
Static Disassembly of Obfuscated Binaries

Christopher Kruegel, William Robertson, Fredrik Valeur and Giovanni Vigna
Reliable Software Group

University of California Santa Barbara
{chris,wkr,fredrik,vigna}@cs.ucsb.edu

Abstract

Disassembly is the process of recovering a symbolic rep-
resentation of a program’s machine code instructions
from its binary representation. Recently, a number of
techniques have been proposed that attempt to foil the
disassembly process. These techniques are very effec-
tive against state-of-the-art disassemblers, preventing a
substantial fraction of a binary program from being dis-
assembled correctly. This could allow an attacker to hide
malicious code from static analysis tools that depend on
correct disassembler output (such as virus scanners).

The paper presents novel binary analysis techniques
that substantially improve the success of the disassem-
bly process when confronted with obfuscated binaries.
Based on control flow graph information and statistical
methods, a large fraction of the program’s instructions
can be correctly identified. An evaluation of the accu-
racy and the performance of our tool is provided, along
with a comparison to several state-of-the-art disassem-
blers.

Keywords: Binary Obfuscation, Reverse Engineering,
Static Analysis.

1 Introduction

Software applications are often distributed in binary
form to prevent access to proprietary algorithms or to
make tampering with licensing verification procedures
more difficult. The general assumption is that under-
standing the structure of a program by looking at its bi-
nary representation is a hard problem that requires sub-
stantial resources and expertise.

Software reverse-engineering techniques provide auto-
mated support for the analysis of binary programs. The
goal of these techniques is to produce a higher-level rep-
resentation of a program that allows for comprehension
and possibly modification of the program’s structure.

The software reverse-engineeringprocess can be divided
into two parts: disassembly and decompilation. The
task of the disassembly phase is the extraction of the
symbolic representation of the instructions (assembly
code) from the program’s binary image [12]. Decompi-
lation [5, 6] is the process of reconstructing higher-level
semantic structures (and even source code) from the pro-
gram’s assembly-level representation.

A number of approaches have been proposed to make
the reverse-engineering process harder [8, 9, 17]. These
techniques are based on transformations that preserve
the program’s semantics and functionality and, at the
same time, make it more difficult for a reverse-engineer
to extract and comprehend the program’s higher-level
structures. The process of applying one or more of these
techniques to an existing program is called obfuscation.

Most previous work on program obfuscation has focused
on the decompilation phase. To this end, researchers
have proposed to use constructs such as indirect jumps
or indirect memory references via pointers that are diffi-
cult to analyze [14]. In [13], Linn and Debray introduce
novel obfuscation techniques that focus on the disassem-
bly phase instead. Their techniques are independent of
and complementary to previous approaches to make de-
compilation harder. The main idea is to transform the
binary such that the parsing of instructions becomes dif-
ficult. The approach exploits the fact that the Intel x86
instruction set architecture contains variable length in-
structions that can start at arbitrary memory address.
By inserting padding bytes at locations that cannot be
reached during run-time, disassemblers can be confused
to misinterpret large parts of the binary. Although their
approach is limited to Intel x86 binaries, the obfuscation
results against current state-of-the-art disassemblers are
remarkable.

Linn and Debray state that their obfuscation techniques
can enhance software security by making it harder for
an attacker to steal intellectual property, to make unau-
thorized modifications to proprietary software or to dis-

push
mov

call
(junk)

cmp
jne
mov
jmp
(junk)
mov

mov
pop
ret
nop

%ebp
%esp, %ebp

19788008 <branch fnct>

0, %eax
8048014 <L1>
0, %eax
8048019 <L2>

(1740000), %eax

%ebp, %esp
%ebp

55
89 e5

e8 00 00 74 11
0a 05

3c 00
75 06
b0 00
eb 07
0a 05
a1 00 00 74 01

89 ec
5d
c3
90

8048000
8048001

8048003
8048008

804800a
804800c
804800e
8048010
8048012

L1: 8048014

L2: 8048019
804801b
804801c
804801d

function func(int arg) {
 int local_var, ret_val;

 local = other_func(arg);

 if (local_var == 0)

 ret_val = 0;
 else

 ret_val = global_var;

 return ret_val;

}

Disassembly of Obfuscated Function C Function

Figure 1: Example function.

cover vulnerabilities. On the other hand, program obfus-
cation could also be used by attackers to hide malicious
code such as viruses or Trojan Horses from virus scan-
ners [3, 16]. Obfuscation also presents a serious threat
to tools that statically analyze binaries to isolate or to
identify malicious behavior [2, 11]. The reason is that if
relevant program structures were incorrectly extracted,
malicious code could be classified as benign.

This paper presents static analysis techniques to cor-
rectly disassemble Intel x86 binaries that are obfuscated
to resist static disassembly. The main contribution are
general control-flow-based and statistical techniques to
deal with hard-to-disassemble binaries. Also, a mecha-
nism is presented that is specifically tailored against the
tool implemented by Linn and Debray [13]. An imple-
mentation based on our approach has been developed,
and the results show that our tool is able to substantially
improve the disassembly of obfuscated binaries.

The paper is structured as follows. In Section 2, the
principal techniques used in binary disassembly are re-
viewed, together with a discussion of Linn and Debray’s
recently proposed obfuscation techniques. In Section 3,
we outline the disassembly approach and present our
assumptions. Section 4 and Section 5 provide an in-
depth description of our disassembly techniques. In Sec-
tion 6, a quantitative evaluation of the accuracy and per-
formance of our disassembler is presented. Finally, in
Section 7, we briefly conclude and outline future work.

2 Related Work and Background

Disassembly techniques can be categorized into two
main classes: dynamic techniques and static techniques.

Approaches that belong to the first category rely on mon-
itored execution traces of an application to identify the
executed instructions and recover a (partial) disassem-
bled version of the binary. Approaches that belong to
the second category analyze the binary structure stati-
cally, parsing the instruction opcodes as they are found
in the binary image.

Both static and dynamic approaches have advantages
and disadvantages. Static analysis takes into account the
complete program, while dynamic analysis can only op-
erate on the instructions that were executed in a partic-
ular set of runs. Therefore, it is impossible to guarantee
that the whole executable was covered when using dy-
namic analysis. On the other hand, dynamic analysis
assures that only actual program instructions are part of
the disassembly output. In this paper, we focus on static
analysis techniques only.

In general, static analysis techniques follow one of two
approaches. The first approach, called linear sweep,
starts at the first byte of the binary’s text segment and
proceeds from there, decoding one instruction after an-
other. It is used, for example, by GNU’s objdump [10].
The drawback of linear sweep disassemblers is that they
are prone to errors that result from data embedded in the
instruction stream. The second approach, called recur-
sive traversal, fixes this problem by following the control
flow of the program [6, 15]. This allows recursive dis-
assemblers to circumvent data that is intertwined with
the program instructions. The problem with the second
approach is that the control flow cannot always be recon-
structed precisely. When the target of a control transfer
instruction such as a jump or a call cannot be determined
statically (e.g., in case of an indirect jump), the recur-
sive disassembler fails to analyze parts of the program’s

push
mov

call
or

mov
jmp
or

adc

%ebp
%esp, %ebp

19788008 <branch fnct>
675003c, %al

0, %eax
8048019
740000a1, %al

%ecx, 90c35dec(%ecx)

55
89 e5

e8 00 00 74 11
0a 05 3c 00 75 06

b0 00
eb 07
0a 05 a1 00 00 74

01 89 ec 5d c3 90

8048000
8048001

8048003
8048008

804800a
804800c
804800e
8048010
8048012
8048014

8048018
8048019
804801b
804801c
804801d

push
mov

call
or

mov
jmp

mov
pop
ret
nop

%ebp
%esp, %ebp

19788008 <branch fnct>
675003c, %al

0, %eax
8048019

%ebp, %esp
%ebp

55
89 e5

e8 00 00 74 11
0a 05 3c 00 75 06

b0 00
eb 07

89 ec
5d
c3
90

Linear Sweep Disassembler Recursive Traversal Disassembler

Figure 2: Traditional disassemblers.

code. This problem is usually solved with a technique
called speculative disassembly [4], which uses a linear
sweep algorithm to analyze unreachable code regions.

