
Meerkat:
Detecting Website Defacements through Image-based Object Recognition

Kevin Borgolte, Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara

{kevinbo,chris,vigna}@cs.ucsb.edu

Abstract

Website defacements and website vandalism can inflict sig-
nificant harm on the website owner through the loss of sales,
the loss in reputation, or because of legal ramifications.

Prior work on website defacements detection focused on
detecting unauthorized changes to the web server, e.g., via
host-based intrusion detection systems or file-based integrity
checks. However, most prior approaches lack the capabili-
ties to detect the most prevailing defacement techniques used
today: code and/or data injection attacks, and DNS hijack-
ing. This is because these attacks do not actually modify the
code or configuration of the website, but instead they intro-
duce new content or redirect the user to a different website.

In this paper, we approach the problem of defacement
detection from a different angle: we use computer vision
techniques to recognize if a website was defaced, similarly
to how a human analyst decides if a website was defaced
when viewing it in a web browser. We introduce MEERKAT,
a defacement detection system that requires no prior
knowledge about the website’s content or its structure, but
only its URL. Upon detection of a defacement, the system
notifies the website operator that his website is defaced, who
can then take appropriate action. To detect defacements,
MEERKAT automatically learns high-level features from
screenshots of defaced websites by combining recent
advances in machine learning, like stacked autoencoders
and deep neural networks, with techniques from computer
vision. These features are then used to create models that
allow for the detection of newly-defaced websites.

We show the practicality of MEERKAT on the largest web-
site defacement dataset to date, comprising of 10,053,772
defacements observed between January 1998 and May 2014,
and 2,554,905 legitimate websites. Overall, MEERKAT
achieves true positive rates between 97.422% and 98.816%,
false positive rates between 0.547% and 1.528%, and
Bayesian detection rates1 between 98.583% and 99.845%,
thus significantly outperforming existing approaches.

1The Bayesian detection rate is the likelihood that if we detect a
website as defaced, it actually is defaced, i.e., P(true positive|positive).

1 Introduction
The defacement and vandalism of websites is an attack

that disrupts the operation of companies and organizations,
tarnishes their brand, and plagues websites of all sizes,
from those of large corporations to the websites of single
individuals [1–3].

In a website defacement, an attacker replaces the content
of a legitimate website with some of his/her own content. A
website might be defaced for many different reasons and in
many different ways: For example, an attacker might deface
the website by brute-forcing the administrator’s credentials,
by leveraging a SQL injection to introduce content or code,
or by hijacking the domain name; however, all defaced
websites share one characteristic: the defacer leaves a
message that is shown to the visitors of the website instead
of the legitimate content, changing the visual appearance
of the website.

Although nearly all defacers vandalize websites for their
“15 minutes of fame,” and to get a platform to publicize
their message, their messages vary: some embarrass the
website’s operator, others make a political or religious point,
and others again do it simply for “bragging rights.” For
instance, in the beginning of November 2014, as reported
by the BBC [4], attackers defaced the website of the
Keighley Cougars, a professional rugby club from England
competing in League 1. The defacers modified the website
so that visitors were greeted with a message in support
of the terrorist organization “Islamic State of Iraq and the
Levant/Syria” (ISIL/ISIS). Similarly, in late 2012, defacers
close to the Syrian regime defaced the homepage of the
prominent Qatari television network Al Jazeera, and instead
of being shown news articles, visitors were greeted by a
message alleging Al Jazeera of “spreading false fabricated
news.” Reliably detecting such website defacements is
challenging, as there are many ways in which an attacker
can tamper with the website’s appearance, including
re-routing the traffic to a different website, which does not
affect the legitimate website’s content directly in any way.

In this paper, we introduce MEERKAT, a website
monitoring system that automatically detects if a website
has been defaced. MEERKAT detects website defacements
by rendering the website in a browser, like a normal visitor

mailto:kevinbo@cs.ucsb.edu
mailto:chris@cs.ucsb.edu
mailto:vigna@cs.ucsb.edu


(a) Normal, non-defaced version. (b) Defaced version.

Figure 1: Screenshots of the Keighley Cougars homepage, non-defaced and defaced in an attack on November 2, 2014. (a) shows how the
website looks normally, (b) shows how the defaced website looked like after being defaced by Team System Dz, a defacer group close to the terrorist
organization Islamic State of Iraq and the Levant/Syria (ISIL/ISIS).

would, and deciding, based on features learned exclusively
from screenshots of defacements and legitimate websites
observed in the past, if the website’s look and feel is that of
a defaced or a legitimate website. If the website is detected
as being defaced, the system notifies the operator, who,
in turn, can, depending on the confidence in MEERKAT’s
decision, put the website (automatically) in maintenance
mode or restore a known good state to reduce the damage.

Our technical contributions in this paper are:

v We introduce MEERKAT, a website defacement
detection system that learns a high-level feature set from
the visual representation of the website, i.e., it learns
a compressed representation of the look and feel of
website defacements and legitimate websites. Based on
the learned features, the system then produces a model
to differentiate between defaced and legitimate websites,
which it uses to detect website defacements in the wild.
In addition, the system notifies the website’s operator
upon detection (Section 3).

v We evaluate MEERKAT on the largest website deface-
ment dataset to date, comprising of 10,053,772 website
defacements observed between January 1998 to May
2014, and 2,554,905 legitimate and (supposedly) not
defaced websites from Alexa’s, MajesticSEO’s, and
QuantCast’s top 1 million lists (Section 4).

In the remainder of this paper, we make a compelling case
for the need of an accurate and lightweight website mon-
itoring system that detects website defacements (Section 2),
discuss how MEERKAT works in detail (Section 3), evaluate
our system on the largest defacement dataset to date
(Section 4), discuss some limitations of website defacement
detection systems (Section 5), compare MEERKAT to related
work (Section 6), and, finally, we conclude (Section 7).

2 Motivation
Lately, the detection of website defacements as a research

topic has not received much attention from the scientific
community, while, at the same time, defacements became
more prominent than they have ever been. The number of
reported defacements has been exceeding the number of
reported phishing pages since October 2006 by a factor of
7 on average, and reached up to 33.39 defacements being re-

ported to Zone-H2 per phishing page reported to PhishTank3

(see Figure 2). Yet, website vandalism is often played down
as a problem instead of being acknowledged and addressed.

The increase in defacements is evident (see Figure 2):
while a mere 783 verified defacements were reported
on average each day to Zone-H in 2003, the number of
reports increased to 3,258 verified defacements per day
for the year 2012, to an all-time high of over 4,785 verified
defacements being reported each day to Zone-H in 2014.
This corresponds to an increase of websites being defaced
by 46.87% from 2012 to 2014 [5].

Similarly, according to the Malaysian Computer
Emergency Response Team (CERT), 26.04% of all reported
incidents in 2013 were website defacements, but only 1.5%
of the reported incidents were defacements in 2003, and
10.81% were website defacements in 2007 [7, 8].

Furthermore, in 2014, attackers confirmedly defaced over
53,000 websites ranked on Alexa’s, MajesticSEO’s, and
QuantCast’s top 1 million lists. Corroborating that not only
websites that are “low-hanging fruit” are being defaced, but
that high-profile ones are being attacked alike (see Table 1).

This recent resurgence and the increase in defacements
and “cyber-vandalism” is generally attributed to the rise of
hacktivist groups, like anonymous or LulzSec [9, 10], but
also gained traction through the escalation of international
conflicts [11, 12]. Although the scientific consensus is
that the attacks employed to deface a website are usually
rather primitive in nature [9], hacktivist groups and other
politically- and religiously-motivated defacers have been
extremely successful in the past: in February 2015, Google
Vietnam was defaced by Lizard Squad for several hours [13];
in January 2015, the website of Malaysia Airlines was de-
faced by Cyber Caliphate [3]; in late 2014, the defacer group
Team System Dz defaced over 1,700 websites to speak out
against the actions of the US in the Syrian civil war and to ad-
vocate for ISIS/ISIL [2]; in April 2014, over 100 websites be-

2Zone-H [5] is an archive containing only defaced websites, all
reported defacements are mirrored locally and manually verified [6]. Upon
manual inspection, a reported defacement is removed from the archive
if it does not constitute a defacement, or it is marked as verified.

3PhishTank is the largest public clearinghouse of data about phishing
scams, users report potential phishing scams and other users agree or
disagree with the submitter, resulting in a user-assigned phishing score.
Phishing pages are not being verified by expert analysts.

2



Month Website
Alexa MajesticSEO QuantCast Page Views

per Month HUS Global TLD1 Global US

Nov 2014
princeton.edu 999 3,412 17 273 3,444 796,000
volvo.com 54,607 57,046 3,757 7,323 568,058 -
cca.gov.in2 146,0393 780,660 - - - -

Aug 2014 openelec.tv 7,2264 48,754 184 93,894 - -
omicsonline.org 7,5613 42,030 5,068 63,924 - -

Jul 2014

ct.gov 2,454 10,976 72 2,054 3,548 809,000
us.to 2,8465 28,100 18 11,061 - -
sunnewsonline.com 686 9,958 31,315 58,277 236,740 -
newsmoments.in 3,725 39,262 - - - -

Jun 2014 wordpress.net 3,5227 41,295 1,410 28,021 321,317 -

May 2014 arynews.tv 728 5,308 949 536,436 - -
sundaytimes.lk 1209 38,591 6 39,866 209,083 -

Mar 2014 taylorswift.com 3,560 23,425 12,161 23,608 15,678 1.2 million
gbjobs.com 79810 9,181 - - - -

Dec 2013 openssl.net 5,994 16,409 80 933 - -

Oct 2013

avg.com 117 155 471 854 - 37 million
aljazeera.net 2511 1,831 37 920 2,196 28 million
bitdefender.com 5,934 5,898 1,132 2,094 3,963 1.4 million
avira.com 2412 1,108 1,275 2,361 6,081 480,000
leaseweb.com 3594 4,035 23,585 44,451 230,626 -
metasploit.com 124,365 175,570 33,537 59,816 120,839 -

2011-201314

telegraph.co.uk 2113 225 3 107 613 125 million
ups.com 71 231 319 549 101 40 million
nationalgeographic.com 483 1,006 94 139 125 37 million
acer.com 4,060 6,042 - - 1,995 2.9 million
theregister.co.uk 2,737 3,457 443 14 11,327 1 million
vodafone.com 7,05213 20,625 5,833 2,980 101,624 -

