership with very low overhead [23]
We handle label merges by revealing the keys of both the rderge
labels to the members of both the merged label groups. Wddand
label split events by assigning a new regressed key to eattteof



[ Change event] Add a user |

Delete a user |

Merge two labels | Split a label into two |

Ideal action | Grant access to key (low)

Re-key data (high)

Re-key data (high) Re-key data (high)

Proposed actiorf

Grant access to key (low) Assign a new key (low)

Reveal both keys (low) Assign new keys (low

Table 1: Possible label changes due to dynamism in databasertent, ideal actions required to deal with these changes antheir
corresponding overhead (in bracket), and our proposed apprach to address dynamism and its overhead.
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Figure 5: Our design of safe data processing in the user's
browser.

new labels generated from the split. The new user in a sflélla
will be given access to the key to the old label before thet spli
ensure she has access to the data under that label. Usidgzpis
approach to reduce the overhead from dynamic group menipersh
slightly relaxes key minimality. For instance, there ar® tkeys
(instead of one) associated with a label after a split or mexgnt.
However, the application can reach the minimal assignmete s
by periodically re-keying the data.

code cannot access or leak keys, and that the decryptionecan b
done in a secure fashion before the data is presented tod¢he us

Secure data access on user devices. The key insight behind
our approach is to isolate (prevent) the untrusted code fimen
cloud from accessing sensitive data (such as keys or dechyaita)

on user devices. Only the code from the organization is &ltbto
access such data. We accomplish this by leveraging furadiipn
that is already present in modern Web browsers. In particula
make use of the Same Origin Policy (SOP) and HTML5. As a
result, our solution works in current browsers without nficdtion.

We leverage iFrames to isolate and restrict access to sensit
data in the Web browser. The idea is to use two iFrames in lesig
ing web applications hosted on the cloud. One frame belomgs t
the cloud, and one belongs to the organization. The keyda@meds
in the user’s web browser (as cookies, or on disk with HTML5)
under the samerigin (the source site details) as the organization.
As a result, the browser’s SOPs prevent the untrusted claunlef
from accessing keys that belong to the organization, duéfer-d
ent origins. Keys are only accessible by the organizatifraisie,
protecting them from a potentially compromised cloud.

Once keys are isolated, the next step is to isolate the datgle

Note that we consider the events generated by the monitoring yjon, process, so that unencrypted data does not leak todbed.din

component on the cloud to be untrusted. To prevent the claun f
giving (possibly malicious) users access to data arbiyratie or-
ganization checks the label changes to ensure that the ssepes
are constrained and that no single user gets access to atamat
of data. Only then the organization reacts to the label changnts
and updates key assignments. Thus, the organization cpriigaé
control over the scope of the users to maintain confidetiali

Delivering new keys to users. A final question is how to seam-
lessly provide users with access to new keys. Of coursesitioisld
not cause any service disruption. When an authorized usesses
data, but she is missing the necessary decryption keyspseis
would not be able to process or display the data. In this dhse,
user can simply query the organization for the missing kags(
key indices described in Section 3.4) and then continue écthis
application. The new keys can be obtained with one RTT Igtenc
and cached for future. Thus, the user only incurs a one-tiateeyd
of a single round trip. Similarly, when a user writes (ent¢eg})

our solution, the untrusted cloud’s frame downloads theyged
data from the cloud, then sends this (encrypted) data tatlséed
organization’s frame via a HTMLpost Message call. The organi-
zation’s frame receives the encrypted data, decrypts @lpcand
renders or processes the data based on user requirementdatan
sent back to the cloud is first encrypted with appropriates kegide
the organization’s frame, and then sent back to the cloudiné,
which posts the message to the cloud. Because the framestcann
directly access each other’s data inside the browser, pesthydata
is never accessed by the cloud’s frame. Our solution is tkgpia
Figure 5.

Trusting the browser-side code.  The final detail is to deter-
mine how the code is sent safely to user devices. In our imghem
tation, the organization hosts the entire code that runisanrusted
frame and sends it to the user, which is then cached in herdgmow
Then, the cloud’s frame only needs to download encrypted dat
from the cloud, and then upload encrypted data generatededy t
user to the cloud. Since the code is generally small is sizé, a

data to the cloud, the cloud can warn the user when she is usingis cached on the client, the load incurred on the organizétio

older keys. Then, the user can obtain the new keys from thee org
nization and upload newly encrypted data.