Linn and Debray’s approach [13] to confuse disassem-
blers are based on two main techniques. First, junk
bytes are inserted at locations that are not reachable at
run-time. These locations can be found after control
transfer instructions such as jumps where control flow
does not continue. Consider the example in Figure 1,
where a function is presented in source form and in
its corresponding assembly representation. At address
0x8048012, two junk bytes are added after the jump
instruction at address 0x8048010. Inserting junk bytes
at unreachable locations should not effect recursive dis-
assemblers, but has a profound impact on linear sweep
implementations.

The second technique relies on a branch function to
change the way regular procedure calls work. This cre-
ates more opportunities to insert junk bytes and misleads
both types of disassemblers. A normal call to a sub-
routine is replaced with a call to the branch function.
This branch function uses an indirect jump to transfer
control to the original subroutine. In addition, an offset
value is added to the return address of the subroutine.
When the subroutine is done, control is not transfered
to the address directly after the call instruction. Instead,
the instruction that is offset number of bytes after the
call instruction is executed. In the example in Figure 1,
two junk bytes are inserted after the call to the branch
function at address 0x8048003. During run-time, the
branch function modifies the return address such that the
next instruction that is executed after the call is at ad-
dress 0x804800a.

Figure 2 shows the disassembly results for the exam-
ple function when using a linear sweep and a recursive
traversal disassembler. The linear sweep disassembler
is successfully confused in both cases where junk bytes
are inserted. The two junk bytes at 0x8048008 are
interpreted as or instruction, causing the the following
four bytes (which are actually a cmp and a jne instruc-
tion) as being parsed as a 32-bit argument value. A simi-
lar problem occurs at address 0x8048012, resulting in
only 5 out of 12 correctly identified instructions.

This recursive disassembler is not vulnerable to the junk
bytes inserted at address 0x8048012 because it rec-
ognizes instruction 0x8048010 as an unconditional
jump. Therefore, the analysis can continue at the jump
target, which is at address 0x8048019. However, the
junk bytes after the call instruction at 0x8048003 lead
to incorrect disassembly and the subsequent failure to
decode the jump at 0x804800c with its corresponding
target at 0x8048014. In this example, the recursive
traversal disassembler succeeds to correctly identify 9
out of 12 instructions. However, the situation becomes
worse when dealing with real binaries. Because calls
are redirected to the branch function, large parts of the
binary become unreachable for the recursive traversal al-
gorithm. The results in Section 6 demonstrate that recur-
sive traversal disassemblers, such as IDA Pro, perform
worse on obfuscated binaries than linear sweep disas-
semblers, such as objdump.

3 Disassembling Obfuscated Binaries

Our disassembler performs static analysis on Intel x86
binaries. When analyzing an obfuscated binary, one

cannot assume that the code was generated by a well-
behaved compiler. In fact, the obfuscation techniques
introduced by Linn and Debray [13] precisely exploit
the fact that standard disassemblers assume certain prop-
erties of compiler-generated code that can be violated
without changing the program’s functionality. By trans-
forming the binary into functionally equivalent code that
does not possess all the assumed properties, standard
disassemblers are confused and fail to correctly translate
binary code into its corresponding assembly representa-
tion. In general, certain properties are easier to change
than others and it is not straightforward to transform
(i.e., obfuscate) a binary into a functionally equivalent
representation in which all the compiler-related proper-
ties of the original code are lost. When disassembling
obfuscated binaries, we require that certain assumptions
are valid. These assumptions (some of which constitute
limiting factors for our ability to disassemble obfuscated
binaries) are described in the following subsections.

1. Valid instructions must not overlap. An instruc-
tion is denoted as valid if it belongs to the program,
that is, it is reached (and executed) at run-time as
part of some legal program execution trace. Two
instructions overlap if one or more bytes in the ex-
ecutable are shared by both instruction. In other
words, the start of one instruction is located at an
address that is already used by another instruction.
Overlapping instructions have been suggested to
complicate disassembly in [7]. However, suitable
candidate instructions for this type of transforma-
tion are difficult to find in real executables and the
reported obfuscation effects were minimal [13].

2. Conditional jumps can be either taken or not
taken. This means that control flow can continue
at the branch target or at the instruction after the
conditional branch. In particular, it is not possi-
ble to insert junk bytes at the branch target or at
the address following the branch instruction. Linn
and Debray [13] discuss the possibility to transform
unconditional jumps into conditional branches us-
ing opaque predicates. Opaque predicates are pred-
icates that always evaluate to either true or false,
independent of the input. This would allow the ob-
fuscator to insert junk bytes either at the jump target
or in place of the fall-through instruction. However,
it is not obvious how to generate opaque predicates
that are not easily recognizable for the disassem-
bler. Also, the obfuscator presented in [13] does
not implement this transformation.

3. An arbitrary amount of junk bytes can be in-
serted at unreachable locations. Unreachable lo-

cations denotes locations that are not reachable at
run-time. These locations can be found after in-
structions that change the normal control flow. For
example, most compilers arrange code such that the
address following an unconditional jump contains a
valid instruction. However, we assume that an arbi-
trary number of junk bytes can be inserted there.

4. The control flow does not have to continue im-
mediately after a call instruction. Thus, an arbi-
trary number of padding bytes can be added after
each call. This is different from the standard be-
havior where it is expected that the callee returns
to the instruction following a call using the corre-
sponding return instruction. More specifically, in
the x86 instruction set architecture, the call op-
eration performs a jump to the call target and, in
addition, pushes the address following the call in-
struction on the stack. This address is then used by
the corresponding ret instruction, which performs
a jump to the address currently on top of the stack.
However, by redirecting calls to a branch function,
it is trivial to change the return address.

Our disassembly techniques can be divided into two
classes: general techniques and tool-specific techniques.

General techniques are techniques that do not rely upon
any knowledge on how a particular obfuscator trans-
forms the binary. It is only required that the transforma-
tions respect our assumptions. Our general techniques
are based on the program’s control flow, similar to a re-
cursive traversal disassembler. However, we use a differ-
ent approach to construct the control flow graph, which
is more resilient to obfuscation attempts. Program re-
gions that are not covered by the control flow graph are
analyzed using statistical techniques. The general tech-
niques are described in more detail in Section 4.

An instance of an obfuscator that respects our assump-
tions is presented by Linn and Debray in [13]. By tailor-
ing the static analysis process against a particular tool,
it is often possible to reverse some of the performed
transformations and improve the analysis results. Sec-
tion 5 discusses potential modifications to our general
techniques to take advantage of tool-specific knowledge
when disassembling binaries transformed with Linn and
Debray’s obfuscator.

In Section 6, we show that the general techniques pre-
sented in the next section offer a significant improve-
ment over previous approaches. When combined with
tool-specific knowledge, the obfuscated binary is almost
completely disassembled.