Table 1: Recent high-profile websites that were defaced, with their respective page rank according to Alexa, MajesticSEO, and QuantCast, and their monthly
page impressions. These defacements were reported to Zone-H and include a major logistics company (UPS), computer and information security vendors (BitDefender,
Avira, AVG, MetaSploit), news websites (Al Jazeera, Ary News, News Moments, Sunday Times, Sun News Online, Telegraph, The Register), a scientific society (National
Geographic), a hardware vendor (Acer), the world’s second largest telecommunications provider (Vodafone), a singer-songwriter/actress (Taylor Swift), the state of
Connecticut (ct.gov), an Indian federal ministry (cca.gov.in), an auto-mobile company (Volvo), an ivy-league university (Princeton), well-known open source projects
(OpenSSL, OpenELEC), and a hosting provider (Leaseweb). Missing fields represent unavailable data, data is unavailable due to being kept secret by the website operators
or requiring subscriptions to Alexa, MajesticSEO or QuantCast.
1 Top-level domain rank. 2 Government of India, Ministry of Communications & Information Technology. 3 Rank in India. 4 Rank in Netherlands.
5 Rank in Indonesia. 6 Rank in Nigeria. 7 Rank in Bulgaria. 8 Rank in Pakistan. 9 Rank in Sri Lanka. 10 Rank in China. 11 Rank in Yemen.
12 Rank in Iran. 13 Rank in United Kingdom. 14 Selected high-profile website defacements from Fortune 50 and Global 500 companies between 2011 to 2013.

longing to the government and major companies in Zambia
were defaced by Syrian and Saudi Arabian defacers to voice
against the Western world’s meddling in the Syrian civil
war [14]; in January 2014, the website of the popular mobile
game Angry Birds was defaced in protest of governmental
spying by the NSA and GHCQ [15]; and, in October 2013,
a Pakistani defacer group gained access to the domain regis-
trars of Suriname, Antigua & Barbados, and Saint Lucia and
defaced the regional websites of Audi, AVG, BlackBerry,
BMW, Canon, Coca-Cola, Fujitsu, Hitachi, Honda, IBM, In-
tel, Microsoft, Samsung, Symantec, Rolls-Royce, Vodafone,
and other companies simply for “bragging rights” [16].

A prime example that quantifies the impact of deface-
ments is the case of the Telegraph, a major UK daily
newspaper, which was defaced in September 2011. The
Telegraph is the third most-visited website in the United
Kingdom, according to MajesticSEO, and it is the 21st most
visited website in the United States, according to Alexa.
Each month, the homepage of the Telegraph is visited over
125 million times (48 times per second), and, since reports
state that the defacement lasted around three hours, we can
estimate that more than 500,000 people saw the defacement
instead of the legitimate website.4

4Since the website was defaced on a Sunday afternoon local time in
the United Kingdom, the number of visitors is likely much higher.

20
00

-0
1

20
01

-0
1

20
02

-0
1

20
03

-0
1

20
04

-0
1

20
05

-0
1

20
06

-0
1

20
07

-0
1

20
08

-0
1

20
09

-0
1

20
10

-0
1

20
11

-0
1

20
12

-0
1

20
13

-0
1

20
14

-0
1

Month

100

1,000

10,000

100,000

1,000,000

R
ep

or
te

d
W

eb
si

te
s

Reported Websites per Month

Defacements

Phishing Pages

Figure 2: Defacements reported to Zone-H and phishing pages
reported to PhishTank, per month from January 2000 to including
October 2014. The drops in reported defacements in February 2002,
February 2009, and March 2009 are because Zone-H was under
maintenance during that time and did not accept any new reports. No
data is available from PhishTank earlier than October 2006, when the
website was launched. The trend of an increasing number of defacements
per month, as well as the gap in the number of defacements to the number
of phishing pages of a factor of up to 33x are evident.

While the list of prominent defacements goes on [4,
17–25], it is important to note that most techniques to
deface a website, like code and data injection attacks
(such as SQL injections), improper access control, or
DNS hijacking and poisoning, have been well-studied
and protection mechanisms have been proposed by prior

3



work [26, 27]. However, it is extremely hard to protect
against all defacement attacks simultaneously and at scale.

Even worse, organizations are often responsible for
hundreds (or thousands) of different websites, with different
levels of security [9]. A single insecure website that
is defaced, however, can inflict significant harm on the
organization: in qualitative terms because of the loss of
reputation, and in quantitative terms because of the cost
of having to investigate and remove the defacement.

Although defacements can inflict serious harm on the
website operator, a two-month study by Bartoli et al. [28]
shows that many website operators still react slowly to
defacements with an average response time of over 72
hours. Moreover, their study finds that mere 24% of the
defaced websites were restored within one day, about 50%
defacements were removed within the first week, while
more than 37% of the websites remained defaced for over
two weeks. Overall, their findings suggest that prior website
defacement protection techniques and detection methods
have not been widely adopted.

We argue that the logical first step is to reduce the harm
inflicted on the website operator by quickly detecting if
his/her website has been defaced, so that the operator can
put the website in maintenance mode or restore its content
to a known good state. As such, an automatic, accurate,
and lightweight defacement detection system that monitors
websites, notifies the website’s operator, and acts as an early
warning system is desired. In this paper, we propose one
such system, MEERKAT.

3 Meerkat
The approach MEERKAT takes to detect website

defacements is fundamentally different from prior work
for three reasons. First, while the system does leverage
machine learning for classification, it does not rely on
handpicked features that were selected based on prior
domain knowledge, i.e., it requires no feature engineering.
Instead, MEERKAT relies on recent advances in machine
learning, stacked autoencoders, to learn high-level features
directly from data. Second, MEERKAT does not require the
website operator to supply any information other than the
domain name at which his/her website can be accessed. We
designed our system in this way because other defacement
detection systems that require the operator to define
keywords and other metadata, provide a reference version
of his/her website, or describe the website’s legitimate
content, have been rarely adopted in the past. By reducing
the effort required from the website operator to actually
use a defacement detection system, we hope to improve on
this situation. Finally, MEERKAT approaches defacement
detection visually: the system analyzes the look and feel
of the website and how a user would experience it by
rendering it in a web browser and analyzing a screenshot of
the website, instead of analyzing its source code or content.

Approaching the problem of detecting website deface-
ments visually has several advantages over analyzing the
source code or content of a website: some defacements rely
heavily on JavaScript and Cascading Style Sheets (CSS)
to stylize the defacement, which all must be analyzed in an

overarching browser context, and others again rely heavily
on images. In fact, similar to spam, phishing, and many
scams, defacements often do not contain much textual
content, but include images to display text instead [29],
thus they trivially evade text-based detection approaches.
Furthermore, the source code of two websites can be vastly
different, yet they appear the same to the human eye when
rendered in a browser. Therefore, leveraging prior work,
such as DELTA [30], to analyze the DOM-tree, the website’s
code, or parts thereof, is unlikely to be successful when
trying to detect website defacements accurately, which is
why we opted for a perceptual approach that does not suffer
from the aforementioned problems.

Following, we describe how MEERKAT learns from
defacements and legitimate websites, and how it detects
defacements in the wild. Next, we motivate the structure
of our deep neural network briefly, then, we discuss the
concept and motivation of fine-tuning the network, then,
we provide some notes on our implementation, and, last, we
briefly recap how MEERKAT can be deployed in practice.

3.1 Training and Detection
Before MEERKAT can be trained, two crucial parameters

must be selected that determine how and from what data
the system learns the look and feel of defacements:

Window Size. MEERKAT is not trained on whole
screenshots of websites, but on a window “into” each
website (i.e., only a part of the screenshot), thus we must
select the size of these representative windows. Some
important considerations must be made before picking
the size of the windows that we extract.
A small window can be more accurate because it might
only contain the exact representative part of the deface-
ment but not any noise, like an irrelevant background
color. However, if the windows are too small, the system
will also have more false positives because the windows
are not representative of defacements; instead, they are
representative for only parts of the defacements, which
might also occur in legitimate websites.
On the other hand, when using larger windows, it will
take significantly longer to train the network initially,
but the network might learn a more accurate model.
However, if the windows are too large, then the system
will learn about specific kinds of defacements in-detail
and overfit; e.g., the system might learn that two
defacements are different, while the two defacements
are actually the same but have a slightly different,
dynamically-generated background image.
Considering the trade-offs for different window sizes, for
our implementation, we decided to extract windows that
are 160×160 pixels in size. Our evaluation later shows
that this window size works well in practice to detect
website defacements (see Section 4). We briefly explored
other window sizes, like 30×30, that fared worse.

Window Extraction Strategy. The strategy to extract the
representative window from a screenshot is fundamental
to learn the look and feel of defacements and legitimate

4



websites. If the windows are extracted according
to some poorly chosen strategy, then we expect the
classification accuracy to be poor as well. For instance,
if the strategy always extracts the part of a website that is
just a plain background, the system will only detect plain
backgrounds. Therefore, it is crucial that the window
extraction strategy is chosen well, and we compare some
suitable strategies, like extracting the window always
from the center or at random, later (see Section 3.1.2).

After selecting these parameters carefully, the system
can be trained. This is where most of the complexity of
MEERKAT lies. The training phase works as follows:

1. We collect a considerable amount of labeled website
defacements and legitimate websites, and we extract
their graphic representation (i.e., a screenshot of the
browser window; Section 3.1.1)

2. For each sample, we extract the 160×160 represen-
tative window from each screenshot according to the
selected extraction strategy (Section 3.1.2).

3. The representative windows are first used to learn the
features of our approach, and then to learn the model
for classification, for which we use a neural network
(Section 3.2).

Once the neural network is trained, MEERKAT detects
defacements in the wild. Its detection phase consists of
only two steps, on which we expand later:

1. The website is visited with a browser to retrieve a
representative screenshot (Section 3.1.1).

2. A sliding window approach is used to check if the website
is defaced and, if so, an alert is raised (Section 3.1.3).

3.1.1 Screenshot Collection

The first step to detect if a website has been defaced based on
its look and feel is to collect a screenshot of how the website
looks for a normal visitor. MEERKAT visits the website
with a browser that renders the website like any other
browser would, and takes a screenshot once the browser
finished rendering the website. In our implementation, we
use PhantomJS to collect the screenshots of the websites.
PhantomJS is a headless browser based on the Webkit layout
engine that renders websites (nearly) identical to Safari
or Google Chrome. PhantomJS also executes included
JavaScript code, renders Cascading Style Sheets (CSS),
and includes dynamic content, such as advertisements, like
a browser that a human would use.

