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Abstract
Unsolicited bulk email (spam) is used by cyber-

criminals to lure users into scams and to spread mal-
ware infections. Most of these unwanted messages are
sent by spam botnets, which are networks of compro-
mised machines under the control of a single (malicious)
entity. Often, these botnets are rented out to particular
groups to carry out spam campaigns, in which similar
mail messages are sent to a large group of Internet users
in a short amount of time. Tracking the bot-infected hosts
that participate in spam campaigns, and attributing these
hosts to spam botnets that are active on the Internet, are
challenging but important tasks. In particular, this infor-
mation can improve blacklist-based spam defenses and
guide botnet mitigation efforts.

In this paper, we present a novel technique to support
the identification and tracking of bots that send spam.
Our technique takes as input an initial set of IP addresses
that are known to be associated with spam bots, and
learns their spamming behavior. This initial set is then
“magnified” by analyzing large-scale mail delivery logs
to identify other hosts on the Internet whose behavior is
similar to the behavior previously modeled. We imple-
mented our technique in a tool, called BOTMAGNIFIER,
and applied it to several data streams related to the deliv-
ery of email traffic. Our results show that it is possible
to identify and track a substantial number of spam bots
by using our magnification technique. We also perform
attribution of the identified spam hosts and track the evo-
lution and activity of well-known spamming botnets over
time. Moreover, we show that our results can help to im-
prove state-of-the-art spam blacklists.

1 Introduction

Email spam is one of the open problems in the area of
IT security, and has attracted a significant amount of
research over many years [11, 26, 28, 40, 42]. Unso-
licited bulk email messages account for almost 90% of

the world-wide email traffic [20], and a lucrative busi-
ness has emerged around them [12]. The content of spam
emails lures users into scams, promises to sell cheap
goods and pharmaceutical products, and spreads mali-
cious software by distributing links to websites that per-
form drive-by download attacks [24].

Recent studies indicate that, nowadays, about 85% of
the overall spam traffic on the Internet is sent with the
help of spamming botnets [20, 36]. Botnets are networks
of compromised machines under the direction of a sin-
gle entity, the so-called botmaster. While different bot-
nets serve different, nefarious goals, one important pur-
pose of botnets is the distribution of spam emails. The
reason is that botnets provide two advantages for spam-
mers. First, a botnet serves as a convenient infrastructure
for sending out large quantities of messages; it is essen-
tially a large, distributed computing system with mas-
sive bandwidth. A botmaster can send out tens of mil-
lions of emails within a few hours using thousands of
infected machines. Second, a botnet allows an attacker
to evade spam filtering techniques based on the sender
IP addresses. The reason is that the IP addresses of some
infected machines change frequently (e.g., due to the ex-
piration of a DHCP lease, or to the change in network
location in the case of an infected portable computer).
Moreover, it is easy to infect machines and recruit them
as new members into a botnet. This means that black-
lists need to be updated constantly by tracking the IP ad-
dresses of spamming bots.

Tracking spambots is challenging. One approach to
detect infected machines is to set up spam traps. These
are fake email addresses (i.e., addresses not associated
with real users) that are published throughout the Inter-
net with the purpose of attracting and collecting spam
messages. By extracting the sender IP addresses from
the emails received by a spam trap, it is possible to ob-
tain a list of bot-infected machines. However, this ap-
proach faces two main problems. First, it is likely that
only a subset of the bots belonging to a certain botnet



will send emails to the spam trap addresses. Therefore,
the analysis of the messages collected by the spam trap
can provide only a partial view of the activity of the bot-
net. Second, some botnets might only target users lo-
cated in a specific country (e.g., due to the language used
in the email), and thus a spam trap located in a different
country would not observe those bots.

Other approaches to identify the hosts that are part of
a spamming botnet are specific to particular botnets. For
example, by taking control of the command & control
(C&C) component of a botnet [21, 26], or by analyzing
the communication protocol used by the bots to interact
with other components of the infrastructure [6, 15, 32],
it is possible to enumerate (a subset of) the IP addresses
of the hosts that are part of a botnet. However, in these
cases, the results are specific to the particular botnet that
is being targeted (and, typically, the type of C&C used).

In this paper, we present a novel approach to identify
and track spambot populations on the Internet. Our am-
bitious goal is to track the IP addresses of all active hosts
that belong to every spamming botnet. By active hosts,
we mean hosts that are online and that participate in spam
campaigns. Comprehensive tracking of the IP addresses
belonging to spamming botnets is useful for several rea-
sons:

• Internet Service Providers can take countermea-
sures to prevent the bots whose IP addresses reside
in their networks from sending out email messages.

• Organizations can clean up compromised machines
in their networks.

• Existing blacklists and systems that analyze
network-level features of emails can be improved
by providing accurate information about machines
that are currently sending out spam emails.

• By monitoring the number of bots that are part of
different botnets, it is possible to guide and support
mitigation efforts so that the C&C infrastructures
of the largest, most aggressive, or fastest-growing
botnets are targeted first.

Our approach to tracking spamming bots is based on
the following insight: bots that belong to the same bot-
net share the same C&C infrastructure and the same code
base. As a result, these bots will feature similar behavior
when sending spam [9, 40, 41]. In contrast, bots belong-
ing to different spamming botnets will typically use dif-
ferent parameters for sending spam mails (e.g., the size
of the target email address list, the domains or countries
that are targeted, the spam contents, or the timing of their
actions). More precisely, we leverage the fact that bots
(of a particular botnet) that participate in a spam cam-
paign share similarities in the destinations (domains) that
they target and in the time periods they are active. Simi-
lar to previous work [15], we consider a spam campaign

to be a set of email messages that share a substantial
amount of content and structure (e.g., a spam campaign
might involve the distribution of messages that promote
a specific pharmaceutical scam).

Input datasets. At a high level, our approach takes two
datasets as input. The first dataset contains the IP ad-
dresses of known spamming bots that are active during
a certain time period (we call this time period the obser-
vation period). The IP addresses are grouped by spam
campaign. That is, IP addresses in the same group sent
the same type of messages. We refer to these groups of
IP addresses as seed pools. The second dataset is a log
of email transactions carried out on the Internet during
the same time period. This log, called the transaction
log, contains entries that specify that, at a certain time,
IP address C attempted to send an email message to IP
address S. The log does not need to be a complete log
of every email transaction on the Internet (as it would be
unfeasible to collect this information). However, as we
will discuss later, our approach becomes more effective
as this log becomes more comprehensive.

Approach. In the first step of our approach, we search
the transaction log for entries in which the sender IP ad-
dress is one of the IP addresses in the seed pools (i.e.,
the known spambots). Then, we analyze these entries
and generate a number of behavioral profiles that capture
the way in which the hosts in the seed pools sent emails
during the observation period.

In the second step of the approach, the whole trans-
action log is searched for patterns of behavior that are
similar to the spambot behavior previously learned from
the seed pools. The hosts that behave in a similar man-
ner are flagged as possible spamming bots, and their IP
addresses are added to the corresponding magnified pool.

In the third and final step, heuristics are applied to re-
duce false positives and to assign spam campaigns (and
the IP addresses of bots) to specific botnets (e.g., Rus-
tock [5], Cutwail [35], or MegaD [4, 6]).