4 General Techniques

This section discusses the general techniques to recon-
struct the program’s control flow. Regions in the binary
that are not covered by the control flow graph are ana-
lyzed using statistical methods.

4.1 Function Identification

The first step when disassembling obfuscated programs
is to divide the binary into functions that can then be an-
alyzed independently. The main reason for doing so is
run-time performance; it is necessary that the disassem-
bler scales well enough such that the analysis of large
real-world binaries is possible.

An important part of our analysis is the reconstruction of
the program’s control flow. When operating on the com-
plete binary, the analysis does not scale well for large
programs. Therefore, the binary is broken into smaller
regions (i.e., functions) that can be analyzed consecu-
tively. This results in a run-time overhead of the disas-
sembly process that is linear in the number of instruc-
tions (roughly, the size of the code segment).

A straightforward approach to obtain a function’s start
addresses is to extract the targets of call instructions.
When a linker generates an ordinary executable, the tar-
gets of calls to functions located in the binary’s text seg-
ment are bound to the actual addresses of these func-
tions. Given the call targets and assuming that most
functions are actually referenced from others within the
binary, one can obtain a fairly complete set of function
start addresses. Unfortunately, this approach has two
drawbacks. One problem is that this method requires
that the call instructions are already identified. As the
objective of our disassembler is precisely to provide that
kind of information, the call instructions are not avail-
able at this point. Another problem is that an obfuscator
can redirect all calls to a single branching function that
transfers control to the appropriate targets. This tech-
nique changes all call targets to a single address, thus
removing information necessary to identify functions.

We use a heuristic to locate function start addresses.
This is done by searching the binary for byte sequences
that implement typical function prologs. When a func-
tion is called, the first few instructions usually set up a
new stack frame. This frame is required to make room
for local variables and to be able restore the stack to its
initial state when the function returns. In the current im-
plementation, we scan the binary for byte sequences that
represent instructions that push the frame pointer onto
the stack and instructions that increase the size of the

stack by decreasing the value of the stack pointer. The
technique works very well for regular binaries and also
for the obfuscated binaries used in our experiments. The
reason is that the used obfuscation tool [13] does not at-
tempt to hide function prologs. It is certainly possible
to extend the obfuscator to conceal the function prolog.
In this case, our function identification technique might
require changes, possible using tool-specific knowledge.

Note that the partitioning of the binary into functions is
mainly done for performance reasons, and it is not cru-
cial for the quality of the results that all functions are
correctly identified. When the start point of a function
is missed, later analysis simply has to deal with one
larger region of code instead of two separate smaller
parts. When a sequence of instructions within a function
is misinterpreted as a function prolog, two parts of a sin-
gle function are analyzed individually. This could lead to
less accurate results when some intra-procedural jumps
are interpreted as inter-procedural, making it harder to
reconstruct the intra-procedural control flow graph as
discussed in the following section.

4.2 Intra-Procedural Control Flow Graph

To find the valid instructions of a function (i.e., the in-
structions that belong to the program), we attempt to
reconstruct the function’s intra-procedural control flow
graph. A control flow graph (CFG) is defined as a di-
rected graph G = (V, E) in which vertices u, v ∈ V
represent basic blocks and an edge e ∈ E : u → v
represents a possible flow of control from u to v. A
basic block describes a sequence of instructions with-
out any jumps or jump targets in the middle. More for-
mally, a basic block is defined as a sequence of instruc-
tions where the instruction in each position dominates,
or always executes before, all those in later positions,
and no other instruction executes between two instruc-
tions in the sequence. Directed edges between blocks
represent jumps in the control flow, which are caused by
control transfer instructions (CTIs) such as calls, condi-
tional and unconditional jumps, or return instructions.

The traditional approach to reconstruct the control flow
graph of a function works similar to a recursive disas-
sembler. The analysis commences at the function’s start
address and instructions are disassembled until a control
transfer instruction is encountered. The process is then
continued recursively at all jump targets that are local to
the procedure and, in case of a call instruction or a con-
ditional jump, at the address following the instruction.
In case of an obfuscated binary, however, the disassem-
bler cannot continue directly after a call instruction. In
addition, many local jumps are converted into non-local

push
mov
in
call
add
add
je

jne

jmp

je
add
mov
in
pop

%ebp
%esp, %ebp
e8,%eax
19788008 <obfuscator>
%al, %eax

8048019

8048014

8048019

804801a
%dh,ffffff89(%ecx,%eax,1)
%ebp, %esp
(%dx), %al
%ebp

55
89 e5
e5 e8
e8 00 00 74 11
00 00
00 74
74 11

75 06

eb 07

74 01
01 89 ec 5d c3 90
89 ec
ec
5d

8048000
8048001
8048002
8048003
8048004
8048005
8048006

...
804800c

...
8048010

...
8048017
8048018
8048019
804801a
804801b

...

Valid Candidate

x
x

x

x

x

x

x

x

x

x

x

Figure 3: Partial instruction listing.

jumps to addresses outside the function to blur local con-
trol flow. In most cases, the traditional approach leads to
a control flow graph that covers only a small fraction
of the valid instructions of the function under analysis.
This claim is supported by the experimental data shown
in Section 6 that includes the results for a state-of-the-art
recursive disassembler.

We developed an alternative technique to extract a more
complete control flow graph. The technique is composed
of two phases: in the first phase, an initial control flow
graph is determined. In the following phase, conflicts
and ambiguities in the initial CFG are resolved. The two
phases are presented in detail in the next two sections.

4.2.1 Initial Control Flow Graph

To determine the initial control flow graph for a func-
tion, we first decode all possible instructions between
the function’s start and end addresses. This is done by
treating each address in this address range as the begin
of a new instruction. Thus, one potential instruction is
decoded and assigned to each address of the function.
The reason for considering every address as a possible
instruction start stems from the fact that x86 instructions
have a variable length from one to fifteen bytes and do
not have to be aligned in memory (i.e., an instruction can
start at an arbitrary address). Note that most instructions
take up multiple bytes and such instructions overlap with
other instructions that start at subsequent bytes. There-
fore, only a subset of the instructions decoded in this first
step can be valid. Figure 3 provides a partial listing of
all instructions in the address range of the sample func-
tion that is shown in Figure 1. For the reader’s reference,
valid instructions are marked by an x in the “Valid” col-
umn. Of course, this information is not available to our

disassembler. An example for the overlap between valid
and invalid instructions can be seen between the second
and the third instruction. The valid instruction at address
0x8048001 requires two bytes and thus interferes with
the next (invalid) instruction at 0x8048002.

The next step is to identify all intra-procedural con-
trol transfer instructions. For our purposes, an intra-
procedural control transfer instruction is defined as a
CTI with at least one known successor basic block in the
same function. Remember that we assume that control
flow only continues after conditional branches but not
necessarily after call or unconditional branch instruc-
tions. Therefore, an instruction is an intra-procedural
control transfer instruction if either (i) its target address
can be determined and this address is in the range be-
tween the function’s start and end addresses or (ii) it is a
conditional jump.

Note that we assume that a function is represented by a
contiguous sequence of instructions, with possible junk
instructions added in between. However, it is not pos-
sible that the basic blocks of two different functions are
intertwined. Therefore, each function has one start ad-
dress and one end address (i.e., the last instruction of the
last basic block that belongs to this function). However,
it is possible that a function has multiple exit points.