Another important aspect in collecting a representative
screenshot of a website with a headless browser is the
resolution of the simulated screen. The resolution of the
display is important when collecting screenshots because
many websites render differently for different screen sizes,
such as for mobile devices, tablets, small notebooks, or
large displays. In our case, we decided to fix the resolution
to 1600×900 pixels, which is a display resolution often
found in budget and mid-range notebooks.

3.1.2 Window Extraction Techniques

For training the system, after collecting the screenshots,
we need to extract a representative window from each
screenshot so that we can train the neural network to detect
defacements. Various techniques can be used to extract
the representative window, which can be grouped into
deterministic and non-deterministic techniques. Hereinafter,
we discuss the trade-offs for four possible techniques: (i)
selecting the center window, (ii) selecting n non-overlapping
windows according to some measure (explained later),
(iii) uniformly selecting the window at random, and (iv)
randomly sampling the window’s center from a Gaussian
distribution for the x and y dimension separately.

Deterministic Window Extraction
The most straightforward deterministic technique is

to always extracts the window from the center of the
screenshot of the website. However, this makes evading
the system trivial. Generally, if an attacker can accurately
predict the window that will be extracted, he can force
the system to learn about defacements poorly, and, in
turn, deteriorate classification performance drastically.
Therefore, such a simple technique is unsuitable for a
detection system in an adversarial context.

Alternatively, one can extract the window according
to some measure. Identifying the most representative
window according to a measure (e.g., the Shannon entropy),
however, forces us to compute it for all possible windows
and then pick the top ranking one. In turn, for a1600×900
screenshot and a 160×160 window, we would need to
evaluate over 1 million candidate windows for each sample
in the dataset. In total, for our dataset, this would require
over 13 trillion computations of the measure just to extract
the representative windows. Clearly, this is impractical.

Nonetheless, a deterministic selection strategy based
on a clever measure can increase the accuracy of the system,
and it can also be extended trivially to extract multiple
top-ranking windows at no additional cost. However, using
more than one window per sample increases the dataset
size by a factor of n and prolongs training time. Therefore,
n would have to be chosen carefully.

Taking into account the trade-offs the different determin-
istic extraction strategies bear (increased training/detection
time, ease of evasion, or computationally impractical)
and considering that a comprehensive evaluation of them
would require at least an order of magnitude of additional
experiments,5 we decided to select a non-deterministic
extraction strategy that follows intuition and is based on
user interface and user experience design principles instead.
This selection makes our classification performance a lower
bound: other window extraction strategies might be more
accurate and/or robust, but (at the same time) they also incur
significant additional cost at training and/or detection time.

5Performing these additional experiments would require at least 6
months just in computational time on our current GPU infrastructure,
which is why we decided against performing them.

5



Non-deterministic Window Extraction
A straightforward non-deterministic strategy to extract a

window from a screenshot is to select it uniformly at random.
However, one cannot simply take any point from the
website’s screenshot as the center of the window. Instead,
it must be sampled so that the whole window contains
only valid data, forcing us to sample its center from the
interval [80,1520] for x and [80,820] for y (these intervals
are specific to the screenshot (1600×900) and window
size (160×160)). Therefore, pixels at the border have a
slightly lower probability to occur in a window than those in
the center. Although this is an unintended side effect, it has
negligible impact in practice because the center of a website
is more likely to be descriptive anyways. Alternatively, we
could create an “infinite” image by wrapping the screenshot
at its borders, which would, however, yield artifacts because
we would combine parts of the top of the website with parts
of the bottom (and left and right, respectively), resulting
in windows that do not occur on the real website, which,
in turn, might disturb or confuse detection.

Alternatively to selecting the window’s center uniformly
at random, one can sample it from any other distribution, dis-
cretizing the sampled point. For instance, from a Gaussian
distribution to extract windows from mostly the center of the
screenshot, but not extracting from it exclusively. A focus on
the center of the website is often desirable because it is likely
to be more descriptive of the website’s look and feel. For
robustness, however, we also want to the system to not learn
exclusively from the center but to also learn about deface-
ments that occur at the border of the website. Therefore, for
our implementation, we extract a single window per website
with a Gaussian extraction strategy with µx = 800 and σx =
134.63975 for x and µy = 450 and σy = 61.00864 for y, so
that the windows at the border of the screenshot have a lower
probability to be sampled but are not ignored completely. If
x and y values outside of the screenshot are sampled, we sim-
ply resample the value for x or y respectively. We selected
the µ and σ values this specifically so that we sample values
outside of the screenshot only with likelihood 0.0001%.

3.1.3 Defacement Detection

After MEERKAT has been trained on a set of extracted
windows, it can detect if a website has been defaced.
Detecting website defacements with MEERKAT is
conceptually extremely simple:

1. We visit the website that we want to check with our
browser and we take a screenshot of the rendered website
(Section 3.1.1).

2. We apply a standard sliding window detection approach
on the screenshot we took to check if a part of the
screenshot is detected as being defaced, similarly to
prior work in image classification [31].

3. If a window is detected to be a defacement by MEERKAT,
we raise an alert and inform the website operator that
his/her website has been defaced.

Note that MEERKAT does not compare a possibly-defaced
website to an older, legitimate version of it, and, thus, does
not need to analyze or store an older version. Instead, it
detects defacements solely by examining how the current
version looks like.

Exclusively to improve performance, instead of starting in
a corner of the screenshot, our system starts in the center and
moves outward. This behavior is motivated by the fact that
the center of the website is likely more descriptive, and our
training set was focused on the center region of the screen-
shots. This does not mean, however, that MEERKAT misses
defacements that are at the border of a website, they will
be detected when the sliding window reaches the actually-
defaced part, the border. The same is also true if a website is
only partially defaced: once the sliding window reaches the
defaced area, MEERKAT detects that the website is defaced.

Additionally, a special case worth mentioning is that
a legitimate website might show a large promotional
screen or an advertisement with the same intention of
a website defacer: attracting attention. In turn, such a
promotional screen might be similar in its look and feel
to that of a website defacement. While MEERKAT might
currently (theoretically) mislabel them as defacements,
our evaluation shows that they do not matter much (see
Section 4). Furthermore, if they start to matter at one
point in the future, it is straightforward to consider them:
the defacement engine can make use of an advertisement
blocker, and the website operator could whitelist the system
to not be shown any promotional screens.

3.2 Neural Network Structure
In this section, we briefly discuss the design of our deep

neural network and how the different layers of the network
interact with the input image. The structure of our deep
neural network was notably inspired by prior work by Le
at al. [32], Krizhevsky et al. [33], Sermanet et al. [31], and
Girshick et al. [34]. We refer to them for further details.

The main components of our deep neural network are
autoencoders, which we stack on top of each other, and a
standard feed-forward neural network. Autoencoders are a
special type of neural network that are used for unsupervised
learning. The goal of an autoencoder is to find a compressed,
possibly approximated encoding/representation of the input,
which can be used to remove noise from the input, or, when
autoencoders are stacked, they can learn high-level features
directly from the input, like where edges in an image are,
or if cats or human faces are part of an image [32].

Overall, the structure of our deep neural network is based
on the following idea: first, we use a stacked autoencoder
to denoise the input image and learn a compressed
representation of both defaced and legitimate websites, i.e.,
we leverage the stacked autoencoder to learn high-level
features, similar to Le et al. [32]; second, we utilize a
feed-forward neural network with dropout for classification,
similar to Krizhevsky et al. [33].

The initial layer of our stacked autoencoder is comprised
of local receptive fields. This layer is motivated by the need
to scale the autoencoders to large images [32, 35–38], this
layer groups parts of the image to connect to the next layer

6



Feed-forward with 
Dropout

Window Extraction
(Section 3.1.2)

Screenshot Collection
(Section 3.1.1)

1600x900x3

160x160x3
18x18x3

...

...
Local 

Receptive 
Fields

...

L2
Pooling

...

...

Local
Contrast

Normalization

...

Defaced

Legitimate

Deep Neural Network (Section 3.2)

Figure 3: Architecture of our deep neural network.

of the autoencoder, instead of allowing the whole image to
be used as input to each node of the following layer. It takes
20,164 (1422) sub-images of size 18×18 as input, extracted
at a stride of 1 from the 160×160 representative window
(see Figure 3; note that each pixel in each sub-image has
three dimensions for the three colors: red, green, and blue).
The second layer of our stacked autoencoder employs L2
pooling to denoise local deformations of the image and to
learn invariant features [37, 39–41]. Finally, the last layer
of our autoencoder performs local contrast normalization
for robustness [42].

The output of the stacked autoencoder is then used as
the input to a feed-forward neural network with dropout
that provides a 2-way softmax output. The 2-way softmax
output corresponds to the two classes that we want to detect:
defaced websites and legitimate websites. We use dropout
in our deep neural network to prevent overfitting of the
network, and to force it to learn more robust features by pre-
venting neurons to rely that other neurons of the network are
available (i.e., to prevent the co-adaptation of neurons) [43].

3.3 Fine-Tuning the Network’s Parameters
In an adversarial context, such as when trying to detect

if an attacker defaced a website, concept drift can be
introduced intentionally by the attacker and impede the
accuracy of the detection system drastically. Furthermore,
concept drift also occurs naturally, such as when the
style of defacements evolves over time in such a way that
the features cannot distinguish between legitimate and
defacement anymore. Therefore, concept drift can be a
severe limitation of any detection system, if it is not taken
into account and addressed properly (see Section 5.1).