We implemented our approach in a tool, called BOT-
MAGNIFIER. In order to populate our seed pools, we
used data from a large spam trap set up by an Internet
Service Provider (ISP). Our transaction logs were con-
structed by running a mirror for Spamhaus, a popular
DNS-based blacklist. Note that other sources of infor-
mation can be used to either populate the seed pools or
to build a transaction log. As we will show, BOTMAGNI-
FIER also works for transaction logs extracted from net-
flow data collected from a large ISP’s backbone routers.

BOTMAGNIFIER is executed periodically, at the end
of each observation period. It outputs a list of the IP ad-
dresses of all bots in the magnified pools that were found
during the most recent period. Moreover, BOTMAGNI-
FIER associates with each seed and magnified pool a la-



bel that identifies (when possible) the name of the botnet
that carried out the corresponding spam campaign. Our
experimental results show that our system can find a sig-
nificant number of additional IP addresses compared to
the seed baseline. Furthermore, BOTMAGNIFIER is able
to detect emerging spamming botnets. As we will show,
we identified the resurrection of the Waledac spam botnet
during the evaluation period, demonstrating the ability of
our technique to find new botnets.
In summary, we provide the following contributions:

• We developed a novel method for characterizing the
behavior of spamming bots.

• We provide a novel technique for identifying and
tracking spamming bot populations on the Internet,
using a “magnification” process.

• We assigned spam campaigns to the major botnets,
and we studied the evolution of the bot population
of these botnets over time.

• We validated our results using ground truth col-
lected from a number of C&C servers used by a
large spamming botnet, and we demonstrated the
applicability of our technique to real-world, large-
scale datasets.

2 Input Datasets

BOTMAGNIFIER requires two input datasets to track
spambots: seed pools and a transaction log. In this sec-
tion, we discuss how these two datasets are obtained.

2.1 Seed Pools
A seed pool is a set of IP addresses of hosts that, during
the most recent observation period, participated in a spe-
cific spam campaign. The underlying assumption is that
the hosts whose IP addresses are in the same seed pool
are part of the same spamming botnet, and they were in-
structed to send a certain batch of messages (e.g., emails
advertising cheap Viagra or replica watches).

To generate the seed pools for the various spam cam-
paigns, we took advantage of the information collected
by a spam trap set up by a large US ISP. Since the email
addresses used in this spam trap do not correspond to
real customers, all the received emails are spam. We
collected data from the spam trap between September 1,
2010 and February 10, 2011, with a downtime of about
15 days in November 2011. The spam trap collected, on
average, 924,000 spam messages from 268,000 IP ad-
dresses every day.

Identifying similar messages. We identify spam cam-
paigns within this dataset by looking for similar email
messages. More precisely, we analyze the subject lines
of all spam messages received during the last observation

period (currently one day: see discussion below). Mes-
sages that share a similar subject line are considered to
be part of the same campaign (during this period).

Unfortunately, the subject lines of messages of a cer-
tain campaign are typically not identical. In fact, most
botnets vary the subject lines of the message they send
to avoid detection by anti-spam systems. For exam-
ple, some botnets put the user name of the recipient
in the subject, or change the price of the pills be-
ing sold in drug-related campaigns. To mitigate this
problem, we extract templates from the actual subject
lines. To this end, we substitute user names, email ad-
dresses, and numbers with placeholder regular expres-
sions. User names are recognized as tokens that are
identical to the first part of the destination email address
(the part to the left of the @ sign). For example, the
subject line “john, get 90% discounts!” sent
to user john@example.com becomes “\w+, get
[0-9]+% discounts!”

More sophisticated botnets, such as Rustock, add ran-
dom text fetched from Wikipedia to both the email body
and the subject line. Other botnets, such as Lethic, add
a random word at the end of each subject. These tricks
make it harder to group emails belonging to the same
campaign that are sent by different bots, because differ-
ent bots will add distinct text to each message. To handle
this problem, we developed a set of custom rules for the
largest spamming botnets that remove the spurious con-
tent from the subject lines.

Once the subjects of the messages have been trans-
formed into templates and the spurious information has
been removed, messages with the same template subject
line are clustered together. This approach is less sophis-
ticated than methods that take into account more features
of the spam messages [22, 40], but we found (by manual
investigation) that our simple approach was very effec-
tive for our purpose. Our approach, although sufficient,
could be refined even further by incorporating these more
sophisticated schemes to improve our ability to recognize
spam campaigns.

Once the messages are clustered, the IP addresses of
the senders in each cluster are extracted. These sets of IP
addresses represent the seed pools that are used as input
to our magnification technique.

Seed pool size. During our experiments, we found that
seed pools that contain a very small number of IP ad-
dresses do not provide good results. The reason is that
the behavior patterns that can be constructed from only a
few known bot instances are not precise enough to rep-
resent the activity of a botnet. For example, campaigns
involving 200 unique IP addresses in the seed pool pro-
duced, on average, magnified sets where 60% of the IP
addresses were not listed in Spamhaus, and therefore



were likely legitimate servers. Similarly, campaigns with
a seed pool size of 500 IP addresses still produced mag-
nified sets where 25% of the IP addresses were marked
as legitimate by Spamhaus. For these reasons, we only
consider those campaigns for which we have observed
more than 1,000 unique sender IP addresses. The emails
belonging to these campaigns account for roughly 84%
of the overall traffic observed by our spam trap. It is in-
teresting to notice that 8% of the overall traffic belongs
to campaigns carried out by less than 10 distinct IP ad-
dresses per day. Such campaigns are carried out by ded-
icated servers and abused email service providers. The
aggressive spam behavior of these servers and their lack
of geographic/IP diversity makes them trivial to detect
without the need for magnification.

The lower limit on the size of seed pools has implica-
tions for the length of the observation period. When this
interval is too short, the seed pools are likely to be too
small. On the other hand, many campaigns last less than
a few hours. Thus, it is not useful to make the observa-
tion period too long. Also, when increasing the length
of the observation period, there is a delay introduced be-
fore BOTMAGNIFIER can identify new spam hosts. This
is not desirable when the output is used for improving
spam defenses. In practice, we found that an observation
period of one day allows us to generate sufficiently large
seed pools from the available spam feed. To evaluate
the impact that the choice of the analysis period might
have on our analysis system, we looked at the length of
100 spam campaigns, detected over a period of one day.
The average length of these campaigns is 9 hours, with a
standard deviation of 6 hours. Of the campaigns we ana-
lyzed, 25 lasted less than four hours. However, only two
of these campaigns did not generate large enough seed
pools to be considered by BOTMAGNIFIER. On the other
hand, 8 campaigns that lasted more than 18 hours would
not have generated large enough seed pools if we used
a shorter observation period. Also, by manual investi-
gation, we found that campaigns that last more than one
day typically reach the threshold of 1,000 IP addresses
for their seed pool within the first day. Therefore, we be-
lieve that the choice of an observation period of one day
works well, given the characteristics of the transaction
log we used. Of course, if the volume of either the seed
pools or the transaction log increased, the observation
period could be reduced accordingly, making the system
more effective for real-time spam blacklisting.

Note that it is not a problem when a spam campaign
spans multiple observation periods. In this case, the
bots that participate in this spam campaign and are ac-
tive during multiple periods are simply included in mul-
tiple seed pools (one for each observation period for this
campaign).