In case of a conditional jump, the address that immedi-
ately follows the jump instruction is the start of a suc-
cessor block, and thus, every conditional jump is also
an intra-procedural control transfer operation. This is
intuitively plausible, as conditional branches are often
used to implement local branch (e.g., if-else) and
loop (e.g., while, for) statements of higher-level lan-
guages, such as C.

To find all intra-procedural CTIs, the instructions de-
coded in the previous step are scanned for any control
transfer instructions. For each CTI found in this way, we
attempt to extract its target address. In the current imple-
mentation, only direct address modes are supported and
no data flow analysis is performed to compute address
values used by indirect jumps. However, such analy-
sis could be later added to further improve the perfor-
mance of our static analyzer. When the instruction is
determined to be an intra-procedural control transfer op-
eration, it is included in the set of jump candidates. The
jump candidates of the sample function are marked in
Figure 3 by an x in the “Candidate” column. In this ex-
ample, the call at address 0x8048003 is not included
into the set of jump candidates because the target address
is located outside the function.

Given the set of jump candidates, an initial control flow
graph is constructed. This is done with the help of a
recursive disassembler. Starting with an initial empty
CFG, the disassembler is successively invoked for all the
elements in the set of jump candidates. In addition, it is
also invoked for the instruction at the start address of the
function.

The key idea for taking into account all possible control
transfer instructions is the fact that the valid CTIs de-
termine the skeleton of the analyzed function. By using
all control flow instructions to create the initial CFG,
we make sure that the real CFG is a subgraph of this
initial graph. Because the set of jump candidates can
contain both valid and invalid instructions, it is possi-
ble (and also frequent) that the initial CFG contains a
superset of the nodes of the real CFG. These nodes are
introduced as a result of argument bytes of valid instruc-
tions being misinterpreted as control transfer instruc-
tions. The Intel x86 instruction set contains 26 single-
byte opcodes that map to control transfer instructions
(out of 219 single-byte instruction opcodes). Therefore,
the probability that a random argument byte is decoded
as CTI is not negligible. In our experiments (for details,
see Section 6), we found that about one tenth of all de-
coded instructions are CTIs. Of those instructions, only
two thirds were part of the real control flow graph. As a
result, the initial CFG contains nodes and edges that rep-
resent invalid instructions. Most of the time, these nodes
contain instructions that overlap with valid instructions
of nodes that belong to the real CFG. The following
section discusses mechanisms to remove these spurious
nodes from the initial control flow graph. It is possible
to distinguish spurious from valid nodes because invalid
CTIs represent random jumps within the function while
valid CTIs constitute a well-structured CFG with nodes
that have no overlapping instructions.

Creating an initial CFG that includes nodes that are not
part of the real control flow graph can been seen as the
opposite to the operation of a recursive disassembler.
A standard recursive disassembler starts from a known
valid block and builds up the CFG by adding nodes
as it follows the targets of control transfer instructions
that are encountered. This technique seems favorable
at first glance, as it makes sure that no invalid instruc-
tions are incorporated into the CFG. However, most con-
trol flow graphs are partitioned into several unconnected
subgraphs. This happens because there are control flow
instructions such as indirect branches whose targets of-
ten cannot be determined statically. This leads to miss-
ing edges in the CFG and to the problem that only a frac-
tion of the real control flow graph is reachable from a
certain node. The situation is exacerbated when dealing
with obfuscated binaries, as inter-procedural calls and
jumps are redirected to a branching function that uses
indirect jumps. This significantly reduces the parts of
the control flow graph that are directly accessible to a
recursive disassembler, leading to unsatisfactory results.

Although the standard recursive disassembler produces
suboptimal results, we use a similar algorithm to extract
the basic blocks to create the initial CFG. As mentioned
before, however, the recursive disassembler is not only
invoked for the start address of the function alone, but
also for all jump candidates that have been identified. An
initial control flow graph is then constructed according
to the code listing shown in Algorithm 1.

There are two differences between a standard recursive
disassembler and our implementation. First, we assume
that the address after a call or an unconditional jump in-
struction does not have to contain a valid instruction.
Therefore, our recursive disassembler cannot continue
at the address following a call or an unconditional jump.
Note, however, that we do continue to disassemble after
a conditional jump (i.e., branch). This can be seen at La-
bel 5 of Algorithm 1 where the disassembler recursively
continues after conditional branch instructions.

The second difference is due to the fact that it is possible
to have instructions in the initial call graph that overlap.
In this case, two different basic blocks in the call graph
can contain overlapping instructions starting at slightly
different addresses. When following a sequence of in-
structions, the disassembler can arrive at an instruction
that is already part of a previously found basic block. In
the regular case, this instruction is the first instruction of
the existing block. The disassembler can complete the
instruction sequence of the current block and create a
link to the existing basic block in the control flow graph.

Algorithm 1: disassemble()
Returns: BasicBlock
Input: MemoryAddress addr, ControlFlowGraph cfg
LocalVar: MemoryAddress target; Instruction inst;

BasicBlock current, block

current = make basic block starting at(addr);

while addr < FunctionEnd do
inst = get instruction at(addr);

L1: if element of existing block(inst) then
block = get block of(inst);

L2: if addr != start addr of(block) then
L3: block = split block(block);

L4: if has no instructions(current) then
return block;

else
connect to(cfg, current, block);
return current;

else
add instruction to block(current, inst);

if inst.type == ControlTransferInstruction then
target = get target of(inst);
if target >= FunctionStart &&

target < FunctionEnd then
block = disassemble(target, cfg);
connect to(cfg, current, block);

L5: if inst.type == ConditionalBranch then
block = disassemble(addr + len(inst),
cfg);
connect to(cfg, current, block);

return current;
else

addr = addr + len(inst);

return current;

When instructions can overlap, it is possible that the cur-
rent instruction sequence starts to overlap with another
sequence in an existing basic block for some instructions
before the two sequences eventually merge. At the point
where the two sequences merge, the disassembler finds
an instruction that is in the middle (or at the end) of
a sequence associated with an existing basic block. In
this case, the existing basic block is split into two new
blocks. One block refers to the overlapping sequence up
to the instruction where the two sequences merge, the
other refers to the instruction sequence that both have in
common. All edges in the control flow graph that point
to the original basic block are changed to point to the
first block, while all outgoing edges of the original block
are assigned to the second. In addition, the first block is

connected to the second one. The reason for splitting
the existing block is the fact that a basic block is de-
fined as a continuous sequence of instructions without
a jump or jump target in the middle. When two differ-
ent overlapping sequences merge at a certain instruction,
this instruction has two predecessor instructions (one in
each of the two overlapping sequences). Therefore, it
becomes the first instruction of a new basic block. As an
additional desirable side effect, each instruction appears
at most once in a basic block of the call graph.

The functionality of splitting an existing basic block is
implemented by the split procedure referenced at La-
bel 3 of Algorithm 1. Whenever an instruction is found
that is already associated with a basic block (check per-
formed at Label 1), the instruction sequence of the cur-
rent basic block is completed. When the instruction is
in the middle of the existing block (check performed at
Label 2), it is necessary to split the block. The current
block is then connected either to the existing basic block
or, after a split, to the newly created block that contains
the common instruction sequence. The check performed
at Label 4 takes care of the special case where the recur-
sive disassembler starts with an instruction that is part of
an existing basic block. In this case, the current block
contains no instructions and a reference to the old block
is returned instead.

The situation of two merging instruction sequences is
a common phenomenon when disassembling x86 bina-
ries. The reason is called self-repairing disassembly and
relates to the fact that two instruction sequences that
start at slightly different addresses (that is, shifted by
a few bytes) synchronize quickly, often after a few in-
structions. Therefore, when the disassembler starts at an
address that does not correspond to a valid instruction, it
can be expected to re-synchronize with the sequence of
valid instructions after a few steps [13].