MEERKAT can deal with concept drift in two different,
fully-automatic ways: fine-tuning the network’s parameters
(adjusting feature weights), and retraining the entire network
on new data. While the latter is conceptually straightforward
and addresses all kinds of concept drift, it is computationally
very expensive. The former, on the other hand, allows us
to deal with some forms of concept drift gracefully and is
computationally much less expensive. However, it requires
some further attention: when fine-tuning the neural network,
MEERKAT does not learn new features, but adjusts how
important the already learned features are. Therefore, fine-
tuning cannot address major concept drift for which the al-
ready learned features do not model defacements accurately
anymore. Instead, when we fine-tune the network’s param-
eters, we adjust the already learned weights of the deeper
layers of the neural network so that new observations of

defacements and legitimate websites are classified properly.
As such, fine-tuning the network to maintain an accurate
detection performance requires no additional information
about the websites at all, but only defacements and legiti-
mate websites that were not part of the training set before.

Conceptually speaking, when fine-tuning the network
given new defacements and legitimate websites, we search
for a better and, given the new data, more optimal set of
weights in the space of all possible weights. To do so more
efficiently, instead of initializing the weights at random,
we initialize them based on the previously-learned weights.

3.4 Implementation
For this paper, we implemented a prototype of MEERKAT

using Python and the “Convolutional Architecture for Fast
Feature Embedding” (Caffe) framework by Jia et al. [44].
Caffe was used because of its high-performance and ease
of use, however, it does not offer all functionality that our
neural network requires and some modifications were made.

Overall, the general architecture of MEERKAT is
embarrassingly parallel: the screenshot collection engine
is completely separate from the detection engine except
for providing its input. For instance, to quickly collect the
screenshots of all websites, we utilized 125 machines (with
2 cores and 2 GiB memory each), and collection peaked
at about 300 screenshots per second. Similarly, once the
neural network has been trained, the learned parameters
can be distributed to multiple machines and detection can
be scaled out horizontally, and, although the system is
trained on a GPU, once trained, the detection engine does
not require a GPU and can run on common CPUs instead.

Training the system, on the other hand, is not parallelized
to multiple machines yet, but some clever tricks can be used
to reduce training time significantly [33], which we leave
for future work.

3.5 Real-world Deployment
MEERKAT’s main deployment is as a monitoring service,

acting as an early warning system for website defacements,
to which a website operator subscribes with only the URL
at which his website can be reached. For each monitored
website, the system regularly checks, such as every few
minutes (or even seconds), that the website is not defaced.
If it detects it as being defaced, it notifies the website’s
operator, who, in turn, depending on the confidence in
the warning, manually investigates, or automatically puts
the website in maintenance mode or restores a known
good state. Acting as an early warning system, MEERKAT

7



reduces the reaction time to defacements from hours, days,
and even weeks (see Section 2) down to minutes (or even
seconds), and, therefore, it reduces the damage inflicted
on the website’s operator by the defacement significantly.

Furthermore, MEERKAT can also reduce human labor:
currently, Zone-H manually vets all submissions for
defacements [6], of which nearly two thirds are invalid.
MEERKAT automates this significant amount of work.

4 Evaluation
We evaluate our implementation of MEERKAT in various

settings. However, first, we provide details on what data our
dataset is comprised of, and how we partition it to simulate
various defacement scenarios.

Our evaluation scenarios are traditional and simulations
of real-world events, such as a new defacer group emerging,
or how the system’s accuracy changes over time, with and
without fine-tuning the neural network.

In our experiments, a true positive is a website
defacement being detected as a defacement and a true
negative is a legitimate website being detected as legitimate.
Correspondingly, a false positive is a legitimate website
that is being detected as being defaced, and a false negative
is a defacement being detected as being legitimate.

4.1 Dataset
The dataset on which we evaluate MEERKAT contains

data from two different sources. First, it includes a com-
prehensive dataset of 10,053,772 defacements observed
from January 1998 to May 9, 2014; we obtained this data
through a subscription from Zone-H, but it is also freely
available from http://zone-h.org under a more re-
strictive license. From those defacements, 9,258,176 deface-
ments were verified manually by Zone-H [6]; the remaining
795,596 website defacements were pending verification and
we do not include them in our dataset. Second, our dataset
contains 2,554,905 unique (supposedly) undefaced websites
from the top 1 million lists from Alexa, MajesticSEO, and
QuantCast.6 Note that we cannot be certain that the legiti-
mate websites in our dataset are not defaced, and since man-
ual verification is impractical at such a large scale, the true
negative rate is actually a lower bound and the false positive
rate is an upper bound, correspondingly. In layman’s terms:
the system might be more accurate than our results suggest.7

To accurately evaluate the classification performance
of MEERKAT in a real-world deployment, we report its
accuracy in three different scenarios:

v Traditional, to compare to prior work, i.e., by performing
10-fold cross-validation by sampling from all data
uniformly at random, so that each bin contains 925,817
defacements and 255,490 legitimate websites.

6We made a list of all 2,554,905 legitimate websites included in our
dataset available at http://cs.ucsb.edu/~kevinbo/sec15-
meerkat/legitimate.txt.bz2.

7Over 191,000 website in our legitimate dataset have been defaced at
one point in the past, thus, it is likely that some of them are actually defaced
and therefore mislabeled; thus, if classified correctly as a defacement by
MEERKAT, they appear as false positives in our results.

v Reporter, to simulate a new defacer emerging, i.e., by
performing 10-fold cross-validation on the reporters
of a defacement and including only their defacements
in their respective bin; legitimate website are sampled
from the legitimate data uniformly at random.

v Time-wise, to evaluate the practicality of our approach
in a real-world setting, i.e., we start by training the
system on all data from December 2012 to December
2013, and, then, we detect defacements from January
to May 2014. We report the system’s detection accuracy
for each month.

We evaluate our system in these settings to prevent a positive
skew of our results that might be the result of the different
evaluation method and how the dataset is composed. For
instance, a reporter of a defacement might introduce an
inherit bias to the distribution of the defacement by only
reporting the defacements of one specific defacer (such
as themselves), or there might be a bias in how defacements
and how the web evolved. Those potential pitfalls might
skew the results positively or negatively and must be
considered for an accurate comparison to prior work.8

Finally, to account for the difference in the number of
samples of the legitimate websites (2,554,905) and defaced
websites (10,053,772), we report the Bayesian detection
rate [45]. The Bayesian detection rate is normalized to the
number of samples and corresponds to the likelihood if we
detect a website as being defaced, it is actually defaced (the
likelihood of a positive prediction being correct, that is a
true positive; i.e., P(true positive|positive)).

4.2 Features Learned
The features that MEERKAT learns depend on the data

it is being trained on. Although one can treat the system as
a black-box and not worry about its internal details, under-
standing how it comes to its final decision helps one to rea-
son about its robustness and to understand how difficult the
system is to evade or to estimate when the system must be re-
trained to retain its accuracy. In our experiments, MEERKAT
learned various features automatically and directly from
image data, of which we manually grouped some on a higher,
more conceptual level together. We manually identified the
learned features by evaluating which representative win-
dows activate the same neuron of the neural network, i.e.,
which windows trigger the same feature to be recognized by
MEERKAT. Note that all the features we discuss hereinafter
have been learned automatically from data and no domain
knowledge whatsoever was required to learn and use these
features; yet, the overlap with features that an analyst with
domain knowledge would use confirms the prospects of fea-
ture/representational learning for website defacement detec-
tion. Some of the learned features can be best described as:

Defacement group logos. MEERKAT learned to recog-
nize the individual logos of some of the most prolific
defacement groups directly (see Figure 4). Clearly, the

8We cannot compare prior work on our dataset directly as they do not
scale to its size, and we cannot compare on their datasets because they
are too small to train MEERKAT accurately (see Section 6.1).

8

http://cs.ucsb.edu/~kevinbo/sec15-meerkat/legitimate.txt.bz2
http://cs.ucsb.edu/~kevinbo/sec15-meerkat/legitimate.txt.bz2


logos of the defacer groups themselves are extremely
descriptive of website defacements because they are
very unlikely to be included in legitimate websites.

Color combinations. MEERKAT also learned to recog-
nize unique or specific color combinations indicative
of legitimate and defaced websites, including but not
limited to one of the most prominent combinations:
bright red or green text on a black background, which is
an often used color combination by defacers, but rarely
seen on legitimate websites. On the other hand, small
black text on a white or brightly colored background
is being consulted as a non-definitive indicator for a
legitimate, non-defaced website.

Letter combinations. Interestingly, defacers often not
only mix colors, but also mix characters from different
alphabets right next to each other, such as Arabic or
Cyrillic script being mixed with Latin script, to promote
their message in both their native language and also in
English as the web’s lingua franca. Additionally, some-
times the defacement contains characters in a character
set encoding specific to the defacer’s native language,
like ISO-8859-13 for Baltic languages or Windows-1256
for Arabic. As such, characters appear differently or are
replaced by special characters if the browser does not sup-
port it, or if the website does not specify the character set
and if the browser’s fallback is different (like in our case,
as we fall back to UTF-8), resulting in a look and feel
that is descriptive of defacements, and, correspondingly,
it was automatically learned by MEERKAT.

Leetspeak. Similarly to letter combinations, MEERKAT
learned that defacers often use “leetspeak,” an English al-
phabet in which some characters are replaced by numbers
or special characters (e.g., “leetspeak” as “1337sp34k”)
and in which some words are deliberately misspelled
(“owned” as “pwned,” “the” as “teh,” or “hax0red” in-
stead of “hacked”). Defacers often use leetspeak to dis-
cern themselves from “common folks,” and to show that
they are “elite” and special, which, in turn, makes it often
a good indicator that a website has indeed been defaced.

Typographical and grammatical errors. While some
typographical mistakes are deliberate (as in the case
of leetspeak, see above), many defacers make other
unintentional typographical and grammatical mistakes,
which rarely occurred on the legitimate websites in
our dataset. Many defacers make these mistakes most
likely because they are not native English speakers (the
country of the reporter of the defacement, part of the
meta-data in our dataset, suggests that most defacers
do not speak English as their first language). MEERKAT
learned to detect some of these mistakes at training
and values them as a supporting indicator of a website
defacement. Some of the examples of (supposedly)
unintentional typographical and grammatical errors
include “greats to” (instead of “greets to”), “goals is”
(instead of “goals are”), or “visit us in our website”
(“visit us at our website” or just “visit our website”).