2.2 Transaction Log
The transaction log is a record of email transactions car-
ried out on the Internet during the same time period
used for the generation of the seed pools. For the cur-
rent version of BOTMAGNIFIER and the majority of our
experiments, we obtained the transaction log by ana-
lyzing the queries to a mirror of Spamhaus, a widely-
used DNS-based blacklisting service (DNSBL). When
an email server S is contacted by a client C that wants
to send an email message, server S contacts one of the
Spamhaus mirrors and asks whether the IP address of the
client C is a known spam host. If C is a known spam-
mer, the connection is rejected or the email is marked as
spam.

Each query to Spamhaus contains the IP address of
C. It is possible that S may not query Spamhaus di-
rectly. In some cases, S is configured to use a local DNS
server that forwards the query. In such cases, we would
mistakenly consider the IP address of the DNS server
as the mail server. However, the actual value of the IP
address of S is not important for the subsequent analy-
sis. It is only important to recognize when two different
clients send email to the same server S. Thus, as long
as emails sent to server S yield Spamhaus queries that
always come from the same IP address, our technique is
not affected.

Each query generates an entry in the transaction log.
More precisely, the entry contains a timestamp, the IP
address of the sender of the message, and the IP address
of the server issuing the query. Of course, by monitoring
a single Spamhaus mirror (out of 60 deployed throughout
the Internet), we can observe only a small fraction of the
global email transactions. Our mirror observes roughly
one hundred million email transactions a day, compared
to estimates that put the number of emails sent daily at
hundreds of billions [13].

Note that even though Spamhaus is a blacklisting ser-
vice, we do not use the information it provides about the
blacklisted hosts to perform our analysis. Instead, we
use the Spamhaus mirror only to collect the transaction
logs, regardless of the fact that a sender may be a known
spammer. In fact, other sources of information can be
used to either populate the seed pools or to collect the
transaction log. To demonstrate this, we also ran BOT-
MAGNIFIER on transaction logs extracted from netflow
data collected from a number of backbone routers of a
large ISP. The results show that our general approach is
still valid (see Section 6.4 for details).

3 Characterizing Bot Behavior

Given the two input datasets described in the previous
section, the first step of our approach is to extract the be-



havior of known spambots. To this end, the transaction
log is consulted. More precisely, for each seed pool, we
query the transaction log to find all events that are associ-
ated with all of the IP addresses in that seed pool (recall
that the IP addresses in a seed pool correspond to known
spambots). Here, an event is an entry in the transaction
log where the known spambot is the sender of an email.
Essentially, we extract all the instances in the transaction
log where a known bot has sent an email.

Once the transaction log entries associated with a seed
pool are extracted, we analyze the destinations of the
spam messages to characterize the bots’ behavior. That
is, the behavior of the bots in a seed pool is characterized
by the set of destination IP addresses that received spam
messages. We call the set of server IP addresses targeted
by the bots in a seed pool this pool’s target set.

The reason for extracting a seed pool’s target set is the
insight that bots belonging to the same botnet receive the
same list of email addresses to spam, or, at least, a subset
of addresses belonging to the same list. Therefore, dur-
ing their spamming activity, bots belonging to botnet A
will target the addresses contained in list LA, while bots
belonging to botnet B will target destinations belonging
to list LB . That is, the targets of a spam campaign char-
acterize the activity of a botnet.

Unfortunately, the target sets of two botnets often have
substantial overlap. The reason is that there are many
popular destinations (server addresses) that are targeted
by most botnets (e.g., the email servers of Google, Ya-
hoo, large ISPs with many users, etc.) Therefore, we
want to derive, for each spam campaign (seed pool), the
most characterizing set of destination IP addresses. To
this end, we remove from each pool’s target set all server
IP addresses that appear in any target set belonging to
another another seed pool.

More precisely, consider the seed pools P =
p1, p2, . . . , pn. Each pool pi stores the IP addresses
of known bots that participated in a certain campaign:
i1, i2, . . . , im. In addition, consider that the transaction
log L contains entries in the form 〈t, is, id〉, where t is a
time stamp, is is the IP address of the sender of an email
and id is the IP address of the destination server of an
email. For each seed pool pi, we build this seed pool’s
target set T (pi) as follows:

T (pi) := {id|〈t, is, id〉 ∈ L ∧ is ∈ pi}. (1)

Then, we compute the characterizing set C(pi) of a
seed pool pi as follows:

C(pi) := {id|id ∈ T (pi) ∧ id /∈ T (pj), j 6= i}. (2)

As a result, C(pi) contains only the target addresses
that are unique (characteristic) for the destinations of
bots in seed pool pi. The characterizing set C(pi) of
each pool is the input to the next step of our approach.

4 Bot Magnification

The goal of the bot magnification step is to find the IP ad-
dresses of additional, previously-unknown bots that have
participated in a known spam campaign. More precisely,
the goal of this step is to search the transaction log for IP
addresses that behave similarly to the bots in a seed pool
pi. If such matches can be found, the corresponding IP
addresses are added to the magnification set associated
with pi. This means that a magnification set stores the IP
addresses of additional, previously-unknown bots.

BOTMAGNIFIER considers an IP address xi that ap-
pears in the transaction log L as matching the behavior
of a certain seed pool pi (and, thus, belonging to that
spam campaign) if the following three conditions hold:
(i) host xi sent emails to at least N destinations in the
seed pool’s target set T (pi); (ii) the host never sent an
email to a destination that does not belong to that target
set; (iii) host xi has contacted at least one destination that
is unique for seed pool pi (i.e., an address in C(pi)). If
all three conditions are met, then IP address xi is added
to the magnification set M(pi) of seed pool pi.

More formally, if we define D(xi) as the set of desti-
nations targeted by an IP address xi, we have:

xi ∈ M(pi) ⇐⇒ |D(xi) ∩ T (pi)| ≥ N ∧
D(xi) ⊆ T (pi) ∧
D(xi) ∩ C(pi) 6= ∅. (3)

The intuition behind this approach is the following:
when a host h sends a reasonably large number of emails
to the same destinations that were targeted by a spam
campaign and not to any other targets, there is a strong
indication that the email activity of this host is similar to
the bots involved in the campaign. Moreover, to assign
a host h to at most one campaign (the one that it is most
similar), we require that h targets at least one unique des-
tination of this campaign.

Threshold computation. The main challenge in this
step is to determine an appropriate value for the thresh-
old N , which captures the minimum number of destina-
tion IP addresses in T (pi) that a host must send emails to
in order to be added to the magnification set M(pi). Set-
ting N to a value that is too low will generate too many
bot candidates, including legitimate email servers, and
the tool would generate many false positives. Setting N
to a value that is too high might discard many bots that
should have been included in the magnification set (that
is, the approach generates many false negatives). This
trade-off between false positives and false negatives is a
problem that appears in many security contexts, for ex-
ample, when building models for intrusion detection.

An additional, important consideration for the proper
choice of N is the size of the target set |T (pi)|. Intu-
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Figure 1: Quality of magnification for varying k using
ten Cutwail campaigns of different sizes.

itively, we expect that N should be larger when the size
of the target set increases. This is because a larger target
set increases the chance that a random, legitimate email
sender hits a sufficient number of targets by accident, and
hence, will be incorrectly included into the magnification
set. In contrast, bots carrying out a spam campaign that
targets only a small number of destinations are easier to
detect. The reason is that as soon as a legitimate email
sender sends an email to a server that is not in the set tar-
geted by the campaign, it will be immediately discarded
by our magnification algorithm. Therefore, we represent
the relationship between the threshold N and the size of
the target set |T (pi)| as:

N = k · |T (pi)|, 0 < k ≤ 1, (4)

where k is a parameter. Ideally, the relation between N
and |T (pi)| would be linear, and k will have a constant
value. However, as will be clear from the discussion be-
low, k also varies with the size of |T (pi)|.