3.4 Safe Key Management on User Devices

To provide users transparent access to their data, theipadgjam
must distribute decryption keys to users’ edge devices. ksalt,
Silverline must ensure that a compromised cloud cannot lstga
or decrypted data from user devices. In particular, wherclieat
accesses the application on the cloud and downloads erdrgipta
with a web browser, a malicious cloud could inject cliemestode
(a piece of JavaScript, for instance) into the output. ThiEnt
side code is then executed on the user’s device, which stoees
decryption keys. Clearly, we need to ensure that this chafe

hosting the code is also small. While we chose this approach f
its simplicity, an alternative approach based on code eatifin,
similar to BEEP [28], is also possible.

We implemented a prototype application to validate thisgies
as shown in Figure 5. We hosted data on one server (acting as
the cloud), code on another server (acting as the orgaoipaand
ran the application on a separate user machine. Our pretotyys
successfullywithout any browser modificatioon Internet Explorer
8, Firefox 3.5.8, Google Chrome 5.0.3, and Safari 4.0.5.

Key indexing to guide data access. To enable user devices
to decrypt data received from the cloud, each piece of etedyp
data must have an accompanying piece of metadata that teslica



the key necessary for decryption. Thus, we assign indi@s (r
dom numbers) to each key generated at the organizationgdiinin
database labeling phase. The index of a key is essentigifaihe,

and it is distributed with the key and all data encrypted wfitht

key. The cloud sending encrypted data to the user also sdéinds a
necessary key indices, thus allowing the trusted user franuse

the proper key for decryption.

4. LIMITATIONS OF SILVERLINE

Not all data on the cloud is encrypted.  While we would like to
encrypt the entire database’s content on the cloud, in thik wve
focus on encrypting functionally encryptable data. We gaize
this limitation and are designing techniques to cover maita @s
part of our ongoing work.

Cloud can learn some metadata.  To be able to run queries
on encrypted data, we have to ensure that a given value tbat is
crypted with a given key always yields the same ciphertést, its,
there is no randomization (or salting) used. For instantégvus-
ing key K, Alice always encrypts her user namiéce to Ex (alice).
In our system, this is necessary for the cloud to run queriést@a
select all data that matchdsy (alice). Randomizing the cipher-
text with each encryption would prevent the cloud from rumgni
such queries.

sweringtwo key questions1l) How much of the data in today’s
applications can be encrypted without breaking any funetiity?
and 2) Does our labeling identify all the different types afalshar-
ing between users and assign the right keys to the rightisers

5.1 Setup and Implementation

Evaluation setup.  We applied our techniques to three different,
real-world PHP applications hosted saurceforge.netWe chose
these applications because they represent a good mix efrésat
commonly found in real applications, which lead to sevengeér-
esting data sharing characteristics. The details of thécapions
used in our evaluation are presented in Table 2. Each of tqese
plications has tens of thousands of lines of code, and athoo@
significant number of database queries.

Implementing encrypted data tracking. Our modification to
the PHP interpreter and the PHP-MySQL interface were based o
the code for phptaint [46]. We modified this code to incorpera
our tag propagation policies as described in Section 3.T. iQu
plementation logs a warning every time a tagged data iteragd u
in a computation. We ran each application in our modifiedrinte
preter, exercising different paths of the program via “nalnuser
interactions. Then, we analyzed the contents of the logentify
those cells that cannot be encrypted. Note that we do notdems

The downside to this is that the cloud can learn some metadatalsing data in display (output) functions, sucheasio andpri nt,

about the data stored on it. For example, if two usgige andbob

as computation. Data in such functions can be sent encryptebe

send each other messages, the cloud would know the number ofuser, where it can be transparently decrypted and displayed

messages sent between two ugdé(alice) andE(bob). While this
alone is not sufficient to break either user’s privacy, if theud
were to combine this with some outside data, it might be able t
determine the number of messages exchanged betweenand
bob.

Executing inequality comparisons on encrypted cells. Once
the cells are encrypted, queries SUCBAISECT » FROM Messages
VWHERE Messagel d > 10 no longer work, as inequality compar-
isons over encrypted data fail. We leave resolving suctesso
future work.