Note that, since MEERKAT works on image data, the system
is unaware that it analyzes text and the textual features, such
as unique letter combinations, leetspeak, or typographical
and grammatical errors, are actually being evaluated on ren-
dered text. As such, it seems likely that the textual features
are specific to the font, possibly overfitting on the specific
font type. However, we manually confirmed that the system
actually learned a more robust feature and is not overfitting:
it combines slight variances in the font family and size in
a single high-level feature. Furthermore, given the sliding
window approach MEERKAT employs for detection, the
features are also completely independent of the position
of the text in the representative window and website.

While some of the learned features can be evaded
theoretically, evading them almost always contradicts
the defacer’s goal: making a name for themselves in the
most “stylish” and personalized way possible, thus, it is
unlikely that these features will change drastically in the
near future. Furthermore, MEERKAT also consults features
that were not as easy to discern into high-level feature
groups manually, such as artifacts unique to legitimate
or defaced websites, or features that are indicative for one
group but are not definitive because they might appear more
often in defaced websites, but also sometimes legitimately.
MEERKAT can also be retrained easily and new features are
learned automatically once the old features do not model
defacements accurately anymore (i.e., if the concept of a
defacement drifted significantly). Finally, since MEERKAT
uses a non-linear classifier to combine those features, it
can learn more complex models about defacements and
legitimate websites, and simply evading only some features
will not be sufficient to evade detection.

Interestingly, some of the high-level features (letter and
color combinations) that MEERKAT learned automatically
from data have been leveraged to a smaller degree by prior
work [46, 47] (through manual feature engineering), while
others (logos, leetspeak, and typographical mistakes) had
not been utilized yet. Further suggesting that representation
learning and inspection of the learned features can yield
important insight into security challenges that were
dominated by feature engineering in the past, such as
intrusion, malware, or phishing detection.

4.3 Traditional Split
First, for an accurate comparison to prior work, we evalu-

ate MEERKAT on our dataset using 10-fold cross-validation,
i.e., we split the dataset into 10 bins that contain 925,817
website defacements and 255,490 legitimate websites each.
Note that we discard 6 website defacements and 5 legitimate
websites from our dataset at random to have the same
number of samples in each bin. Next, for each bin, we train
the system on the other 9 bins (training bins) and measure
its classification performance on the 10th bin (test bin).
Considering the 10 different 90% training and 10% test-set
partitions of our dataset separately, MEERKAT achieves
true positive rates between 97.422% and 98.375%, and
false positive rates ranging from 0.547% to 1.419%. The
Bayesian detection rate is between 99.603% and 99.845%.

9



Figure 4: Defacement Group Logos. Example representative windows of logos of defacement groups that MEERKAT learned to recognized to be
a significant indicator for defacements. Note that MEERKAT also recognizes variations and that there are many other features used for classification.

More interestingly, as a partition-independent measure
of the system’s classification performance, the average
true positive rate is 97.878%, the average false positive
rate is 1.012%, and the average Bayesian detection rate
is 99.716%. If MEERKAT detects a defacement and raises
an alert, with likelihood 99.716% it is a website defacement.
Therefore, MEERKAT is significantly outperforming current
state-of-the-art approaches.

4.4 Reporter Split
For the reporter split, we partition our dataset by the

reporter of the defaced website. We deliberately designed
the experiment this way to show that MEERKAT is not
overfitting on specific defacements, which our results verify.

While a partition by reporter might seem counter-intuitive
at first, it becomes clear that such a split is meaningful and
that it can be used to evaluate that a new defacer group
emerges once it is taken into account that these groups
often have unique defacement designs and that defaced
websites are most often reported by the defacers themselves.
Therefore, if we split by reporter, we are practically splitting
by defacer group; meaning, we create the most difficult
scenario for a defacement detection system: detecting a
defacer and his/her defacement style although we have
never seen defacements from him/her before.

In the same way as for the traditional split, we employ
10-fold cross-validation. However, we do so slightly dif-
ferently: first, we separate the reporters of the defacements
into 10 bins uniformly at random (each bin containing
7,602 reporters). Second, we construct the corresponding
defacement bins, i.e., we construct a defacement bin for
each reporter bin so that it contains only the defacements
reported by these reporters. For each bin, we then train
MEERKAT on the remaining 9 bins and use the 10th bin for
testing. Note that the defacement bins contain a different
number of samples, simply because the number of reported
defacements varies per reporter (see Appendix A). We
account for the uneven distribution of defacements by
reporting the average true positive and false positive rate
weighted by the number of samples.

Overall, when simulating the emergence of a new defacer,
MEERKAT achieves a true positive rate of 97.882% and
a false positive rate of 1.528% if bins are weighted, and
97.933% and 1.546% if they are not (see Figure 5; the true
positive rate is between 97.061% and 98.465%, the false pos-
itive rate is between 0.661% and 2.564%). The Bayesian de-
tection rates for the reporter split are 99.567% (unweighted)
and 99.571% (weighted) respectively (per split, the
Bayesian detection rate is between 99.286% and 99.814%).

0.965

0.970

0.975

0.980

0.985

0.990

T
ru

e
P

os
it

iv
e

R
at

e

Reporter Split

0.9787
0.9788
0.9789
0.9790
0.9791
0.9792
0.9793
0.9794

1 2 3 4 5 6 7 8 9 10
Reporter Bin

0.005

0.010

0.015

0.020

0.025

0.030

F
al

se
P

os
it

iv
e

R
at

e

W
ei

gh
te

d

M
ea

n

0.0151
0.0152
0.0153
0.0154
0.0155
0.0156
0.0157
0.0158

Figure 5: True positive and false positive rates for the reporter split,
per bin of the 10-fold cross-validation set. Note that the scales for true
positives and false negatives are the same, but that the y-axis goes from
0.965 to 0.99 for the true positive rate and 0.005 to 0.03 for the false
positive rate. The weighted mean true positive rate is 97.882% and its false
positive rate is 1.528% (weighted by samples per bin). The unweighted
mean true positive rate is 97.933% and its false positive rate is 1.546%.

4.5 Time-wise Split
The time-wise experiment evaluates how well MEERKAT

detects website defacements in the wild, i.e., in a real-world
deployment. Here, we train the system on defacements
seen in the past, and we detect defacements in the present.
Similarly to the reporter split, the time-wise experiment
shows that MEERKAT does not overfit on past defacements,
and that it successfully detects present defacements.

Our training set selection follows a simple argument:
it is extremely unlikely that websites today will be defaced
in the same way as they were defaced in 2005 or even
1998. Including those defacements in our training set would
then very likely decrease classification performance for
defacement detection in 2014. Equivalently, one would
not include this data to train the system in practice.

We train MEERKAT on all defacements that were
reported between December 2012 and December 2013
(including, i.e., 13 months with 1,778,660 defacements
observed in total), and 1,762,966 legitimate websites that
we sample from all legitimate websites uniformly at random.
We then detect defacements over a five months time frame,
from January to May 2014, and we report the classification
performance for each month. The test data from January to
May 2014 spans a total of 1,538,878 unique samples that are
distributed as follows: 421,758 samples from January 2014,
364,168 samples from February 2014, 474,758 samples
from March 2014, 241,926 samples from April 2014, and
81,268 samples from the beginning of May 2014.

10



0.970
0.975
0.980
0.985
0.990
0.995
1.000

T
ru

e
P

os
it

iv
e

R
at

e

Time-wise Split, with and without Fine-Tuning

with fine-tuning

without fine-tuning

0.010
0.015
0.020
0.025
0.030
0.035
0.040

F
al

se
P

os
it

iv
e

R
at

e

January February March April May
Month of 2014

-0.015
-0.010
-0.005
0.000
0.005
0.010
0.015

D
iff

er
en

ce
w

/
F

T
-

w
/o

F
T True Positive Rate

False Positive Rate

Figure 6: True positive and false positive rates, and the difference
with and without fine-tuning, for the time-wise split. Note that the
scales for true positives and false negatives are the same, but that the
y-axis goes from 0.97 to 1 for the true positive rate and 0.01 to 0.04 for
the false positive rate. No significant change is visible for the true positive
rate in the beginning regardless if the network is fine-tuned regularly or
not, however, a non-negligible difference is observable for May 2014.
A difference is observable for the false positive rate starting in February
2014, after the network was first fine-tuned.

In detail, MEERKAT achieves a true positive rate between
98.310% and 98.816% when the system is fine-tuned
after each month on the data observed in that month, and
97.603% to 98.606% when it is not. Although there is no
significant difference in its accuracy from January to March
when the neural network is fine-tuned and when it is not
(see Figure 6), a non-negligible difference between their
accuracy can be observed for April and the beginning of
May (increase in 0.452 percentage points (pp) and 1.211 pp
for the true positive rate; decrease of 1.513 pp and 1.550 pp
for the false positive rate). The Bayesian detection rate if no
fine-tuning is used decreases from 98.583% in January 2014
to 97.666% in February (0.917 pp decrease) to 97.177%
in May (1.406 pp decrease to January). If fine-tuning
is utilized, the Bayesian detection rate increases from
98.583% in January 2014 to 98.717% in May (0.134 pp).

Unsurprisingly, the regularly fine-tuned system performs
better over time, probably because some defacers became
significantly more active in 2014, like Team System Dz, who
started to deface websites just in January 2014 and who
were not active before at all, and because some defacers
changed their defacements to spread a different message
as opposed to the one they spread the year before. When
the system is not fine-tuned, however, these minor changes
to the defacements allow attackers to evade detection
without actively trying to evade it, with a minor accuracy
deterioration already visible after just four to five months,
confirming that detection systems need to be able to tackle
even minor concept drift adequately and gracefully to
maintain accurate detection capabilities over time, like
MEERKAT does with fine-tuning.

5 Limitations
Similar to other systems leveraging machine learning,

our system has some limitations that can be used to evade de-
tection. We discuss some of these limitations and show how
they can be addressed for a real-world deployment. First,
we discuss concept drift, a problem all systems leveraging
machine learning have to deal with; second, we remark on
browser fingerprinting and delayed defacement, an issue
all client-based detection approaches have to address; and,
lastly, we introduce the concept of tiny defacements, a
limitation specific to defacement detection systems.
5.1 Concept Drift

Concept drift is the problem of predictive analysis ap-
proaches, such as detection systems, that the statistical prop-
erties of the input used to train the models change. In turn,
a direct result of concept drift is often a heavy deterioration
of the classification performance, up to the point where the
system cannot differentiate between good and bad behavior
anymore. For instance, prior work [48–55] has shown that
concept drift (in the sense of adversarial learning) can actu-
ally be leveraged to evade detection systems and classifiers
in practice. Therefore, a detection system must address it.