To determine a good value for k and, as a consequence,
select a proper threshold N , we performed an analysis
based on ground truth about the actual IP addresses in-
volved in several spam campaigns. This information was
collected from the takedown of more than a dozen C&C
servers used by the Cutwail spam botnet. More specifi-
cally, each server stored comprehensive records (e.g., tar-
get email lists, bot IP addresses, etc.) about spam activi-
ties for a number of different campaigns [35]

In particular, we applied BOTMAGNIFIER to ten Cut-
wail campaigns, extracted from two different C&C
servers. We used these ten campaigns since we had a
precise view of the IP addresses of the bots that sent the
emails. For the experiment, we varied the value for N in
the magnification process from 0 to 300. This analysis
yielded different magnification sets for each campaign.
Then, using our knowledge about the actual bots B that
were part of each campaign, we computed the precision

P and recall R values for each threshold setting. Since
we want to express the quality of the magnification pro-
cess as a function of k, independently of the size of a
campaign, we use Equation 4 to get k = N

|T (pi)| .
The precision value P (k) represents what fraction of

the IP addresses that we obtain as candidates for the mag-
nification set for a given k are actually among the ground
truth IP addresses. The recall value R(k), on the other
hand, tells us what fraction of the total bot set B is identi-
fied. Intuitively, a low value of k will produce high R(k),
but low P (k). When we increase k, P (k) will increase,
but R(k) will decrease. Optimally, both precision and
recall are high. Thus, for our analysis, we use the prod-
uct PR(k) = P (k) · R(k) to characterize the quality
of the magnification step. Figure 1 shows how PR(k)
varies for different values of k. As shown for each cam-
paign, PR(k) first increases, then stays relatively level,
and then starts to decrease.

The results indicate that k is not a constant, but varies
with the size of |T (pi)|. In particular, small campaigns
have a higher optimal value for k compared to larger
campaigns: as |T (pi)| increases, the value of k slowly
decreases. To reflect this observation, we use the follow-
ing, simple way to compute k:

k = kb +
α

|T (pi)|
, (5)

where kb is a constant value, α is a parameter, and
|T (pi)| is the number of destinations that a campaign
targeted. The parameters kb and α are determined so
that the quality of the magnification step PR is maxi-
mized for a given ground truth dataset. Using the Cut-
wail campaigns as the dataset, this yields kb = 8 · 10−4

and α = 10.
Our experimental results show that these parameter

settings yield good results for a wide range of campaigns,
carried out by several different botnets. This is because
the magnification process is robust and not dependent
on an optimal threshold selection. We found that non-
optimal thresholds typically tend to decrease recall. That
is, the magnification process does not find all bots that it
could possibly detect, but false positives are limited. In
Section 6.4, we show how the equation of k, with the val-
ues we determined for parameters kb and α, yields good
results for any campaign magnified from our Spamhaus
dataset. We also show that the computation of k can be
performed in the same way for different types of trans-
action logs. To this end, we study how BOTMAGNIFIER
can be used to analyze netflow records.

5 Spam Attribution

Once the magnification process has completed, we merge
the IP addresses from the seed pool and the magnifica-



tion set to obtain a campaign set. We then apply several
heuristics to reduce false positives and to assign the dif-
ferent campaign sets to specific botnets. Note that the
labeling of the campaign sets does not affect the results
of the bot magnification process. BOTMAGNIFIER could
be used in the wild for bot detection without these at-
tribution functionalities. It is relevant only for tracking
the populations of known botnets, as we discuss in Sec-
tion 6.2.

5.1 Spambot Analysis Environment

The goal of this phase is to understand the behavior of
current spamming botnets. That is, we want to determine
the types of spam messages sent by a specific botnet at
a certain point in time. To this end, we have built an
environment that enables us to execute bot binaries in a
controlled setup similarly to previous studies [11, 39].

Our spambot analysis environment is composed of one
physical system hosting several virtual machines (VMs),
each of which executes one bot binary. The VMs have
full network access so that the bots can connect to the
C&C server and receive spam-related configuration data,
such as spam templates or batches of email addresses to
which spam should be sent. However, we make sure that
no actual spam emails are sent out by sinkholing spam
traffic, i.e., we redirect outgoing emails to a mail server
under our control. This server is configured to record
the messages, without relaying them to the actual des-
tination. We also prevent other kinds of malicious traf-
fic (e.g., scanning or exploitation attempts) through vari-
ous firewall rules. Some botnets (e.g., MegaD) use TCP
port 25 for C&C traffic, and, therefore, we need to make
sure that such bots can still access the C&C server. This
is implemented by firewall rules that allow C&C traffic
through, but prevent outgoing spam. Furthermore, bot-
nets such as Rustock detect the presence of a virtual en-
vironment and refuse to run. Such samples are executed
on a physical machine configured with the same network
restrictions. To study whether bots located in different
countries show a unique behavior, we run each sample
at two distinct locations: one analysis environment is lo-
cated in the United States, while the other one is located
in Europe. In our experience, this setup enables us to re-
liably execute known spambots and observe their current
spamming behavior.

For this study, we analyzed the five different bot fam-
ilies that were the most active during the time of our
experiments: Rustock [5], Lethic, MegaD [4, 6], Cut-
wail [35], and Waledac. We ran our samples from July
2010 to February 2011. Some of the spambots we ran
sent out spam emails for a limited amount of time (typi-
cally, a couple of weeks), and then lost contact with their
controllers. We periodically substituted such bots with

newer samples. Other bots (e.g., Rustock) were active
for most of the analysis period.

5.2 Botnet Tags
After monitoring the spambots in a controlled environ-
ment, we attempt to assign botnet labels to spam emails
found in our spam trap. Therefore, we first extract the
subject templates from the emails that were collected in
the analysis environment with the same technique de-
scribed in Section 2.1. Then, we compare the subject
templates with the emails we received in the spam trap
during that same day. If we find a match, we tag the
campaign set that contains the IP address of the bot that
sent the message with the corresponding botnet name.
Otherwise, we keep the campaign set unlabeled.

5.3 Botnet Clustering
As noted above, we ran five spambot families in our anal-
ysis environment. Of course, it is possible that one of the
monitored botnets is carrying out more campaigns than
those observed by analyzing the emails sent by the bots
we execute in our analysis environment. In addition, we
are limited by the fact that we cannot run all bot binaries
in the general case (e.g., due to newly emerging botnets
or in cases where we do not have access to a sample),
and, thus, we cannot collect information about such cam-
paigns. The overall effect of this limitation is that some
campaign sets may be left unlabeled.

The goal of the botnet clustering phase is to determine
whether an unlabeled campaign set belongs to one of the
botnets we monitored. If an unlabeled campaign set can-
not be associated with one of the existing labeled cam-
paign sets, then we try to see if it can be merged with
another unlabeled campaign set, which, together, might
represent a new botnet.