The initial control flow graph that is created by Algo-
rithm 1 for our example function is shown in Figure 4.
In this example, the algorithm is invoked for the function
start at address 0x8048000 and the four jump candi-
dates (0x8048006, 0x804800c, 0x8048010, and
0x8048017). The nodes in this figure represent basic
blocks and are labeled with the start address of the first
instruction and the end address of the last instruction in
the corresponding instruction sequence. Note that the
end address denotes the first byte after the last instruc-
tion and is not part of the basic block itself. Solid, di-
rected edges between nodes represent the targets of con-
trol transfer instructions. A dashed line between two
nodes signifies a conflict between the two correspond-
ing blocks. Two basic blocks are in conflict when they

804800c
804800e

804800e
8048010

8048010
8048012

8048019
804801b

8048014
8048019

804801b
804801e

804801a
804801b

8048017
8048019

8048008
804800e

8048006
8048008

8048000
8048008

A B

C D E

F G

H I J K

Figure 4: Initial control flow graph.

contain at least one pair of instructions that overlap.
As discussed previously, our algorithm guarantees that
a certain instruction is assigned to at most one basic
block (otherwise, blocks are split appropriately). There-
fore, whenever the address ranges of two blocks overlap,
they must also contain different, overlapping instruc-
tions. Otherwise, both blocks would contain the same in-
struction, which is not possible. This is apparent in Fig-
ure 4, where the address ranges of all pairs of conflicting
basic blocks overlap. To simplify the following discus-
sion of the techniques used to resolve conflicts, nodes
that belong to the real control flow graph are shaded. In
addition, each node is denoted with an uppercase letter.

4.2.2 Block Conflict Resolution

The task of the block conflict resolution phase is to re-
move basic blocks from the initial CFG until no con-
flicts are present anymore. Conflict resolution proceeds
in five steps. The first two steps remove blocks that are
definitely invalid, given our assumptions. The last three
steps are heuristics that choose likely invalid blocks. The
conflict resolution phase terminates immediately after
the last conflicting block is removed; it is not necessary
to carry out all steps. The final step brings about a de-
cision for any basic block conflict and the control flow
graph is guaranteed to be free of any conflicts when the
conflict resolution phase completes.

The five steps are detailed in the following paragraphs.

Step 1: We assume that the start address of the analyzed
function contains a valid instruction. Therefore, the ba-
sic block that contains this instruction is valid. In ad-
dition, whenever a basic block is known to be valid, all
blocks that are reachable from this block are also valid.

A basic block v is reachable from basic block u if there
exists a path p from u to v. A path p from u to v is
defined as a sequence of edges that begins at u and ter-

minates at v. An edge is inserted into the control flow
graph only when its target can be statically determined
and a possible program execution trace exists that trans-
fers control over this edge. Therefore, whenever a con-
trol transfer instruction is valid, its targets have to be
valid as well.

We tag the node that contains the instruction at the func-
tion’s start address and all nodes that are reachable from
this node as valid. Note that this set of valid nodes con-
tains exactly the nodes that a traditional recursive dis-
assembler would identify when invoked with the func-
tion’s start address. When the valid nodes are identified,
any node that is in conflict with at least one of the valid
nodes can be removed.

In the initial control flow graph for the example function
in Figure 4, only node A (0x8048000) is marked as
valid. That node is drawn with a stronger border in Fig-
ure 4. The reason is that the corresponding basic block
ends with a call instruction at 0x8048003 whose target
is not local. In addition, we do not assume that control
flow resumes at the address after a call and thus the anal-
ysis cannot directly continue after the call instruction. In
Figure 4, node B (the basic block at 0x8048006) is in
conflict with the valid node and can be removed.

Step 2: Because of the assumption that valid instruc-
tions do not overlap, it is not possible to start from a
valid block and reach two different nodes in the control
flow graph that are in conflict. That is, whenever two
conflicting nodes are both reachable from a third node,
this third node cannot be valid and is removed from the
CFG. The situation can be restated using the notion of
a common ancestor node. A common ancestor node of
two nodes u and v is defined as a node n such that both
u and v are reachable from n.

In Step 2, all common ancestor nodes of conflicting
nodes are removed from the control flow graph. In our

804800c
804800e

804800e
8048010

8048010
8048012

8048019
804801b

8048014
8048019

804801b
804801e

804801a
804801b

8048008
804800e

8048000
8048008

A

C D E

F G

H I K

Figure 5: CFG after two steps of conflict resolution.

example in Figure 4, it can be seen that the conflicting
node F and node K share a common ancestor, namely
node J. This node is removed from the CFG, resolving
a conflict with node I. The resulting control flow graph
after the first two steps is shown in Figure 5.

The situation of having a common ancestor node of two
conflicting blocks is frequent when dealing with invalid
conditional branches. In such cases, the branch target
and the continuation after the branch instruction are of-
ten directly in conflict, allowing one to remove the in-
valid basic block from the control flow graph.

Step 3: When two basic blocks are in conflict, it is rea-
sonable to expect that a valid block is more tightly inte-
grated into the control flow graph than a block that was
created because of a misinterpreted argument value of a
program instruction. That means that a valid block is of-
ten reachable from a substantial number of other blocks
throughout the function, while an invalid block usually
has only a few ancestors.

The degree of integration of a certain basic block into
the control flow graph is approximated by the number of
its predecessor nodes. A node u is defined as a prede-
cessor node of v when v is reachable by u. In Step 3,
the predecessor nodes for pairs of conflicting nodes are
determined and the node with the smaller number is re-
moved from the CFG.

In Figure 5, node K has no predecessor nodes while
node F has five. Note that the algorithm cannot distin-
guish between real and spurious nodes and thus includes
node C in the set of predecessor nodes for node F. As
a result, node K is removed. The number of predeces-
sor nodes for node C and node H are both zero and no
decision is made in the current step.

Step 4: In this step, the number of direct successor
nodes of two conflicting nodes are compared. A node

v is a direct successor node of node u when v can be
directly reached through an outgoing edge from u. The
node with less direct successor nodes is then removed.
The rationale behind preferring the node with more out-
going edges is the fact that each edge represents a jump
target within the function and it is more likely that a valid
control transfer instruction has a target within the func-
tion than any random CTI.

In Figure 5, node C has only one direct successor node
while node H has two. Therefore, node C is removed
from the control flow graph. In our example, all conflicts
are resolved at this point.

Step 5: In this step, all conflicts between basic blocks
must be resolved. For each pair of conflicting blocks,
one is chosen at random and then removed from the
graph. No human intervention is required at this step, but
it would be possible to create different alternative disas-
sembly outputs (one output for each block that needs to
be removed) that can be all presented to a human analyst.

It might also be possible to use statistical methods during
Step 5 to improve the chances that the “correct” block is
selected. However, this technique is not implemented
and is left for future work.

The result of the conflict resolution step is a control flow
graph that contains no overlapping basic blocks. The in-
structions in these blocks are considered valid and could
serve as the output of the static analysis process. How-
ever, most control flow graphs do not cover the func-
tion’s complete address range and gaps exist between
some basic blocks.

4.3 Gap Completion

The task of the gap completion phase is to improve the
results of our analysis by filling the gaps between basic
blocks in the control flow graph with instructions that

are likely to be valid. A gap from basic block b1 to basic
block b2 is the sequence of addresses that starts at the
first address after the end of basic block b1 and ends at
the last address before the start of block b2, given that
there is no other basic block in the control flow graph
that covers any of these addresses. In other words, a gap
contains bytes that are not used by any instruction in the
control flow graph.