While concept drift is a major issue for all systems using
machine learning, it can generally be addressed, due to its
nature, by adopting a new feature space or retraining the
machine learning model on new data, or with an increased
weight on new data. However, often, old instances do not
follow the statistical properties of the new feature models,
and, therefore, they are classified less accurately than before.
This has little impact in practice, because old instances are
less likely to occur in the future anyways; yet, it is important
to realize that this approach allows attackers to evade the
system by oscillating their attack strategy regularly.

For MEERKAT, those shortcomings can be addressed
more easily than for traditional systems: for minor concept
drift, the system’s accuracy can be maintained by fine-tuning
the parameters of the network. Here, the system simply
needs to learn minor adjustments to the weights of existing
features from new data, because some features have become
more important and others have become less important (they
differ now more from other features than they did previously,
relatively speaking; since we start with already-initialized
weights, fine-tuning requires much less time than training
the whole system again). Here, the features still model
the differences between defacements and legitimate
websites, however, the weights are not optimal anymore
and need to be adjusted. Once the new weights are learned,
classification performance is restored. Therefore, to address
minor concept drift adequately, we recommend fine-tuning
the model regularly, e.g., every month (see Section 4.5).

While fine-tuning the system’s parameters can theoreti-
cally address major concept drift similar to retraining the sys-
tem on new data, in practice, we expect prediction accuracy
to decrease, since different or more features must be mod-
eled with the same amount of resources. Instead, for major
concept drift, increasing the number of hidden nodes of the
neural network that learn the compressed representation (the
features) and their weights, and then retraining the system

11



Split True Positive Rate False Positive Rate Bayesian Detection Rate
Traditional 97.878% 1.012% 99.716%
Reporter (weighted) 97.882% 1.528% 99.571%

Reporter (unweighted) 97.933% 1.546% 99.567%

Time-wise with fine-tuning 98.310% - 98.816% 1.233% - 1.413% 98.583% - 98.767%

Time-wise without fine-tuning 97.603% - 98.606% 1.413% - 2.835% 97.177% - 98.583%

Table 2: Average true positive, false positive, and Bayesian detection rates for traditional and reporter split. Lower and upper bound of true
positive, false positive, and Bayesian detection rate for time-wise split from January to May 2014.

can maintain the system’s accuracy. Simply adding nodes to
the hidden layers of the neural network can counteract the is-
sue of major concept drift because we increase the number of
features that MEERKAT learns from data directly. Therefore,
introducing more hidden units allows the system to learn ad-
ditional and different internal representations about the look
and feel of defacements, while, at the same time, maintain-
ing a model of how the old defacements look like. However,
it requires computationally-costly retraining of the network
(previously, having those additional hidden units in the net-
work would result in overfitting because the system would
learn more complex representations than necessary, and each
would only differ little from one another; the system would
then be prone to missing minor variations of defacements).

It is important to note that in both cases, for minor and
major concept drift, MEERKAT requires no additional
feature engineering because the features are learned
automatically from data. In turn, this allows MEERKAT
to handle any form of concept drift much more gracefully
than approaches introduced by prior approaches, which
require manual feature engineering.

5.2 Fingerprinting and Delayed Defacement

A second limitation of detection systems is fingerprinting.
Since we are leveraging a web browser to collect the data
that we are analyzing, in our case fingerprinting corresponds
to IP-based and browser fingerprinting. For IP-based
fingerprinting, a set of VPNs and proxies can be used to
cloak and regularly change the browser’s IP address. In case
of browser fingerprinting, the server or some client-side
JavaScript code detects what browser is rendering the
website, and then displays the website differently for
different browsers. In its current form, the screenshot engine
from MEERKAT might be detectable (to some degree)
by browser fingerprinting. It is theoretically possible to
detect it because it is currently built on the headless browser
PhantomJS rather than a “headful” browser typically used
by a normal user, like Google Chrome. However, since
PhantomJS is built from the same components as Google
Chrome, fingerprinting the current screenshot engine is not
trivial and requires intimate knowledge of the differences
between the different versions of the components and
their interaction. Therefore, we argue that the evasion
through browser fingerprinting is unlikely. If, however, the
screenshot engine is evaded this way in the future, only some

minor engineering effort is required to utilize a browser
extension to retrieve the websites’ screenshots instead.9

Additionally, the issue of delaying the defacement
emerges, also referred to as the snapshot problem [30]. With
the increased popularity and use of JavaScript, client-side
rendering, and asynchronous requests to backends by
websites to provide a seamless and “reload-free” user
experience, it is uncertain at what point in time a website
is representative of how a user would experience it. This
then bears the issue of when a detection system can take
a representative snapshot of the website and stop executing
client-side scripts. For instance, if a detection system takes
a snapshot always after five seconds, to evade detection,
defacers could simply inject JavaScript that only defaces
the website if a user interacts with it for at least six seconds.

While delayed defacements are currently scarce, it
is likely that they will gain some traction once more
detection systems have been put in place, in a way similar
to mimicry attacks and the evasions of malware detection
systems [56, 57]. However, prior work can be leveraged
to detect evasions [58] or trigger the functionality [59] to
force the defacement to be shown. Both approaches are
complementary to MEERKAT and we leave their adoption
to defacement detection for future work, once delayed
defacements are actually occurring in the wild.

5.3 Tiny Defacements
A third limitation of all current defacement detection

systems, including MEERKAT, is the lack of detection ca-
pabilities for tiny defacements. Tiny defacements describe
a class of defacements in which only a very minor modifi-
cation is made to part of the content of the defaced website.
For instance, a defacer might be dissatisfied by an article
published by a newspaper. Instead of defacing the website
as a whole, the attacker modifies (or deletes) the news article.
It is clear that such defacements are very hard to differen-
tiate from the original content because they might only have
minor semantic changes to text or images. Thus, to detect
tiny defacements, the detection system must understand the
semantics of the website’s content, its language, and its gen-
eral behavior to derive a meaningful model for the website.

However, while those defacements exist, they are
extremely scarce in numbers, or they are rarely noticed.
In fact, it is seldom the case that a defacer wants to modify
a website without embarrassing the operator more publicly.
Most often, the goal of the defacer is to expose the insecurity

9In fact, we are migrating our screenshot engine to Chrome, eliminating
the problem that PhantomJS might be fingerprinted.

12



of the website, ridicule the operator publicly, show their
own “superiority,” and place their opinion and beliefs in the
most public space possible. Therefore, tiny defacements are
currently of little interest to the defacers themselves, and,
hence, also of little impact for detection systems. However,
we acknowledge that tiny defacements must be addressed
once they increase in numbers, possibly leveraging recent
work to extract relevant changes from websites [60], and
advances in natural language processing.

6 Related Work
Hereinafter, we discuss related work that detects deface-

ment, and image-based detection used in computer security.

6.1 Defacement Detection
Similar to MEERKAT, Davanzo et al. [46] introduce

a system that acts a monitoring service for website
defacements. Their system utilizes the website’s HTML
source code for detection, and its features were selected
manually based on domain knowledge acquired a priori,
making the system prone to concept drift. On their,
comparatively, very small dataset containing only 300
legitimate websites and 320 defacements, they achieve false
positive rates ranging from 3.56% to 100% (depending
on the machine learning algorithm used; suggesting
extreme under- and over-fitting with some algorithms),
and true positive rates between 70.07% to 100% (in the
case of simply classifying everything as a defacement; i.e.,
extremely under-fitting the dataset). Overall, these results
are significantly worse than MEERKAT, both in terms of
false positives (1.012%) and true positives (97.878%).

Bartoli et al. [47] propose Goldrake, a website deface-
ment monitoring tool that is very similar to the tool proposed
by Davanzo et al. and leverages a superset of their features.
To learn an accurate model, Goldrake requires knowledge
about the monitored website to learn website-specific
parameters. However, it is unclear how well Goldrake
detects defacements in practice because it is evaluated on
a small and (likely) non-diverse dataset comprised of only
11 legitimate websites and 20 defacements, on which it
performs poorly with a high false negative rate (27%).

Medvet et al. [61] introduce a defacement detection
system based on work by Bartoli et al. and Davanzo et al.,
but the detection engine is replaced by a set of functions
that are learned through genetic programming. The learned
functions take the features by Bartoli et al. and Davanzo et
al. as input, but classification is more accurate on a dataset
comprised of 15 websites (between 0.71% and 23.38% false
positives, and about 97.52% true positives). It is, again, un-
clear how the system would fare in a real-world deployment
because of the small and (likely) non-diverse dataset.

Note that all text-based approaches have major short-
comings, similar as those encountered in spam and phishing
detection, such as using images to show text to evade detec-
tion. MEERKAT does not suffer from these shortcomings.

Lastly, most commercial products that detect website
defacements are built upon host-based intrusion detection
systems to monitor modifications of the files on the web
server, e.g. via file integrity checks (checksums) [62, 63].

Therefore, those approaches bear the major shortcoming
that they can only detect the subset of defacements that
modify files on disk, and that they cannot detect other
defacement attacks, such as through SQL injections; even
when the defacements look exactly the same to the website’s
visitors. MEERKAT does not suffer from this shortcoming.

6.2 Image-based Detection in Security
Since, to the best of our knowledge, no prior work applies

image-based methods to detect defacements, we compare
prior work to defacement detection that visually detects
phishing pages, or leverages image-based techniques as
part of a larger system.

Medvet et al. [64] propose a system to detect if a potential
phishing page is similar to a legitimate website. The system
leverages features such as parts of the visible text, the images
embedded in the website, and the overall appearance of the
website as rendered by the browser for detection. Similarity
is measured by comparing the 2-dimensional Haar wavelet
transformations of the screenshots. Their system achieves
a 92.6% true positive rate and a 0% false positive rate on
a dataset comprised of 41 real-world phishing pages.

Similarly, Liu et al. [65] present an antiphishing solution
that is deployed at an email server and detects linked
phishing pages by assessing the visual similarity to the
legitimate page, but only when analysis is triggered on
keyword detection. The system detects phishing pages by
comparing the suspicious website to the legitimate website
by measuring similarity between text and image properties,
like the font size and family used, or source of an image.