In both cases, there is a need to determine if two cam-
paign sets are “close” enough to each other in order to be
considered as part of the same botnet. In order to repre-
sent the distance between campaign sets, we developed
three metrics, namely an IP overlap metric, a destination
distance metric, and a bot distance metric.

IP overlap. The observation underlying the IP overlap
metric is that two campaign sets sharing a large number
of bots (i.e., common IP addresses) likely belong to the
same botnet. It is important to note that infected ma-
chines can belong to multiple botnets, as one machine
may be infected with two distinct instances of malware.
Another factor one needs to take into account is network
address translation (NAT) gateways, which can poten-
tially hide large networks behind them. As a result, the
IP address of a NAT gateway might appear as part of
multiple botnets. However, a host is discarded from the
campaign set related to pi as soon as it contacts a des-
tination that is not in the target set (see Section 4 for a



discussion). Therefore, NAT gateways are likely to be
discarded from the candidate set early on: at some point,
machines behind the NAT will likely hit two destinations
that are unique to two different seed pools, and, thus,
will be discarded from all campaign sets. This might
not be true for small NATs, with just a few hosts behind
them. In this case, the IP address of the gateway would
be detected as a bot by BOTMAGNIFIER. In a real world
scenario, this would still be useful information for the
network administrator, who would know what malware
has likely infected one or more of her hosts.

Given these assumptions, we merge two campaign sets
with a large IP overlap. More precisely, first the intersec-
tion of the two campaign sets is computed. Then, if such
intersection represents a sufficiently high portion of the
IP addresses in either of the campaign sets, the two cam-
paign sets are merged.

The fraction of IP addresses that need to match ei-
ther of the campaign sets to consider them to be part of
the same botnet varies with the size of the sets for those
campaigns. Intuitively, two small campaigns will have to
overlap by a larger percentage than two large campaigns
in order to be considered as part of the same botnet. This
is done to avoid merging small campaigns together just
based on a small number of IP addresses that might be
caused by multiple infections or by two different spam-
bots hiding behind a small NAT. Given a campaign c, the
fraction of IP addresses that has to overlap with another
campaign in order to be merged together is

Oc =
1

log10 (Nc)
, (6)

where Nc is the number of hosts in the campaign set. We
selected this equation because the denominator increases
slowly with the number of bots carrying out a campaign.
Moreover, because of the use of the logarithm, this equa-
tion models an exponential decay, which decreases fast
for small values of Nc, and much more slowly for large
values of it. Applying this equation, a campaign carried
out by 100 hosts will require an overlap of 50% or more
to be merged with another one, while a campaign carried
out by 10,000 hosts will only require an overlap of 25%.
When comparing two campaigns c1 and c2, we require
the smaller one to have an overlap of at least Oc with the
largest one to consider them as being carried out by the
same botnet.

Destination distance. This technique is an extension
of our magnification step. We assume that bots carry-
ing out the same campaign will target the same desti-
nations. However, as mentioned previously, some bot-
nets send spam only to specific countries during a given
time frame. Leveraging this observation, it is possible to
find out whether two campaign sets are likely carried out
by the same botnet by observing the country distribution

of the set of destinations they targeted. More precisely,
we build a destination country vector for each campaign
set. Each element of the destination country vector cor-
responds to the fraction of destinations that belong to a
specific country. We determined the country of each IP
address using the GEOIP tool [19]. Then, for each pair of
campaign sets, we calculate the cosine distance between
them.

We performed a precision versus recall analysis to de-
velop an optimal threshold for this clustering technique.
By precision, we mean how well this technique can dis-
criminate between campaigns belonging to different bot-
nets. By recall, we capture how well the technique can
cluster together campaigns carried out by the same bot-
net. We ran our analysis on 50 manually-labeled cam-
paigns picked from the ones sent by the spambots in our
analysis environment. Similarly to how we found the
optimal value of k in Section 4, we multiply precision
and recall together. We then searched for the threshold
value that maximizes this product. In our experiments,
we found that the cosine distance of the destination coun-
tries vectors is rarely lower than 0.8. This occurs regard-
less of the particular country distribution of a campaign,
because there will be a significant amount of bots in large
countries (e.g., the United States or India). The precision
versus recall analysis showed that 0.95 is a good thresh-
old for this clustering technique.

Bot distance. This technique is similar to the destina-
tion distance, except that it utilizes the country distribu-
tion of the bot population of the campaign set instead of
the location of the targeted servers. For each campaign
set, we build a source country vector that contains the
fraction of bots for a given country.

The intuition behind this technique comes from the
fact that malware frequently propagates through mali-
cious web sites, or through legitimate web servers that
have been compromised [24, 34]. These sites will not
have a uniform distribution of users (e.g., a Spanish
web site will mostly have visitors from Spanish-speaking
countries) and, therefore, the distribution of compro-
mised users in the world for that site will not be uniform.
For this technique, we also performed a precision ver-
sus recall analysis, in the same way as for the destination
distance technique. Again, we experimentally found the
optimal threshold to be 0.95.

6 Evaluation

To demonstrate the validity of our approach, we first ex-
amined the results generated by BOTMAGNIFIER when
magnifying the population of a large spamming botnet
for which we have ground truth knowledge (i.e., we
know which IP addresses belong to the botnet). Then,



we ran the system for a period of four months on a large
set of real-world data, and we successfully tracked the
evolution of large botnets.

6.1 Validation of the Approach
To validate our approach, we studied a botnet for which
we had direct data about the number and IP addresses of
the infected machines. More precisely, in August 2010,
we obtained access to thirteen C&C servers belonging
to the Cutwail botnet [35]. Note that we only used nine
of them for this evaluation, since two had already been
used to derive the optimal value of N in Section 4, and
two were not actively sending spam at the time of the
takedown. As discussed before, these C&C servers con-
tained detailed information about the infected machines
belonging to the botnet and the spam campaigns car-
ried out. The whole botnet was composed of 30 C&C
servers. By analyzing the data on the C&C servers we
had access to, we found that, during the last day of opera-
tion, 188,159 bots contacted these nine servers. Of these,
37,914 (≈ 20%) contacted multiple servers. On average,
each server controlled 20,897 bots at the time of the take-
down, with a standard deviation of 5,478. Based on these
statistics, the servers to which we had access managed
the operations of between 29% and 37% of the entire bot-
net. We believe the actual percentage of the botnet con-
trolled by these servers was close to 30%, since all the
servers except one were contacted by more than 19,000
bots during the last day of operation. Only a single server
was controlling less than 10,000 bots. Therefore, it is
safe to assume that the vast majority of the command
and control servers were controlling a similar amount of
bots (≈ 20,000 each).

We ran the validation experiment for the period be-
tween July 28 and August 16, 2010. For each of the 18
days, we first selected a subset of the IP addresses refer-
enced by the nine C&C servers. As a second step, with
the help of the spam trap, we identified which campaigns
had been carried out by these IP address during that day.
Then, we generated seed and magnified pools. Finally,
we compared the output magnification sets against the
ground truth (i.e., the other IP addresses referenced by
the C&C servers) to assess the quality of the results.