Gaps are often the result of junk bytes that are inserted
by the obfuscator. Because junk bytes are not reach-
able at run-time, the control flow graph does not cover
such bytes. It is apparent that the attempt to disassem-
ble gaps filled with junk bytes does not improve the re-
sults of the analysis. However, there are also gaps that
do contain valid instructions. These gaps can be the re-
sult of an incomplete control flow graph, for example,
stemming from a region of code that is only reachable
through an indirect jump whose target cannot be deter-
mined statically. Another frequent cause for gaps that
contain valid instructions are call instructions. Because
the disassembler cannot continue after a call instruc-
tion, the following valid instructions are not immediately
reachable. Some of these instructions might be included
into the control flow graph because they are the target
of other control transfer instructions. Those regions that
are not reachable, however, cause gaps that must be an-
alyzed in the gap completion phase.

The algorithm to identify the most probable instruction
sequence in a gap from basic block b1 to basic block
b2 works as follows. First, all possibly valid sequences
in the gap are identified. A necessary condition for a
valid instruction sequence is that its last instruction ei-
ther (i) ends with the last byte of the gap or (ii) its last
instruction is a non intra-procedural control transfer in-
struction. The first condition states that the last instruc-
tion of a valid sequence has to be directly adjacent to the
first instruction of the second basic block b2. This be-
comes evident when considering a valid instruction se-
quence in the gap that is executed at run-time. After
the last instruction of the sequence is executed, the con-
trol flow has to continue at the first instruction of basic
block b2. The second condition states that a sequence
does not need to end directly adjacent to block b2 if the
last instruction is a non intra-procedural control transfer.
The restriction to non intra-procedural CTIs is necessary
because all intra-procedural CTIs are included into the
initial control flow graph. When an intra-procedural in-
struction appears in a gap, it must have been removed
during the conflict resolution phase and should not be
included again.

Instruction sequences are found by considering each
byte between the start and the end of the gap as a po-
tential start of a valid instruction sequence. Subsequent
instructions are then decoded until the instruction se-
quence either meets or violates one of the necessary con-
ditions defined above. When an instruction sequence
meets a necessary condition, it is considered possibly
valid and a sequence score is calculated for it. The se-
quence score is a measure of the likelihood that this in-
struction sequence appears in an executable. It is calcu-
lated as the sum of the instruction scores of all instruc-
tions in the sequence. The instruction score is similar to
the sequence score and reflects the likelihood of an indi-
vidual instruction. Instruction scores are always greater
or equal than zero. Therefore, the score of a sequence
cannot decrease when more instructions are added. We
calculate instruction scores using statistical techniques
and heuristics to identify improbable instructions.

The statistical techniques are based on instruction pro-
babilities and digraphs. Our approach utilizes tables that
denote both the likelihood of individual instructions ap-
pearing in a binary as well as the likelihood of two in-
structions occurring as a consecutive pair. The tables
were built by disassembling a large set of common exe-
cutables and tabulating counts for the occurrence of each
individual instruction as well as counts for each occur-
rence of a pair of instructions. These counts were sub-
sequently stored for later use during the disassembly of
an obfuscated binary. It is important to note that only in-
struction opcodes are taken into account with this tech-
nique; operands are not considered. The basic score
for a particular instruction is calculated as the sum of
the probability of occurrence of this instruction and the
probability of occurrence of this instruction followed by
the next instruction in the sequence.

In addition to the statistical technique, a set of heuris-
tics are used to identify improbable instructions. This
analysis focuses on instruction arguments and observed
notions of the validity of certain combinations of opera-
tions, registers, and accessing modes. Each heuristic is
applied to an individual instruction and can modify the
basic score calculated by the statistical technique. In our
current implementation, the score of the corresponding
instruction is set to zero whenever a rule matches. Ex-
amples of these rules include the following:

• operand size mismatches;
• certain arithmetic on special-purpose registers;
• unexpected register-to-register moves (e.g., moving

from a register other than %ebp into %esp);
• moves of a register value into memory referenced

by the same register.

55
89 e5
e8 00 00 74 11

0a
05
3c
00

75 06

b0 00

eb 07

0a
05

a1 00 00 74 01

89 ec

5d
c3
90

8048000
8048001
8048003

8048008
8048009
804800a
804800b

804800c

804800e

8048010

8048012
8048013

8048014

8048019

804801b
804801c
804801d

G
ap

G
ap

Gap Sequences

0a
05
3c
00
75
06

0a
05
a1
00
00
74

05
3c
00
75
06

05
a1
00
00
74

3c
00 00

75
06

cm
p

ad
d

ad
d

ad
d

or
or

55
89 e5
e8 00 00 74 11

3c 00

75 06

b0 00

eb 07

a1 00 00 74 01

89 ec

5d
c3
90

push
mov
call

cmp

jne

mov

jmp

mov

mov

pop
ret
nop

%ebp
%esp, %ebp
19788008

0, %eax

8048014

0, %eax

8048019

(1740000), %eax

%ebp, %esp

%ebp

Disassembler Output

Figure 6: Gap completion and disassembler output.

When all possible instruction sequences are determined,
the one with the highest sequence score is selected as the
valid instruction sequence between b1 and b2.

The instructions that make up the control flow graph
of our example function and the intermediate gaps are
shown in the left part of Figure 6. It can be seen that
only a single instruction sequence is valid in the first gap,
while there is none in the second gap. The right part of
Figure 6 shows the output of our disassembler. All valid
instructions of the example function have been correctly
identified.

5 Tool-Specific Techniques

The techniques discussed in the previous section can dis-
assemble any binary that satisfies our assumptions with
reasonable accuracy (see Section 6 for detailed results).
As mentioned previously, however, the results can be im-
proved when taking advantage of available tool-specific
knowledge. This section introduces a modification to
our general techniques that can be applied when disas-
sembling binaries transformed with Linn and Debray’s
obfuscator.

A significant problem for the disassembler is the fact that
it cannot continue disassembling at the address follow-
ing a call instruction. As discussed in Section 2, Linn
and Debray’s obfuscator replaces regular calls with calls
to a branch function. The branch function is responsible
for determining the real call target, that is, the function
that is invoked in the original program. This is done us-
ing a perfect hash function, using the location of the call

instruction as input. During run-time, the location of the
call instruction can be conveniently determined from the
top of the stack. The reason is that the address following
the call instruction is pushed on the stack by the proces-
sor as part of the x86 call operation.

Besides finding the real target of the call and jumping to
the appropriate address, the branch function is also re-
sponsible for adjusting the return address such that con-
trol flow does not return directly to the address after the
call instruction. This is achieved by having the branch
function add a certain offset to the return address on the
stack. This offset is constant (but possibly different) for
each call instruction and obtained in a way similar to the
target address by performing a table lookup based on the
location of the caller. When the target function eventu-
ally returns using the modified address on the stack, the
control flow is transfered to an instruction located at off-
set bytes after the original return address. This allows
the obfuscator to fill these bytes with junk.

By reverse engineering the branch function, the offset
can be statically determined for each call instruction.
This allows the disassembler to skip the junk bytes and
continue at the correct instruction. One possibility is to
manually reverse engineer the branch function for each
obfuscated binary. However, the process is cumbersome
and error prone. A preferred alternative is to automati-
cally extract the desired information.