While detecting phishing pages by comparing the similar-
ity of two websites makes sense, for defacements the differ-
ence between them is more interesting. Instead of creating a
visually-similar page to trick users into submitting their cre-
dentials, a defacer wants to promote his message. Adopting
existing phishing detection systems to detect defacements
instead, i.e., by comparing if the website looks different
from its usual representation, however, bears two problems:
(a) the usual representation must be known and/or stored for
comparison, and (b) false positives are much more likely if
the website is dynamic or if it shows regularly-changing ads.

Anderson et al. [29] introduce image shingling, a
technique similar to w-shingling, to cluster screenshots of
scams into campaigns. However, in its current form, image
shingling cannot be used to detect defacements as it is trivial
to evade the clustering step with only minor modifications
that are invisible to the human eye, and, thus, the technique is
unsuitable for a detection system in an adversarial context.10

Nappa et al. [66] leverage perceptual hashing to group
visually similar icons of malicious executables under
the assumption that a similar icon suggests that the two
executables are part of the same malware distribution
campaign. While it is theoretically possible to detect
defacements through perceptual hashing-based techniques
and comparing the distance of the hashes, it is impractical
to do so on a large scale and in an adversarial context. For

10The authors acknowledge the shortcomings in an adversarial context
in Section 4.2, but they do not discuss any remediation techniques.

13



once, one must have a ground-truth screenshot that is close
enough to the screenshot that one wants to classify; if
ground-truth is not available or slightly too different, a
system based on perceptual hashing will be unable to detect
the defacement. Furthermore, classification is not constant
in the number of defacements the system has seen in the
past: for each new screenshot we would want to classify,
we would need to compute the distance to the hashes of
at least some (or all) of the previously-seen defacements.11

Grier et al. [67] introduce their own image similarity
measure to cluster malicious executables that have similar
looking user-interface components after being executed in a
dynamic analysis environment. Two images are considered
similar if the root mean squared deviation between the
images’ histograms is below some manually-determined
threshold. Clearly, a defacement system based on this
technique is not suitable in an adversarial context: an
attacker can (and eventually will) simply change the colors
slightly or add dynamic content, so that the root mean
squared deviation is above the threshold, but remains
visually the same to the human eye. Furthermore, exactly
as for Nappa et al. [66], one needs to pair-wise compare
the histogram of the screenshot one wants to classify to
some or all of the already-seen defacements.11

MEERKAT does not suffer from these shortcomings: first,
it learns high-level features on the defacements’ general
look and feel to detect also previously unseen defacements,
and, second, its classification time is constant in the number
of already-seen defacements.

7 Conclusions
In this paper, we introduced MEERKAT, a monitoring

system to detect website defacements, which utilizes a novel
approach based on the look and feel of a website to identify
if the website has been defaced. To accurately identify
website defacements, MEERKAT leverages recent advances
in machine learning, like stacked autoencoders and deep
neural networks, and combines them with computer vision
techniques. Different from prior work, MEERKAT does not
rely on additional information supplied by the website’s op-
erator, or on manually-engineered features based on domain
knowledge acquired a priori, such as how defacements look.
Instead, MEERKAT automatically learns high-level features
from data directly. By deciding if a website has been defaced
based on a region of the screenshot of the website instead
of the whole screenshot, the system is robust to the normal
evolution of websites and defacements and can be used at
scale. Additionally, to prevent the evasion of the system
through changes to the look and feel of defacements and to
be robust against defacement variants, MEERKAT employs
various techniques, such as dropout and fine-tuning.

We showed the practicality of MEERKAT on the largest
website defacement dataset to date, spanning 10,053,772
defacements observed between January 1998 and May
2014, and 2,554,905 legitimate websites. On this dataset,
in different scenarios, the system accurately detects

11Detection time increases with each observed defacement; it is at best
in O(logn) and at worst in O(n), with n being all observed defacements.

defacements with a true positive rate between 97.422%
and 98.816%, a false positive rate between 0.547% and
1.528%, and a Bayesian detection rate between 98.583%
and 99.845%, thus significantly outperforming existing
state-of-the-art approaches.

8 Acknowledgments
We want to express our gratitude toward the reviewers for

their helpful feedback, valuable comments and suggestions
to improve the quality of the paper.

This work was supported by the Office of Naval Research
(ONR) under grant N00014-12-1-0165, the Army Research
Office (ARO) under grant W911NF-09-1-0553, the Depart-
ment of Homeland Security (DHS) under grant 2009-ST-
061-CI0001, the National Science Foundation (NSF) under
grant CNS-1408632, Lastline Inc., and SBA Research.

References
[1] G. Davanzo, E. Medvet, and A. Bartoli, “A Comparative Study of

Anomaly Detection Techniques in Web Site Defacement Detec-
tion”, in Proceedings of the IFIP 20th World Computer Congress,
Springer, 2008.

[2] Anonymous, Reference blinded for double-blind review process,
Nov. 2014. [Online]. Available: http://anonymized.

[3] Wall Street Journal (WSJ), Malaysia Airlines Website Hacked by
Group Calling Itself ‘Cyber Caliphate’, Jan. 26, 2015. [Online].
Available: http://goo.gl/RhO2tO.

[4] British Broadcasting Company (BBC), Keighley Cougars website
hacked to read ’I love you Isis’, Nov. 2014. [Online]. Available:
http://goo.gl/bzxJ8M.

[5] R. Preatoni, M. Almeida, K. Fernandez, and other unknown au-
thors, Zone-H.org - Unrestricted Information, since January 1998.
[Online]. Available: http://zone-h.org/.

[6] E. Kovacs, Softpedia Interview: Alberto Redi, Head of Zone-H,
Jun. 8, 2013. [Online]. Available: http://goo.gl/cwPBrW.

[7] Malaysian Computer Emergency Response Team, MyCERT In-
cident Statistics, Jan. 2014. [Online]. Available: http://goo.
gl/0LTRPj.

[8] CyberSecurity Malaysia, “MyCERT 2nd Quarter 2013 Summary
Report”, eSecurity Bulletin, vol. 34, Aug. 2013.

[9] S. Mansfield-Devine, “Hacktivism: assessing the damage”, Net-
work Security, vol. 2011, no. 8, 2011.

[10] M. Gorge, “Cyberterrorism: hype or reality?”, Computer Fraud &
Security, vol. 2007, no. 2, 2007.

[11] H. Kircher, “The Practice of War: Production, Reproduction and
Communication of Armed Violence”, in. Berghahn Books, Mar.
2011, ch. 12. Martyrs, Victims, Friends and Foes: Internet Repre-
sentations by Palestinian Islamists.

[12] G. Weimann, “Terror on the Internet: The New Arena, the New
Challenges”, in. US Institute of Peace Press, 2006, ch. 6. Fighting
Back: Responses to Terrorism on the Internet, and Their Cost.

[13] Wall Street Journal (WSJ), Google Access Is Disrupted in Vietnam,
Feb. 23, 2015. [Online]. Available: http://goo.gl/JlVtfW.

[14] L. Makani, 100+ Zambian websites hacked & defaced: Spar, Post-
dotnet, SEC, Home Affairs, Ministry of Finance, Apr. 2014. [On-
line]. Available: http://goo.gl/NvQsJM.

[15] British Broadcasting Company (BBC), Angry Birds website hacked
after NSA-GCHQ leaks, Jan. 2014. [Online]. Available: http:
//goo.gl/kHDIAj.

14

http://anonymized
http://goo.gl/RhO2tO
http://goo.gl/bzxJ8M
http://zone-h.org/
http://goo.gl/cwPBrW
http://goo.gl/0LTRPj
http://goo.gl/0LTRPj
http://goo.gl/JlVtfW
http://goo.gl/NvQsJM
http://goo.gl/kHDIAj
http://goo.gl/kHDIAj


[16] A. Mittal, NIC of Suriname, Antigua & Barbuda and Saint Lucia
Hacked by Pakistani Hackers, Oct. 2013. [Online]. Available:
http://goo.gl/ynGG0y.

[17] J. Leyden, Islamist hackers attack Danish sites, Feb. 2006. [Online].
Available: http://goo.gl/jcE7iv.

[18] ——, Hacktivists attack UN.org, Aug. 2007. [Online]. Available:
http://goo.gl/SfvkUc.

[19] G. Maone, United Nations vs. SQL Injections, Aug. 2007. [Online].
Available: http://goo.gl/v8oXih.

[20] S. Reid, Hip-Hop Sites Hacked By Apparent Hate Group; SOHH,
AllHipHop Temporarily Suspend Access, Jun. 2008. [Online]. Avail-
able: http://goo.gl/VtW4i6.

[21] B. Acohido, State Department webpages defaced, Oct. 23, 2013.
[Online]. Available: http://goo.gl/698XRW.

[22] J. Leyden, Foxconn website defaced after iPhone assembly plant
suicides, May 2010. [Online]. Available: http://goo.gl/
6BtZbX.

[23] ——, Anti-Israel hackers deface central bank site, Apr. 2008.
[Online]. Available: http://goo.gl/7Ve2xT.

[24] British Broadcasting Company (BBC), Nottinghamshire Police
website hacked by AnonGhost, Nov. 2014. [Online]. Available:
http://goo.gl/Gbldxt.

[25] ——, Shropshire Fire Service website hacked by AnonGhost, Nov.
2014. [Online]. Available: http://goo.gl/3dq4Cq.

[26] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee, “In-
creased DNS Forgery Resistance Through 0x20-Bit Encoding:
SecURItY viA LeET QueRieS”, in Proceedings of the 15th ACM
Conference on Computer and Communications Security (CCS),
ACM, 2008.

[27] G. Vigna and C. Kruegel, “Host-based Intrusion Detection”, Hand-
book of Information Security. John Wiley and Sons, 2005.

[28] A. Bartoli, G. Davanzo, and E. Medvet, “The Reaction Time to
Web Site Defacements”, Internet Computing, IEEE, vol. 13, no. 4,
2009.

[29] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker, “Spam-
scatter: Characterizing Internet Scam Hosting Infrastructure”, in
Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, ser. SS’07, USENIX Association, 2007.

[30] K. Borgolte, C. Kruegel, and G. Vigna, “Delta: Automatic Iden-
tification of Unknown Web-based Infection Campaigns”, in Pro-
ceedings of the 20th ACM SIGSAC Conference on Computer and
Communications Security (CCS), ACM, 2013.