Overall, BOTMAGNIFIER identified 144,317 IP ad-
dresses as Cutwail candidates in the campaign set. Of
these, 33,550 (≈ 23%) were actually listed in the C&C
servers’ databases as bots. This percentage is close to
the fraction of the botnet we had access to (since we con-
sidered 9 out of 30 C&C servers), and, thus, this result
suggests that the magnified population identified by our
system is consistent. To perform a more precise analy-
sis, we ran BOTMAGNIFIER and studied the magnified
pools that were given as an output on a daily basis. The
average size of the magnified pools was 4,098 per day.

In total, during the 18 days of the experiment, we grew
the bot population by 73,772 IP addresses. Of the IP ad-
dresses detected by our tool, 17,288 also appeared in the
spam trap during at least one other day of our experiment,
sending emails belonging to the same campaigns carried
out by the C&C servers. This confirms that they were
actually Cutwail bots. In particular, 3,381 of them were
detected by BOTMAGNIFIER before they ever appeared
in the spam trap, which demonstrates that we can use our
system to detect bots before they even hit our spam trap.

For further validation, we checked our results against
the Spamhaus database, to see if the IP addresses we
identified as bots were listed as known spammers or not.
81% were listed in the blacklist.

We then tried to evaluate how many of the remaining
27,421 IP addresses were false positives. To do this, we
used two techniques. First, we tried to connect to the
host to check whether it was a legitimate server. Legit-
imate SMTP or DNS servers can show up in queries on
Spamhaus due to several reasons (e.g., in cases where
reputation services collect information about sender IP
addresses or if an email server is configured to query
the local DNS server). Therefore, we tried to determine
if an IP address that was not blacklisted at the time of
the experiment was a legitimate email or DNS server by
connecting to port 25 TCP and 53 UDP. If the server re-
sponded, we considered it to be a false positive. Unfor-
tunately, due to firewall rules, NAT gateways, or network
policies, some servers might not respond to our probes.
For this reason, as a second technique, we executed a
reverse DNS lookup on the IP addresses, looking for ev-
idence showing that the host was a legitimate server. In
particular, we looked for strings that are typical for mail
servers in the hostname. These strings are smtp, mail,
mx, post, and mta. We built this list by manually look-
ing at the reverse DNS lookups of the IP address that
were not blacklisted by Spamhaus. If the reverse lookup
matched one of these strings, we considered the IP ad-
dress as a legitimate server, i.e., a false positive. In total,
2,845 IP addresses resulted in legitimate servers (1,712
SMTP servers and 1,431 DNS servers), which is 3.8% of
the overall magnified population.

We then tried to determine what coverage of the en-
tire Cutwail botnet our approach produced. Based on the
number of active IP addresses per day we saw on the
C&C servers, we estimated that the size of the botnet
at the time of the takedown was between 300,000 and
400,000 bots. This means that, during our experiment,
we were able to track between 35 and 48 percent of the
botnet. Given the limitations of our transaction log (see
Section 6.2.1), this is a good result, which could be im-
proved by getting access to multiple Spamhaus servers
or more complete data streams.



6.2 Tracking Bot Populations
To demonstrate the practical feasibility of our approach,
we used BOTMAGNIFIER to track bot populations in the
wild for a period of four months. In particular, we ran
the system for 114 days between September 28, 2010
and February 5, 2011. We had a downtime of about 15
days in November 2011, during which the emails of the
spam trap could not be delivered.

By using our magnification algorithm, our system
identified and tracked 2,031,110 bot IP addresses dur-
ing the evaluation period. Of these, 925,978 IP addresses
(≈ 45.6%) belonged to magnification sets (i.e., they were
generated by the magnification process), while 1,105,132
belonged to seed pools generated with the help of the
spam trap.

6.2.1 Data Streams Limitations
The limited view we have from the transaction log gen-
erated by only one DNSBL mirror limits the number of
bots we can track each day. BOTMAGNIFIER requires
an IP address to appear a minimum number of times in
the transaction log, in order to be considered as a po-
tential bot. From our DNSBL mirror, we observed that
a medium size campaign targets about 50,000 different
destination servers (i.e., |T (pi)| = 50,000). The value
of N for such a campaign, calculated using equation 5,
is 50. On an average day, our DNSBL mirror logs activ-
ity performed by approximately 4.7 million mail senders.
Of these, only about 530,000 (≈ 11%) appear at least 50
times. Thus, we have to discard a large number of po-
tential bots a priori, because of the limited number of
transactions our Spamhaus mirror observes. If we had
access to more transaction logs, our visibility would in-
crease, and, thus, the results would improve accordingly.

6.2.2 Overview of Tracking Results
For each day of analysis, BOTMAGNIFIER identified
the largest spam campaigns active during that day (Sec-
tion 2), learned the behavior of a subset of IP addresses
carrying out those campaigns (Section 3), and grew a
population of IP addresses behaving in the same way
(Section 4). This provided us with the ability to track
the population of the largest botnets, monitoring how ac-
tive they were, and determining which periods they were
silent.

A challenging aspect of tracking botnets with BOT-
MAGNIFIER has been assigning the right label to the var-
ious spam campaigns (i.e., the name of the botnet that
generated them). Tagging the campaigns that we ob-
served in our honeypot environment was trivial, while for
the others we used the clustering techniques described in
Section 5. In total, we observed 1,475 spam campaigns.
We tried to assign a botnet label to each cluster, and ev-
ery time two clusters were assigned the same label, we

merged them together. After this process, we obtained
38 clusters. Seven of them were large botnets, which
generated 50,000 or more bot IP addresses in our magni-
fication results. The others were either smaller botnets,
campaigns carried out by dedicated servers (i.e., not car-
ried out by botnets), or errors produced by the clustering
process.

We could not assign a cluster to 107 campaigns (≈ 7%
of all campaigns), and we magnified these campaigns
independently from the others. Altogether, the magni-
fied sets of these campaigns accounted for 20,675 IP ad-
dresses (≈ 2% of the total magnified hosts). We then
studied the evolution over time and the spamming capa-
bilities of the botnets we were able to label.

6.2.3 Analysis of Magnification Results
Table 1 shows some results from our tracking. For each
botnet, we list the number of IP addresses we obtained
from the magnification process. Interestingly, Lethic,
with 887,852 IP addresses, was the largest botnet we
found. This result is in contrast with the common be-
lief in the security community that, at the time of our
experiment, Rustock was the largest botnet [18]. How-
ever, from our observation, Rustock bots appeared to be
more aggressive in spamming than the Lethic bots. In
fact, each Rustock bot appeared, on average, 173 times
per day on our DNSBL mirror logs, whereas each Lethic
bot showed up only 101 times.

For each botnet population we grew, we distinguished
between static and dynamic IP addresses. We considered
an IP address as dynamic if, during the testing period, we
observed that IP address only once. On the other hand, if
we observed the same IP address multiple times, we con-
sider it as static. The fraction of static versus dynamic
IP addresses for the botnets we tracked goes from 15%
for Rustock to 4% for MegaD. Note that smaller botnets
exceeded the campaign size thresholds required by BOT-
MAGNIFIER (see Section 5) less often than larger bot-
nets, and therefore it is possible that our system under-
estimates the number of IP addresses belonging to the
MegaD and Waledac botnets.