We observe that the branch function is essentially a pro-
cedure that takes one input parameter, which is the ad-
dress after the call instruction that is passed on the top
of the stack. The procedure then returns an output value
by adjusting this address on the stack. The difference

between the initial value on the stack and the modified
value is the offset that we are interested in. It is easy
to simulate the branch function because its output only
depends on the single input parameter and several static
lookup tables that are all present in the binary’s initial-
ized data segment. As the output does not depend on
any input the program receives during run-time, it can
be calculated statically.

To this end, we have implemented a simple virtual pro-
cessor as part of the disassembler that simulates the in-
structions of the branch function. Because the branch
function does not depend on dynamic input, all memory
accesses refer to addresses in the initialized data segment
and can be satisfied statically. The execution environ-
ment is set up such that the stack pointer of the virtual
processor points to an address value for which we want
to determine the offset. Then, the simulator executes in-
structions until the input address value on the stack is
changed. At this point, the offset for a call is calculated
by subtracting the old address value from the new one.

Whenever the disassembler encounters a call instruction,
the value of the address following the call is used to in-
voke our branch function simulator. The simulator cal-
culates the corresponding offset, and the disassembler
can then skip the appropriate number of junk bytes to
continue at the next valid instruction.

6 Evaluation

Linn and Debray evaluated their obfuscation tool using
the SPECint 95 benchmark suite, a set of eight bench-
mark applications written in C. These programs were
compiled with gcc version egcs-2.91.66 at opti-
mization level -O3 and then obfuscated.

To measure the efficacy of the obfuscation process, the
confusion factor for instructions was introduced. This
metric measures how many program instructions were
incorrectly disassembled. More formally, let V be the
set of valid program instructions and O the set of instruc-
tions that a disassembler outputs. Then, the confusion
factor CF is defined as CF = |V −O|

V . Because our work
focuses on the efficacy of the disassembler in identifying
valid instructions, we define the disassembler accuracy
DA as DA = 1 − CF.

Linn and Debray used three different disassemblers to
evaluate the quality of their obfuscator. The first one was
the GNU objdump utility, which implements a stan-
dard linear sweep algorithm. The second disassembler

was implemented by Linn and Debray themselves. It is a
recursive disassembler that uses speculative linear disas-
sembly (comparable to our gap completion) for regions
that are not reachable by the recursive part. This disas-
sembler was also provided with additional information
about the start and end addresses of all program func-
tions. The purpose of this disassembler was to serve as
an upper bound estimator for the disassembler accuracy
and to avoid reporting “unduly optimistic results” [13].
The third disassembler was IDA Pro 4.3x, a commer-
cial disassembler that is often considered to be among
the best commercially available disassemblers. This be-
lief is also reflected in the fact that IDA Pro is used
to provide disassembly as input for static analysis tools
such as [3].

We developed a disassembler that implements the gen-
eral techniques and the tool-specific modification pre-
sented in the two previous sections. Our tool was then
run on the eight obfuscated SPECint 95 applications.
The results for our tool and a comparison to the three
disassemblers used by Linn and Debray are shown in
Table 1. Note that we report two results for our dis-
assembler. One shows the disassembler accuracy when
only general techniques are utilized. The second result
shows the disassembler accuracy when the tool-specific
modification is also enabled.

These results demonstrate that our disassembler pro-
vides a significant improvement over the best disassem-
bler used in the evaluation by Linn and Debray. Even
without using tool-specific knowledge, the disassembler
accuracy is higher than their recursive disassembler used
to estimate the upper bound for the disassembler accu-
racy. When the tool-specific modification is enabled, the
binary is disassembled almost completely. The poor re-
sults for IDA Pro can be explained with the fact that the
program only disassembles addresses that can be guar-
anteed (according to the tool) to be instructions. As
a result, many functions that are invoked through the
branch function are not disassembled at all. In addition,
IDA Pro continues directly after call instructions and is
frequently mislead by junk bytes there.

Given the satisfying results of our disassembler, the dis-
assembly process was analyzed in more detail. It is in-
teresting to find the ratio between the number of valid
instructions identified by the control flow graph and the
number of valid instructions identified by the gap com-
pletion phase. Although the gap completion phase is im-
portant in filling regions not covered by the CFG, our
key observation is the fact that the control transfer in-
structions and the resulting control flow graph consti-
tute the skeleton of an analyzed function. Therefore, one

Program Objdump Linn/Debray IDA Pro
Our tool

general tool-specific

compress95 56.07 69.96 24.19 91.04 98.07
gcc 65.54 82.18 45.09 88.45 95.17
go 66.08 78.12 43.01 91.81 96.80
ijpeg 60.82 74.23 31.46 91.60 97.53
li 56.65 72.78 29.07 89.86 97.35
m88ksim 58.42 75.66 29.56 90.39 97.49
perl 57.66 72.01 31.36 86.93 96.28
vortex 66.02 76.97 42.65 90.71 96.65
Mean 60.91 75.24 34.55 90.10 96.92

Table 1: Disassembler accuracy.

would expect that most valid instructions can be derived
from the control flow graph, and only small gaps (e.g.,
caused by indirect calls or unconditional jumps) need to
be completed later. Table 2 shows the fraction (in per-
cent) of correctly identified, valid instructions that were
obtained using the control flow graph and the fraction
obtained in the gap completion phase. Because the num-
bers refer to correctly identified instructions only, the
two fractions sum up to unity. Both the results with tool-
specific support and the results with the general tech-
niques alone are provided. When tool specific support is
available, the control flow graph contributes noticeable
more to the output. In this case, the disassembler can
include all regions following call instructions into the
CFG. However, in both experiments, a clear majority of
the output was derived from the control flow graph, con-
firming our key observation.

Program
general tool-specific

CFG Gap CFG Gap

compress95 87.09 12.91 96.36 3.64
gcc 85.12 14.88 93.10 6.90
go 89.13 10.87 95.11 4.89
ijpeg 87.02 12.98 95.03 4.97
li 85.63 14.37 95.11 4.89
m88ksim 87.18 12.82 96.00 4.00
perl 86.22 13.78 95.57 4.43
vortex 88.04 11.96 94.67 5.33
Mean 86.93 13.07 95.12 4.88

Table 2: CFG vs. gap completion.

Because most of the output is derived from the control
flow graph, it is important that the conflict resolution
phase is effective. One third of the control transfer in-
structions that are used to create the initial control flow

graphs are invalid. To achieve a good disassembler ac-
curacy, it is important to remove the invalid nodes from
the CFG. The first two steps of the conflict resolution
phase remove nodes that are guaranteed to be invalid,
given our assumptions. The third and forth step imple-
ment two heuristics and the fifth step randomly selects
one of two conflicting nodes. It is evident that it is desir-
able to have as many conflicts as possible resolved by the
first and second step, while the fifth step should never be
required.

Table 3 shows for each program the number of basic
blocks in the initial control flow graphs (column Initial
Blocks) and the number of basic blocks in the control
flow graphs after the conflict resolution phase (column
Final Blocks). In addition, the number of basic blocks
that were removed in each of the five steps of the con-
flict resolution phase are shown. The numbers given in
Table 3 were collected when the tool-specific modifica-
tion was enabled. The results were very similar when
only general techniques were used.