[31] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks”, in Proceedings of the
2nd International Conference on Learning Representations (ICLR),
CBLS, Apr. 2014.

[32] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J.
Dean, and A. Ng, “Building High-level Features Using Large Scale
Unsupervised Learning”, in Proceedings of the 29th International
Conference on Machine Learning (ICML), IMLS, Jun. 2012.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifi-
cation with Deep Convolutional Neural Networks.”, in Advances
in Neural Information Processing Systems 25 (NIPS), vol. 1, 2012.

[34] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation”,
arXiv preprint arXiv:1311.2524, 2013.

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition”, Proceedings of the
IEEE, vol. 86, no. 11, 1998.

[36] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsu-
pervised learning using graphics processors”, in Proceedings of
the 26th International Conference on Machine Learning (ICML),
2009.

[37] Q. V. Le, J. Ngiam, Z. Chen, D. J. hao Chia, P. W. Koh, A. Y. Ng,
and D. Chia, “Tiled convolutional neural networks.”, in Advances
in Neural Information Processing Systems 23 (NIPS), 2010.

[38] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical
representations”, in Proceedings of the 26th Annual International
Conference on Machine Learning (ICML), ACM, 2009.

[39] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural
networks applied to house numbers digit classification”, in Proceed-
ings of the 21st International Conference on Pattern Recognition
(ICPR), IEEE, 2012.

[40] A. Hyvärinen, J. Hurri, and P. O. Hoyer, Natural Image Statistics:
A Probabilistic Approach to Early Computational Vision. Springer,
2009, vol. 39.

[41] K. Gregor and Y. LeCun, “Emergence of complex-like cells in
a temporal product network with local receptive fields”, arXiv
preprint arXiv:1006.0448, 2010.

[42] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is
the best multi-stage architecture for object recognition?”, in Pro-
ceedings of the 12th IEEE International Conference on Computer
Vision, IEEE, 2009.

[43] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors”, arXiv preprint arXiv:1207.0580,
2012.

[44] Y. Jia, Caffe: An Open Source Convolutional Architecture for Fast
Feature Embedding, 2013. [Online]. Available: http://goo.
gl/Fo9YO8.

[45] S. Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion
Detection”, ACM Transactions on Information and System Security
(TISSEC), vol. 3, no. 3, 2000.

[46] G. Davanzo, E. Medvet, and A. Bartoli, “Anomaly Detection
Techniques for a Web Defacement Monitoring Service”, Expert
Systems with Applications, vol. 38, no. 10, 2011.

[47] A. Bartoli and E. Medvet, “Automatic Integrity Checks for Remote
Web Resources”, Internet Computing, IEEE, vol. 10, no. 6, 2006.

[48] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial Machine Learning”, in Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence (AISEC), ACM,
Oct. 2011.

[49] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The Security
of Machine Learning”, Machine Learning, vol. 81, no. 2, 2010.

[50] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?”, in Proceedings of the 13th
ACM Symposium on Information, Computer and Communications
Security (CCS), ACM, Oct. 2006.

[51] N. Šrndic and P. Laskov, “Practical Evasion of a Learning-Based
Classifier: A Case Study”, in Proceedings of the 35th IEEE Sympo-
sium on Security and Privacy (Oakland), IEEE, May 2014.

[52] D. Lowd and C. Meek, “Adversarial Learning”, in Proceedings of
the 11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (KDD), ACM, Aug. 2005.

[53] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Ad-
versarial Classification”, in Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing (KDD), ACM, 2004.

15

http://goo.gl/ynGG0y
http://goo.gl/jcE7iv
http://goo.gl/SfvkUc
http://goo.gl/v8oXih
http://goo.gl/VtW4i6
http://goo.gl/698XRW
http://goo.gl/6BtZbX
http://goo.gl/6BtZbX
http://goo.gl/7Ve2xT
http://goo.gl/Gbldxt
http://goo.gl/3dq4Cq
http://goo.gl/Fo9YO8
http://goo.gl/Fo9YO8


[54] A. Globerson and S. Roweis, “Nightmare at Test Time: Robust
Learning by Feature Deletion”, in Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML), ACM, 2006.

[55] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on
support vector machines”, in Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI), Aug. 2012.

[56] D. Wagner and P. Soto, “Mimicry Attacks on Host-based Intrusion
Detection Systems”, in Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS), ACM, 2002.

[57] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Au-
tomating Mimicry Attacks Using Static Binary Analysis”, in Pro-
ceedings of the 14th Conference on USENIX Security Symposium,
USENIX Association, 2005.

[58] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G.
Vigna, “Revolver: An Automated Approach to the Detection of
Evasive Web-based Malware”, in Proceedings of the 22nd USENIX
Security Symposium, 2013.

[59] C. Kolbitsch, E. Kirda, and C. Kruegel, “The Power of Procrasti-
nation: Detection and Mitigation of Execution-stalling Malicious
Code”, in Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS), ACM, 2011.

[60] K. Borgolte, C. Kruegel, and G. Vigna, “Relevant Change De-
tection: Framework for the Precise Extraction of Modified and
Novel Web-based Content as a Filtering Technique for Analysis
Engines”, in Proceedings of the Companion Publication of the 23rd
International World Wide Web Conference (WWW), IW3C2, 2014.

[61] E. Medvet, C. Fillon, and A. Bartoli, “Detection of Web Deface-
ments by Means of Genetic Programming”, in Proceedings of
the 3rd International Symposium on Information Assurance and
Security, IEEE Computer Society, 2007.

[62] G. H. Kim and E. H. Spafford, “The Design and Implementation of
Tripwire: A File System Integrity Checker”, in Proceedings of the
2nd ACM Conference on Computer and Communications Security
(CCS), ACM, 1994.

[63] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. N. Soules, G. R.
Goodson, and G. R. Ganger, “Storage-based Intrusion Detection:
Watching Storage Activity for Suspicious Behavior”, in Proceed-
ings of the 12th Conference on USENIX Security Symposium,
USENIX Association, 2003.

[64] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based
Phishing Detection”, in Proceedings of the 4th International Con-
ference on Security and Privacy in Communication Networks
(SecureComm), ACM, 2008.

[65] W. Liu, X. Deng, G. Huang, and A. Y. Fu, “An Antiphishing Strat-
egy Based on Visual Similarity Assessment”, Internet Computing,
IEEE, vol. 10, no. 2, 2006.

[66] A. Nappa, M. Rafique, and J. Caballero, “Driving in the Cloud: An
Analysis of Drive-by Download Operations and Abuse Reporting”,
English, in Detection of Intrusions and Malware, and Vulnerability
Assessment, ser. Lecture Notes in Computer Science, K. Rieck,
P. Stewin, and J.-P. Seifert, Eds., vol. 7967, Springer Berlin Heidel-
berg, 2013. [Online]. Available: http://goo.gl/Z2IJ4D.

[67] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K.
Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis,
N. Provos, M. Z. Rafique, M. A. Rajab, C. Rossow, K. Thomas,
V. Paxson, S. Savage, and G. M. Voelker, “Manufacturing Com-
promise: The Emergence of Exploit-as-a-Service”, in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12, ACM, 2012. [Online]. Available: http:
//goo.gl/M1DOdZ.

Appendix
A Reporter Cross-validation Split
In our reporter split experiment (Section 4.4), we split the
dataset by reporter to simulate that a new defacer group
emerges. Each cross-validation bin contains the same
amount of reporters, but because they reported different
numbers of defacements, bins do not contain the same
amount of samples. We account for the size difference in
our experiments by weighting each bin. Table 3 lists the
number of samples per bin.

Bin Defacements Legitimate Websites

1 1,116,808 308,202
2 992,232 273,823
3 712,270 196,563
4 907,306 250,387
5 696,069 192,092
6 734,208 202,617
7 1,276,764 352,345
8 789,895 217,985
9 979,309 270,257
10 1,053,147 290,634

Total 9,258,008 2,554,905

Table 3: Number of samples per cross-validation bins used for the
reporter split. Note that the total number of defacements in the reporter
split contains 168 defacements less than available in the whole dataset
because otherwise reporters would be distributed unevenly per bin.
However, due to the considerable size of the dataset, omitting these
defacements has negligible impact.

B Image-based Object Recognition
Much prior work has been carried out in computer vision

to classify images and recognize objects in images. Most
recently, object recognition underwent a “new spring” with
the rise of deep learning. Deep learning gained traction
because training them on large datasets became computa-
tionally feasible, and they consistently outperformed other
algorithms. We discuss our two main inspirations.

Le et al. [32] introduce a feature learning approach that
leverages unsupervised learning with a deep networks
comprised of stacked sparse autoencoders utilizing pooling
and local contrast normalization. The main idea is to learn
high-level features from only unlabeled data (10 million
pictures from random Youtube videos); high-level features
such as if the image contains a cat, or a human face or body
part. After training, the network improves relatively to prior
state-of-the-art by 70% on the ImageNet dataset.

Krizhevsky et al. [33] employed supervised learning to
train a deep convolutional neural network to classify 1.2
million images spanning 1,000 classes from a subset of the
ImageNet dataset and they improve considerably on the
state-of-the-art with a top-1 error rate of 37.5% (the classifier
is correct for 62.5%) and a top-5 error of 17.0% (for 83% im-
ages, the correct class is among top 5 classes). To not overfit
the dataset and to reduce the network’s training time, they
use rectified linear units as the neurons’ output functions.

16

http://goo.gl/Z2IJ4D
http://goo.gl/M1DOdZ
http://goo.gl/M1DOdZ

	Introduction
	Motivation
	Meerkat
	Training and Detection
	Screenshot Collection
	Window Extraction Techniques
	Defacement Detection

	Neural Network Structure
	Fine-Tuning the Network's Parameters
	Implementation
	Real-world Deployment

	Evaluation
	Dataset
	Features Learned
	Traditional Split
	Reporter Split
	Time-wise Split

	Limitations
	Concept Drift
	Fingerprinting and Delayed Defacement
	Tiny Defacements

	Related Work
	Defacement Detection
	Image-based Detection in Security

	Conclusions
	Acknowledgments
	Reporter Cross-validation Split
	Image-based Object Recognition