Attacks on community data. Data encrypted with a single
key (to protect from the cloud) that is shared with all thestsyed
users in an application (called community data hereafter)al-
nerable to a variety of attacks by the cloud. The cloud cannnou
aknown-plaintext attackr adistribution-based attackConsider a
community field with a fixed set of values, such@sder. In a
known-plaintext attack, the cloud can join the system asus&rs
(or collude with two users), one with each gender. Based eeih
crypted value learned, the cloud now knows the actual gesfdslr
other users in the database. In the distribution attack;lthel can
use some external information to learn the gender of alklisethe
system. For example, if the cloud knows that there are mofe ma
Star Trek fans, then it can easily guess the gender of allshesu
in the Star Trek message board on the cloud using the digtibu
of encrypted values. Note, however, that such attacks wahk
against community dateData encrypted with user-specific keys is
still secure.

5. EVALUATION

We now evaluate the efficacy of Silverline techniques ontexis
ing, real-world applications. Our evaluation is gearedamg an-

3http://sourceforge.net/projects/astrospaces/
“http://sourceforge.net/projects/usebb/
Shttp://sourceforge.net/projects/comendar/

Implementing database labeling and key assignments.  All

the applications that we used for our evaluation use MySQheis
back-end database. We implemented labeling in a MySQLyprox
between the database and the PHP runtime. For each of thase ap
cations, we used the following setup. We 1) create a databitise
the exact same schema used in the application, 2) inserisalaa
into the database to create a training database for lab&)jriden-
tify all SELECT queries in the application that read datarfrine
database, 4) perform database labeling on SELECT quertbg in
applications, and finally 5) analyze the labels attachetieéccells

to verify the data classification and key assignment peréolimy
our techniques.

5.2 Application Descriptions

AstroSpaces: A social networking service. AstroSpaces is a
social networking application that provides the followifegtures
to users: 1) create user profiles, 2) add users to their friishd
3) send private messages to friends, 4) create blog postg;its)
comments to friends on their profiles, and 6) create contethair
own profiles. These features are built on 7 database tabtes an
total of 51 SELECT queries.

UseBB: A full-featured message board. UseBB is a pop-
ular bulletin board service that provides many advancetlfea

to users, including the ability to 1) create accounts, 2atare@nd
moderate groups, 3) join groups, and 4) post new topic messag
or reply to existing topics. UseBB administrators have asde
advanced features such as banning users (by email or useigram
IP address), banning keywords and configuring replacemeirtsy
sending mass emails, editing/deleting users, and many offre
tions to configure user forums. These features are implesdent
using 12 tables and a total of 114 SELECT queries.

Comendar: A community calendar. Comendar is a commu-
nity calendar service that provides users with the abititylf) cre-
ate user accounts, 2) create groups (for communities)ji8@m-



Application Purpose Lang.| LOC | Queries| Total Downloads
AstroSpaces Social Networking PHP | 14790 51 8320
UseBB? Complex Message Board PHP | 21264 114 75066
Comendar Community Calendar | PHP | 23627 42 5123

Table 2: Details of the applications used in our evaluationWe only list the # of SELECT queries in the application in thistable. We
retrieved the total # of downloads of the applications from surceforge as of November 19th 2010.

munities (or groups) of interest, 4) create new personalcama-
munity events, 5) view personal and community events, Glpset-
minders to be sent via email (for both personal and grouptsyen
and 7) set display and privacy preferences. This applicgiio-
vides the services of an online calendar service — but fdr pet-
sonal and community uses. There are a total of 13 tables in the
database and 42 SELECT queries in the application.

5.3 Amount of Functionally-Encryptable Data

First, we evaluate the amount of functionally encryptalatadn
the applications. We consider all database fields that stmedata
(only excluding the auto-increment IDs used to identifyitéd in
the tables) as sensitive. These ID fields are typically erteghat
do not reveal any information about a user. Hence, they canire
in plaintext. To understand the fraction of sensitive figl® can
be encrypted, we use our modified PHP interpreter and traek th
usage of sensitive data. By analyzing the warnings prodbged
our tracking system, we could understand which fields weeel us
in computations and why. Table 3 summarizes the results;twhi
we discuss below.