It can be seen that most conflicts were resolved after the
first three steps. About two thirds of the removed ba-
sic blocks were guaranteed to be invalid. This supports
our claim that invalid control flow instructions, caused
by the misinterpretation of instruction arguments, often
result in impossible control flows that can be easily de-
tected. Most of the remaining blocks are removed by
the first heuristic that checks how tight a block is con-
nected with the rest of the CFG. Invalid blocks are often
loosely coupled and can taken out during this step. The
last two steps were only responsible for a small fraction
of the total removed blocks. The heuristic in step four
was sometimes able to provide an indication of which
block was valid. Otherwise, a random node had to be
selected.

Program Initial Blocks
Conflict Resolution

Final Blocks
Step 1 Step 2 Step 3 Step 4 Step 5

compress95 54674 7021 4693 4242 93 48 38577
gcc 245586 21762 25680 29801 900 565 166878
go 91140 10667 8934 9405 231 154 61749
ijpeg 70255 9414 6069 5299 140 95 49238
li 63459 8350 5297 4952 125 78 44657
m88ksim 77344 10061 6933 6938 177 101 53134
perl 104841 10940 11442 11750 291 152 70266
vortex 118703 15004 9221 13424 407 373 80274

Table 3: Conflict resolution.

Static analysis tools are traditionally associated with
poor scalability and the inability to deal with real-world
input. Therefore, it is important to ascertain that our dis-
assembler can process even large real-world binaries in
an acceptable amount of time. In Section 4, we claimed
that the processing overhead of the program is linear in
the number of instructions of the binary. The intuitive
reason is the fact that the binary is partitioned into func-
tions that are analyzed independently. Assuming that the
average size of an individual function is relatively inde-
pendent of the size of the binary, the amount of work per
function is also independent of the size of the binary. As
a result, more functions have to be analyzed as the size
of the binary increases. Because the number of func-
tions increases linearly with the number of instructions
and the work per function is constant (again, assuming
a constant average function size), the overhead of the
static analysis process is linear in the number of instruc-
tions.

Program Size (Bytes) Instructions Time (s)

openssh 263,684 46,343 4
compress95 1,768,420 92,137 9
li 1,820,768 109,652 7
ijpeg 1,871,776 127,012 9
m88ksim 2,001,616 127,358 8
go 2,073,728 145,953 11
perl 2,176,268 169,054 15
vortex 2,340,196 204,230 16
gcc 2,964,740 387,289 28
emacs 4.765,512 405,535 38

Table 4: Disassembler processing times.

To support this claim with experimental data, the time
for a complete disassembly of each evaluation binary
was taken. The size of obfuscated programs of the

SPECint 95 benchmark are in the range of 1.77 MB to
2.96 MB. To obtain more diversified results, we also dis-
assembled one smaller (openssh 3.7) and one larger
binary (emacs 21.3). The processing times were taken
as the average of ten runs on a 1.8 GHz Pentium IV
system with 512 MB of RAM, running Gentoo Linux
2.6. The results (in seconds) for the disassembler are
listed in Table 4. There was no noticeable difference
when using tool-specific modification.

Figure 7 shows a plot of the processing times and the
corresponding number of instructions for each binary.
The straight line represents the linear regression line.
The close proximity of all points to this line demon-
strates that the processing time increases proportional to
the number of instructions, allowing our disassembler to
operate on large binaries with acceptable cost.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50000 100000 150000 200000 250000 300000 350000 400000

P
ro

ce
ss

in
g

T
im

e
(in

 s
ec

on
ds

)

Instructions

Linear Regression Line

Figure 7: Processing times and linear regression.

7 Conclusions

Correct disassembler output is crucial for many security
tools such as virus scanners [3] and intrusion detection

systems [11]. Recently, Linn and Debray [13] presented
obfuscation techniques that successfully confuse current
state-of-the-art disassemblers. We developed and imple-
mented a disassembler that can analyze obfuscated bina-
ries. Using the program’s control flow graph and statis-
tical techniques, we are able to correctly identify a large
fraction of the program’s instructions.

Obfuscation and de-obfuscation is an arms race. It is
possible to devise obfuscation techniques that will make
the disassembly algorithms describe in this paper less ef-
fective. However, this arms race is usually in favor of the
de-obfuscator. The obfuscator has to devise techniques
that transform the program without seriously impacting
the run-time performance or increasing the binary’s size
or memory footprint while there are no such constraints
for the de-obfuscator. Also, the de-obfuscator has the
advantage of going second. That is, the obfuscator must
resist all attacks, while the de-obfuscator can tailor the
attack to a specific obfuscation technique. In this direc-
tion, a recent theoretical paper [1] also proved that ob-
fuscation is impossible in the general case, at least for
certain properties.

Acknowledgments

This research was supported by the Army Research
Office under agreement DAAD19-01-1-0484 and by
the National Science Foundation under grants CCR-
0209065 and CCR-0238492.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang. On the
(Im)possibility of Software Obfuscation. In
Crypto, 2001.

[2] J. Bergeron, M. Debbabi, M.M. Erhioui, and
B. Ktari. Static Analysis of Binary Code to Isolate
Malicious Behaviors. In 8th Workshop on Enabling
Technologies: Infrastructure for Collaborative En-
terprises, 1999.

[3] M. Christodorescu and Somesh Jha. Static Analy-
sis of Executables to Detect Malicious Patterns. In
12th USENIX Security Symposium, 2003.

[4] C. Cifuentes and M. Van Emmerik. UQBT: Adapt-
able binary translation at low cost. IEEE Com-
puter, 40(2-3), 2000.

[5] C. Cifuentes and A. Fraboulet. Intraprocedu-
ral Static Slicing of Binary Executables. In In-
ternational Conference on Software Maintenance
(ICSM ’97), Bari, Italy, October 1997.

[6] C. Cifuentes and K. Gough. Decompilation of Bi-
nary Programs. Software Practice & Experience,
25(7):811–829, July 1995.

[7] F. B. Cohen. Operating System Protection
through Program Evolution. http://all.
net/books/IP/evolve.html.

[8] C. Collberg and C. Thomborson. Watermarking,
Tamper-Proofing, and Obfuscation - Tools for Soft-
ware Protection. IEEE Transactions on Software
Engineering, 28(8):735–746, August 2002.

[9] C. Collberg, C. Thomborson, and D. Low. A Tax-
onomy of Obfuscating Transformations. Techni-
cal Report 148, Department of Computer Science,
University of Auckland, July 1997.

[10] Free Software Foundation. GNU Binary Util-
ities, Mar 2002. http://www.gnu.org/
software/binutils/manual/.

[11] J.T. Giffin, S. Jha, and B.P. Miller. Detecting ma-
nipulated remote call streams. In 11th USENIX Se-
curity Symposium, 2002.

[12] W.C. Hsieh, D. Engler, and G. Back. Reverse-
Engineering Instruction Encodings. In USENIX
Annual Technical Conference, pages 133–146,
Boston, Mass., June 2001.

[13] C. Linn and S. Debray. Obfuscation of executable
code to improve resistance to static disassembly. In
10th ACM Conference on Computer and Commu-
nications Security (CCS), pages 290–299, October
2003.

[14] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Soft-
ware obfuscation on a theoretical basis and its im-
plementation. IEICE Transactions on Fundamen-
tals, E86-A(1), 2003.

[15] R. Sites, A. Chernoff, M. Kirk, M. Marks, and
S. Robinson. Binary Translation. Digital Technical
Journal, 4(4), 1992.

[16] Symantec. Understanding and Managing Polymor-
phic Viruses. http://www.symantec.com/
avcenter/whitepapers.html.

[17] G. Wroblewski. General Method of Program Code
Obfuscation. In Proceedings of the International
Conference on Software Engineering Research and
Practice (SERP), Las Vegas, NV, June 2002.