Figures 2(a) and 2(b) show the growth of IP addresses
over time for the magnification sets belonging to Lethic
and Rustock (note that we experienced a downtime of
the system during November 2010). The figures show
that dynamic IP addresses steadily grow over time, while
static IP addresses reach saturation after some time. Fur-
thermore, it is interesting to notice that we did not ob-
serve much Rustock activity between December 24, 2010
and January 10, 2011. Several sources reported that the
botnet was (almost) down during this period [14, 37].
BOTMAGNIFIER confirms this downtime of the botnet,
which indicates that our approach can effectively track
the activity of botnets. After the botnet went back up



Botnet Total # of IP addresses # of dynamic IP addresses # of static IP addresses # of events per bot
(per day)

Lethic 887,852 770,517 117,335 101
Rustock 676,905 572,445 104,460 173
Cutwail 319,355 285,223 34,132 208
MegaD 68,117 65,062 3,055 112
Waledac 36,058 32,602 3,450 140

Table 1: Overview of the BOTMAGNIFIER results
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Figure 2: Growth of the dynamic and static IP address populations for the two major botnets

again in January 2011, we observed a steady growth in
the number of Rustock IP addresses detected by BOT-
MAGNIFIER.

Figures 3(a) and 3(b) show the cumulative distribu-
tion functions of dynamic IP addresses and static IP ad-
dresses tracked during our experiment for the five largest
botnets. It is interesting to see that we started observing
campaigns carried out by Waledac on January 1, 2011.
This is consistent with the reports from several sources,
who also noticed that a new botnet appeared at the same
time [17, 31]. We also observed minimal spam activities
associated with MegaD after December 7, 2011. This
was a few days after the botmaster was arrested [30].

6.3 Application of Results
False positives. In Section 4, we showed how the pa-
rameter k minimizes the ratio between true positives and
false positives. We initially tolerated a small number of
false positives because these do not affect the big picture
of tracking large botnet populations. However, we want
to quantify the false positive rate of the results, i.e., how
many of the bot candidates are actually legitimate ma-
chines. This information is important, especially if BOT-
MAGNIFIER is used to inform Internet Service Providers
or other organizations about infected machines. Further-
more, if we want to use the results to improve spam fil-

tering systems, we need to be very careful about which
IP addresses we consider as bots. We use the same tech-
niques outlined in Section 6.1 to check for false posi-
tives. We remove each IP address that matches any of
these techniques from the magnified sets.

We ran this false positive detection heuristic on all the
magnified IP addresses identified during the evaluation
period. This resulted in 35,680 (≈1.6% of the total) IP
addresses marked as potential false positives. While this
might sound high at first, we also need to evaluate how
relevant this false positive rate is in practice: our results
can be used to augment existing systems and thus we can
tolerate a certain rate of false positives. In addition, while
deploying BOTMAGNIFIER in a production system, one
could add a filter that applies the techniques from Sec-
tion 6.1 to any magnified pool, and obtain clean results
that he could use for spam reduction.

Improving existing blacklists. We wanted to under-
stand whether our approach can improve existing black-
lists by providing information about spamming bots that
are currently active. To achieve this, we analyzed the
email logs from the UCSB computer science department
over a period of two months, from November 30, 2010
to February 8, 2011. As a first step, the department mail
server uses Spamhaus as a pre-filtering mechanism, and
therefore the majority of the spam gets blocked before
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Figure 3: Cumulative Distribution Function for the bot populations grown by BOTMAGNIFIER

being processed. For each email whose sender is not
blacklisted, the server runs SpamAssassin [3] for content
analysis, to find out if the message content is suspicious.
SpamAssassin assigns a spam score to each message, and
the server flags it as spam or ham according to that value.
These two steps are useful to evaluate how BOTMAGNI-
FIER performs, for the following reasons:

• If a mail reached the server during a certain day, it
means that at that time its sender was not blacklisted
by Spamhaus.

• The spam ratios computed by SpamAssassin pro-
vide a method for the evaluation of BOTMAGNI-
FIER’s false positives.

During the analysis period, the department mail server
logged 327,706 emails in total, sent by 228,297 distinct
IP addresses. Of these, 28,563 emails were considered
as spam by SpamAssassin, i.e., they bypassed the first
filtering step based on Spamhaus. These mails had been
sent by 10,284 IP addresses. We compared these IP ad-
dresses with the magnified sets obtained by BOTMAG-
NIFIER during the same period: 1,102 (≈ 10.8%) ap-
peared in the magnified sets. We then evaluated how
many of these IP addresses would have been detected be-
fore reaching the server if our tool would have been used
in parallel with the DNSBL system. To do this, we an-
alyzed how many of the spam sender IP addresses were
detected by BOTMAGNIFIER before they sent spam to
our server. We found 295 IP addresses showing this be-
havior. All together, these hosts sent 1,225 emails, which
accounted for 4% of the total spam received by the server
during this time.

We then wanted to quantify the false positives in the
magnified pools generated by BOTMAGNIFIER. To do
this, we first searched for those IP addresses that were
in one of the magnification pools, but had been consid-
ered sending ham by SpamAssassin. This resulted in 28

matches. Of these, 15 were blacklisted by Spamhaus
when we ran the tests, and therefore we assume they are
false negatives by SpamAssassin. Of the remaining 13
hosts, 12 were detected as legitimate servers by the fil-
ters described in Section 6.1. For the remaining one IP
address, we found evidence of it being associated with
spamming behavior on another blacklist [23]. We there-
fore consider it as a false negative by SpamAssassin as
well.

In summary, we conclude that BOTMAGNIFIER can
be used to improve the spam filtering on the department
email server: the server would have been reached by 4%
less spam mails, and no legitimate emails would have
been dropped by mistake within these two months. Hav-
ing access to more Spamhaus mirrors would allow us to
increase this percentage.

Resilience to evasion. If the techniques introduced by
BOTMAGNIFIER become popular, spammers will mod-
ify their behavior to evade detection. In this section, we
discuss how we could react to such evasion attempts.

The first method that could be used against our system
is obfuscating the email subject lines, to prevent BOT-
MAGNIFIER from creating the seed pools. If this was the
case, we could leverage previous work [22,40] that takes
into account the body of emails to identify emails that are
sent by the same botnet. As an alternative, we could use
different methods to build the seed pools, such as clus-
tering bots based on the IPs of the C&C servers that they
contact.

Another evasion approach spammers might try is to re-
duce the number of bots associated with each campaign.
The goal would be to stay under the threshold required
by BOTMAGNIFIER (i.e., 1,000) to work. This would re-
quire more management effort on the botmaster’s side,
since more campaigns would need to be run. Moreover,
we could use other techniques to cluster the spam cam-



paigns. For example, it is unlikely that the spammers
would set up a different website for each of the small
campaigns they create. We could then cluster the cam-
paigns by looking at the web sites the URLs in the spam
emails point to.

Other evasion techniques might be to assign a single
domain to each spamming bot, or to avoid evenly dis-
tributing email lists among bots. In the first case, BOT-
MAGNIFIER would not be able to unequivocally identify
a bot as being part of a specific botnet. However, the at-
tribution requirement could be dropped, and these bots
would still be detected as generic spamming bots. The
second case would be successful in evading our current
systems. However, this behavior involves something that
spammers want to avoid: having the same bot sending
thousands of emails to the same domain within a short
amount of time would most likely result in the bot being
quickly blacklisted.