AstroSpaces social networking service.  Out of the 24 user
data fields (those that did not store Userld, Groupld, or ahgro
IDs), we find that only seven were used in computations, dinfy
Username (to search based on partial names), read/unetasl st
messages (to display unread messages in bold), accemedémed
status of friendship requests (to display friend requedtistin cat-
egories), theme and style chosen by the user (again, folaglisp
activation status of the account (to decide if users arevelioto
login or not) that users are required to set by confirming acto
creation, and finally, the user’s email (to send emails, ceay
email for existing accounts during account creation, and pass-
word reminders).

Interestingly, most of these fields store information noéclily
related to the user. On the other hand, personal data sudteas t
user’s first name, her last name, the messages exchangeeebetw
friends, the user’s address, the phone number, blog postsyall
posts are never interpreted or used in any computation, relgt
and sent to users. Thus, these fields are all functionallgyptable
and protected by Silverline.

UseBB message board. As Table 3 shows, out of a total 81 user
data fields in the UseBB database, only 14 fields are used in com
putations. These 14 user data fields are the following: Tiheesa

of the users, title and content of their posts (to enablecb@zy by
keywords, and replace banned keywords), emails (to sendsema
and password reminders), the level of the user (guest, atdnder,

or admin; to decide what operations they can perform), aittia
status of user accounts (for login purposes), and the uysevacy

and display preferences.

Nearly half of the functionality that requires interprévat of
data is related to content formatting. This functionaliagnde eas-
ily moved to client-side scripting code, thus removing thasm-
putation dependencies and making the data fields they taunch f
tionally encryptable. Several remaining fields store infation

Application # of Database Fields
Total | User Data| Encryptable| Non-Encryptable
AstroSpaceqd 37 24 17 (71%) 7 (29%)
UseBB 106 81 67 (83%) 14 (17%)
Comendar | 105 57 41 (72%) 16 (28%)

Table 3: Encrypted data tracking results. We show a) the # of
fields in total, b) the # of sensitive fields storing user dataand
the # of sensitive fields that ¢) are functionally encryptald and
d) are not functionally encryptable.

that is not related to personal user daay(user’s level, and activa-
tion status of the accounts). This leaves us with only thddieked
for keyword search (user names, title, and content of théspos
They are personal, used in computation, and should préjerab
main encrypted on the cloud. Fortunately, work on keywoat e
on encrypted data [43, 44] can help in encrypting these falkis

Comendar community calendar. Comendar performs more
computations than the two previous applications. Out oftal to
of 57 sensitive fields, 16 were used in computations. These ar
a user’s email, magic string (for password reminders anduatc
activation), the account activation status, user's gemadelr level,
group and event security settings (public or private), evitles
and contents (for keyword search), start and end date fancdars,
reminder and event repetition interval, and event attecelatatus
(yes, no, or maybe).

Similar to the two previous applications, half of the congput
tions (8 out of 16) were performed on fields that were used tinly
format the data displayed to the user. For example, usendege
is used to decide if “he” or “she” should be displayed. A miyor
of the fields that are involved in computations on the clouaths
as start and end date of reminders, reminder and eventahtete.
can likely remain in unencrypted form. Only the eventsesthnd
descriptions, which are used in search operations, shoefdrably
be stored in encrypted form.

Summary. For the three applications that we examined, we
found that themajority of fields that store personal informatiare
never used in any computatiofhese fields include address, phone
number(s), messages exchanged between users, and og@rgber
details. Many fields used in computation store informatibow
users that are unlikely to be sensitive. Only a handful ofifiel
stored sensitive information and were used in computatioos(ly

for keyword searches), which the organization could stiltrgpt
with specialized encryption schemes [44]. In short, an s
tion can encrypt most sensitive fields with efficient symiweteys
and efficiently obtain confidentiality when running apptioas on
today’s clouds.

5.4 Evaluating the Key Inference Techniques

Now, we evaluate if our labeling and key assignment tectesqu
correctly identify different groups of users that have asce® dif-




ferent cells in the database, and if they assign appropisasred
keys to each group.

AstroSpaces social network.  This application involves a sig-
nificant amount of pair-wise user interactions, as can beceg
from a social network. More precisely, most queries werelired

in creating the friendship graph and exchanging messagesée
friends.