6.4 Universality of k

In Section 4, we introduced a function to determine the
optimal N value according to the size of the seed pool’s
target |T (pi)|. To do this, we analyzed the data from two
C&C servers of the Cutwail botnet. One could argue that
this parameter will work well only for campaigns carried
out by that botnet. To demonstrate that the value of k
(and subsequently of N ) estimated by the function pro-
duces good results for campaigns carried out by other
botnets, we ran the same precision versus recall tech-
nique we used in Section 4 on other datasets. Specifi-
cally, we analyzed 600 campaigns observed in the wild,
that had been carried out by the other botnets we stud-
ied (Lethic, Rustock, Waledac, and MegaD). Since we
did not have access to full ground truth for these cam-
paigns, we used the IP addresses from the seed pools as
true positives, and the set of IP addresses not blacklisted
by Spamhaus as false positives. For the purpose of this
analysis, we ignored any other IP address returned by
the magnification process (i.e., magnified IP addresses
already blacklisted by Spamhaus).

The results are shown in Figure 4. The figure shows
the function plot of k in relation to the size of |T (pi)|.
The dots show, for each campaign we analyzed, where
the optimal value of k lies. As it can be seen, the func-
tion of k we used approximates the optimal values for
most campaigns well. This technique for setting k might
also be used to set up BOTMAGNIFIER in the wild, when
ground truth is not available.

Data stream independence. In Section 2.2, we
claimed that BOTMAGNIFIER can work with any kind of
transaction log as long as this dataset provides informa-
tion about which IP addresses sent email to which des-
tination email servers at a given point in time. To con-
firm this claim, we ran BOTMAGNIFIER on an alterna-
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tive dataset, extracted from netflow records [7] collected
by the routers of a large Internet service provider. The
netflow data is collected with a sampling rate of 1 out
of 1,000. To extract the data in a format BOTMAGNI-
FIER understands, we extracted each connection directed
to port 25 TCP, and considered the timestamp in which
the connection initiated as the time the email was sent.
On average, this transaction log contains 1.9 million en-
tries per day related to about 194,000 unique sources.

To run BOTMAGNIFIER on this dataset, we first need
to correctly dimension k. As explained in Section 4, the
equation for k is stable for any transaction log. How-
ever, the value of the constants kb and α changes for
each dataset. To correctly dimension these parameters,
we ran BOTMAGNIFIER on several campaigns extracted
from the netflow records. The PR(k) analysis is shown
in Figure 5. The optimal point of the campaigns is lo-
cated at a lower k for this dataset compared to the ones
analyzed in Section 4. To address this difference, we
set kb to 0.00008 and α to 1 when dealing with netflow
records as transaction logs. After setting these param-



eters, we analyzed one week of data with BOTMAGNI-
FIER. The analysis period was between January 20 and
January 28, 2011. During this period, we tracked 94,894
bots. Of these, 36,739 (≈ 38.7%) belonged to the mag-
nified sets of the observed campaigns. In particular, we
observed 40,773 Rustock bots, 20,778 Lethic bots, 6,045
Waledac bots, and 1,793 Cutwail bots.

7 Related Work

Spam is one of the major problems on the Internet, and as
a result, has attracted a considerable amount of research.
In this section, we briefly review related work in this area
and discuss the novel aspects of BOTMAGNIFIER.

Botnet Tracking. A popular method to gain deeper in-
sights into a particular botnet is botnet tracking, i.e., an
attempt to learn more about a given botnet by analyzing
its inner workings in detail [1, 8]. There are several ap-
proaches to conduct the actual analysis, for example by
taking over the C&C infrastructure and then performing
a live analysis [26,33]. An orthogonal approach is to take
down the C&C server and perform an offline analysis of
the server to reconstruct information [21]. A less inva-
sive approach is to (automatically) reverse-engineer the
communication protocol used by the botnet and then im-
personate a bot [4, 6, 15, 32]. This enables a continuous
collection of information about the given botnet, e.g., to
gather the spam templates used by the bots [6].

BOTMAGNIFIER complements these approaches: we
are able to track spamming botnets on the Internet in a
non-invasive way from a novel vantage point. The in-
formation generated by our tool enables us to perform a
high-level study of botnets. For example, we can track
their size and evolution over time, and obtain a live view
of hosts that belong to a particular botnet.

Ramachandran et al. also analyzed queries against a
DNSBL to reveal botnet memberships [27], but their
motivation is completely different from ours: the intu-
ition behind their approach is that bots might check if
their own IP address is blacklisted by a given DNSBL.
Such queries can be detected, which discloses informa-
tion about infected machines. BOTMAGNIFIER is com-
plementary with respect to this approach because it an-
alyzes intrinsic traces left by spamming machines (i.e.,
an email server will query the DNSBL for information),
and clustering and enriching this data enables us to find
spambots in a generic way. Furthermore, we demon-
strated that our approach can also be used on other kinds
of transaction logs.

Spam Studies. Several studies analyzed spam and the
side-effects of this business [2, 12, 16, 42, 43]. BOT-
LAB [11], a tool to correlate incoming spam mails with
outgoing spam collected by executing known bots in an

analysis environment, shares some characteristics with
our approach. The analysis results of BOTLAB can ap-
proximate the relative size of different spamming bot-
nets and provide insights into current spam campaigns
based on the information collected at the site running the
tool. In contrast, BOTMAGNIFIER enables us to detect
IP addresses of hosts that belong to spamming botnets
at an Internet-wide level. We use the analysis environ-
ment only to collect information that enables us to as-
sign labels to spam campaigns, while all other analysis
techniques (e.g., the DNSBL analysis) are different com-
pared to BOTLAB.

Another system that shares some similarities with our
approach is AUTORE [40], which examines content-
level features in the email body such as URLs to group
spam messages into campaigns. The authors performed a
large-scale evaluation based on mail messages collected
by a large webmail provider to generate signatures to de-
tect polymorphic modifications for individual spam cam-
paigns. Xie et al. also examined characteristics of the
spam campaigns, similar to our work. In contrast, our
approach focuses primarily on the behavioral similarities
between members of a spamming botnet, without requir-
ing knowledge of the actual spam content.

Spam Mitigation. The typical approaches to detect
spam either focus on the content of spam messages [3,
22, 40] or on the analysis of network-level features [10,
25, 26, 28, 29, 38]. BOTMAGNIFIER generates lists of IP
addresses that belong to spamming botnets, which com-
plements both kinds of approaches: the analysis results
can be used to improve systems that use network-level
features to detect spambots, e.g., by proactively listing
such IP addresses in blacklists, or complement existing
systems, as demonstrated in Section 6.3. Furthermore,
the information can be used to notify ISPs about infected
customers within their networks.

8 Conclusion

We presented BOTMAGNIFIER, a tool for tracking and
analyzing spamming botnets. The tool is able to “mag-
nify” an initial seed pool of spamming IP addresses
by learning the behavior of known spamming bots and
matching the learned patterns against a (partial) log of
the email transactions carried out on the Internet. We
have validated and evaluated our approach on a number
of datasets (including the ground truth data from a bot-
net’s C&C hosts), showing that BOTMAGNIFIER is in-
deed able to accurately identify and track botnets.

Future work will focus on finding new data inputs that
can either populate our initial seed pools or on obtain-
ing a different, more comprehensive transaction log to be
able to identify spamming bots more comprehensively.



Also, analyzing larger data streams might allow us to ap-
ply more features for our magnification process, produc-
ing more complete results.
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