There are basically three types of data in AstroSpaces: th) da

that is publicly visible to all users (Blogs, Username, Udgpro-

file content), 2) data that is viewed only by a pair of users| 3n
data that is viewed only by the owner (details about the ssmih

as gender, email, and last login time). We first create a datab

the data into the four types mentioned above, and identified t
fields that belonged to each type. The key assignment is sjmpl
due to the lack of complex groupings of users. A total of 53skey
are assigned — 50 user-specific keys (one per user), one key fo
public data, one key for community data, and finally, one lay f
the admin data.

Comendar community calendar. ~ There are four types of data
in Comendar: 1) data visible to the entire world (public),d2Ya
visible to all registered users in the Comendar applicaemm-
munity), 3) data visible to all users in a group (group), ahdaa
visible only to the user that created it (personal data).

Comendar is interesting because some queries were dyrigmica

with 50 users, then make each user connect with a random mumbe generated. More precisely, the application dynamicallystwicts

of randomly chosen friend users. After that, we make usees-in
act with their friends by sending private messages and bingri
comments on profiles. We make this interaction realisticibgihg
the frequency of interactions towards a handful of “clog@rfds.
Finally, users create blogs and embellish their profile page

Then, we run the queries in the application on this samphdee,

and analyze the labels acquired by the cells. A total of 5&l&ab
and hence, keys, are assigned touker s table. Out of these, 50
user-specific keys are assigned to the 50 users (one key ®ach)
encrypt all columns, with the exception of Username and ldser
All publicly accessible columns are encrypted with just dweg,
which is given to all users. The data in thei vat e Messages
table is read only by the receiver of messages, and neverbyead
the sender. Hence, Silverline reuses the user-specificassygned
to the User s table to encrypt this table as well. In particular, a
message sent to a uséris encrypted with the key of uset. The
datain therri endshi p table, on the other hand, is accessed by the
users on both ends of friendship edges. As a result, the sseeé |
(key) is assigned to all cells accessed by a particular paisers.
In our database, there were 588 distinct pairs, and hen8ke&s
were created. Finally, the content in the rest of the talsigsiblic.
For this, the key associated with public data (known to adrsisis
reused to encrypt this content.

In summary, our labeling technique successfully identifies
three different groups of data in this application, as wette users
that belong to these groups. Our system assigned a totale@9 k
to protect our AstroSpaces database.

UseBB message board. There are four types of data in UseBB:
data that is 1) visible to the entire world (public), 2) visitio all
registered UseBB users (community), 3) visible to a singler,u
and 4) visible only to the admin. There is no data accessibke t
specific subset (or group) of users in UseBB, and most of tkee da
belongs to the first two types. Similar to other message Isodata
generated by users in UseBB is organized in different caiego
Each category has multiple forums. Each forum, in turn, hakim
ple topics on which users discuss by sending posts. Topicakan
to a new mail thread, and each post is akin to a response tm#iis
thread. In UseBB, all posts in all forums and categories aldi@
Even several details of the members that made the posts flie.pu
However, information such as statistics about memberg’iaes
and the full list of members is community data. Some infororat
such as a user’s preferences (email is public or not, thetng,is
accessible only to a particular user (and the admin). Rinddta

selection conditions used to query tables. As a resultpatth the
number of queries in the source code is 42, over several wms,
identified 49 different queries. Since our technique onlgetels
on the name of the user running a query, Silverline handledeth
dynamic queries easily.

We run Silverline on a sample database with 50 users and 10
groups, and assign a random number of randomly chosen wsers t
each group. Each user creates one event for each of theediffer
access types (public, community, group, and personal). N&fe t
assign group events to randomly chosen groups. Users thatecr
reminders for their own events and for community eventsalfyin
we run the application so that Silverline could analyzeSEEECT
queries.

Silverline correctly classified all four types of data. Maquee-
cisely, our system assigned a total of 61 keys to these fqasty
50 out of 61 keys were used to encrypt user-specific dataqpaks
events, personal reminders, event attendance statup, &ic.ce
there were 10 groups, our technique was expected to assigy$0
to protect the groups’ data. Interestingly, however, oritegs were
created. Closer examination revealed that one group catainly
one user. As a result, our algorithm correctly re-used tisat’s
personal key for this group’s data. Moreover, one key waigasd
to encrypt the community data, and finally, one key was assign
to encrypt the public data.

Summary. The evaluation shows that our labeling technique
successfully identifies different types of sharing beheavia pro-
duction applications, and classifies the data into groupe. t&ch-
nigue also identifies all users that have access to thespgrButting
the evaluation results together, we learn that many of tedegpli-
cations can easily benefit from Silverline.

6. RELATED WORK

Encrypted databases. Encrypted databases [19, 26] offer
database-as-a-service [26], where databases run on arsteuatr
third-party and operate on encrypted data. They aim to affioast
of the query execution from clients to the third-party, bgerting
additional columns in the encrypted database to provides Hior
query execution. Our work differs significantly in the threzod-
els we consider. Encrypted databases consider a singler sarg

a single client (the organization hosting the DB), whereasas-
sume many clients (other than the organization) in our moésl

a result, their approach of using a single key for encrypisonot

such as the banned users, words, and IP addresses aretdecessi sufficient for our model, which supports mutually distragtusers.

only to the admin.

We create a sample database with 50 users, five categorees, fiv
topics, and 20 forums. We then make random users send post

to different topics. Finally, we use Silverline to examihe SQL
queries and perform key inference. Our system correctlysdiad

S

Systems running on encrypted data.  Persona [9] is a social
network where the server never sees any data in plaintersoRa
uses attribute-based encryption to allow fine-grainedisgaf en-
crypted information with friends. However, this approaehuires
applications to be rewritten to support encryption nayivéh con-



trast, Silverline focuses on using automated tools to sfynfhe
transition of legacy applications to a secure cloud platfor

Supporting security and privacy in clouds. Work on ac-
countable clouds [27] proposed an approach for users of grarty
clouds to verify that the cloud is operating “correctly” dreir data.
Similarly, a recent paper [42] aimed to build trusted clotiaist
protect user data against attacks from compromised cloonihést
trator accounts using TPMs. While these approaches arel loase
modifying the cloud infrastructure to enforce security gmiyacy
policies, we aim to work on unmodified clouds.

Taint tracking for security and software debugging. Taint
tracking has been used in a variety of contexts, such astifec
software vulnerabilities [38], malware analysis [51], dgbing ap-
plications [18], and securing web applications [50]. Moredully,
information flow control has been used in the developmentof p
gramming languages [37, 36], secure operating systemsajud]
applications [52] to prevent data from reaching untrustetities.
Our work differs from these projects in the way we use datgitay
and information labeling. In particular, our focus liesdentifying
functionally encryptable data.

7. CONCLUSIONS AND FUTURE WORK

Data confidentiality is one of the key concerns that prevent o
ganizations from widely adopting third-party computinguds. In
this paper, we describe Silverline, a set of techniquespitmahote
data confidentiality on the cloud using end-to-end dataygticom.
Encrypted data on the cloud prevents privacy leakage to memp
mised or malicious clouds, while users can easily access lat
decrypting data locally with keys from a trusted organizatiUs-
ing dynamic program analysis techniques, Silverline aattirally
identifies functionally encryptable application data,adttat can
be safely encrypted without negatively affecting applmatfunc-
tionality. By modifying the application runtimes.g. the PHP in-
terpreter, we show how Silverline can determine an optirssilgn-
ment of encryption keys that minimizes key management @aath
and impact of key compromise. We demonstrate the viability o
our approach by applying our techniques to several prooiuetp-
plications with a mix of commonly used features. Our experés
show that applications running on the clocah protect their data
from security breaches or compromises in the cloud.

While our work provides a significant first step towards fudtal
confidentiality in the cloud, a number of challenges remaive
target two specific areas as topics of ongoing work.

Learning high-level intuitions for data classification. ~ While
our database labeling currently classifies the cells in ttalzhse
that can be encrypted together, it does not tell the devesagdmout
the reasons why such a classification happened. An intuitiae
soning for such a classification is more helpful for the depefs
in later implementing encryption and decryption functiliyan
the applications. We believe applying associative ruleimgiti2]
techniques can help us derive these intuitions.

Automatic partitioning of the applications. We are planning
on extending Silverline to automatically partition applions and
move sensitive data (and its computation) to client deyisiesilar

to Swift [16]. Swift only supports partitioning of static @ain ap-

plications, but we plan to extend it to partitioning databasntent
using the labeling information dynamically learned by &iline.
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