—_ "__ N ATARRRRRE
t;"!]i*lnl: 1 |

é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

"##$5%&'()*+,-.)/&'0,+")1123)145'6,-.)
74&)877'09,:),&;$%&"H##,-.
4S8 ()% %+, "-&.$'0$1&'2%+&/'%, 3'4"+$56'()* 1" 7871/ I"#$%&'()*$+(,-,.J01#"23.
9+$)':85%<&" /' &4.56',6./6$76$63. 4%+$;&'4:7)" 8$(9*.& ()*$+(,*(,.:2+,*$:623.
'$"=06,,$'>$8,%/" &4.56',6./6$76$6.6',.8<=6$*3. P*+$&5"@*7+A+;7871/
&4.56',6./6$76$63. 1*'+&57,'B"16'%6,3'CL$ CHHYES/N HSY& ()*$+(,-, JOL#"2

" H#$5%8&& () B +,-(JORL.+25 <+ 1*&)$*+,-$*1)/," 344 &H/*$*+"5", +&$115/+.'$6,

1"#$%&'&()%#$%H*+,-.(.%#*%/" (%0) 1+((#*2$%13%6"(
45%/%6789:;%7 (+-)#/<%7<=&1$#-=>
?2-2-$/%5@ ASBC%B @BB%DY%E1$/1*CY%F?C%677?
I"#$%$!&1%6& & $&%0$%

G&(*%'++($35%/1%/" (%0) 1 +((.#*2$%13%%
45%/%6789:;%7 (+-)#/<%7<=&1$#-=% &%
$81*$1)(.%H<%6789::>

Fuzzware: Using Precise MMIO Modeling for Effective Firmware Fuzzing

Tobias Scharnowskj Nils Bars', Moritz Schloegél, Eric Gustafsof, Marius Muencf, Giovanni Vign&*,
Christopher Kruegé| Thorsten Holz and Ali Abbast

1Ruhr-UniversitSt BochumUC Santa Barbara3Vrije Universiteit AmsterdanfVMware

Abstract to achieve this goal is automated fuzz testifugzing. Un-

As embedded devices are becoming more pervasive in ourfortunately, fuzzing of embedded devices is challengBfi.[
everyday lives, they turn into an attractive target for adver- Fuzzing on-device is impractical for Prmware due to low
saries. Despite their high value and large attack surface, apfuzzing speeds caused by limited hardware resouiZgs [
plying automated testing techniques such as fuzzing is notFuzzing the device in an entirely black-box manr@rre-
straightforward for such devices. As fuzz testing Prmware on sults in missing feedback and limited crash detection, which
constrained embedded devices is inefPcient, state-of-the-artiramatically limits the fuzzerOs effectivenéss25,42]. Sim-
approaches instead opt to run the Prmware in an emulatoilarly, fuzzing with the device Oin-the-loop&8,39] also leads
(through a process called-hosting. However, existing ap- to resource constraints due to the need to synchronize hard-
proaches either use coarse-grained static models of hardwargare and emulated environments.
behavior or require manual effort to re-host the Prmware. One way to address the aforementioned inherent issues is

We propose a novel combination of lightweight program re-hosting where Prmware is executed in an emulated envi-
analysis, re-hosting, and fuzz testing to tackle these challengesconment [L7, 51]. Various approaches exist to dynamically
We present the design and implementatiorFokzwWARE, analyze Unix-based brmware via re-hostiBgap, 56], but
a software-only system to fuzz tastmodiPednonolithic these approaches do not apply to monolithic Prmware, which
Prmware in a scalable way. By determining how hardware- consists of a single, opaque binary blob. Modern emulation en-
generated values are actually used by the Prmware logicyironments §,50] allow re-hosting even monolithic Prmware
FuzzwaRE can automatically generate models that help fo- by precisely emulating a limited set of hardware. However,
cusing the fuzzing process on mutating the inputs that matter,such tools require an analyst to bPnd or manually create soft-
which drastically improves its effectiveness. ware equivalentsnjodel3 of all hardware peripherals for the

We evaluate our approach on synthetic and real-world tar-brmware to run, which is a complex and time-consuming task.
gets comprising a total of 19 hardware platforms and 77 Hence, recent work shifted towards automated hardware-
Prmware images. Compared to state-of-the-art wlugz,z- less rehosting, and different strategies to deal with hardware
WARE achieves up to 3.25 times the code coverage and OUrperipherals have emergedigh-level emulatiorapproaches
modeling approach reduces the size of the input space byattempt to tackle the problem of missing peripheral mod-
up to 95.5%. The synthetic samples contain 66 unit tests for e|s by re-implementing and hooking into known libraries to
various hardware interactions, and we bnd that our approachqyoid hardware accesses altogethdr 3,35]. In contrast,
is the Prst generic re-hosting solution to automatically pass pattern-based modelingpproaches model a hardware pe-
all of them. FuzzwARE discovered 15 completely new bugs ripheralOs registers by matching access patterns to common
including bugs in targets which were previously analyzed by static hardware register typekd 22, 23). A third direction is

other works; a total of 12 CVEs were assigned. given by tools deployinguided symbolic executiowhich
treats hardware registers as sources for symbolic inputs. The
1 Introduction resulting symbolic values are then solved towards the most

promising paths guaranteeing the brmwareOs operatio. [
Embedded systems have pervaded our everyday lives, facilitatAll of these strategies allow rehosting of Prmware, however,
ing the transition of our society towards a connected, Osmart@e show that they hit several limitations when the rehosted
world. Security plays an enabling role, and a prst step for Prmware is tested via fuzzing.
secure connected devices is to proactively identify their secu- To Pl this gap, we propose a Pne-grained automated mod-
rity vulnerabilities in an efbcient and scalable way. One way eling approach, which is optimized for use with a coverage-

USENIX Association 31st USENIX Security Symposium 1239

guided fuzzer. Our approach is driven by the insight that many ¥ In several experiments, we show tlaizzwaRE out-
accesses to hardware peripherals are short-lived and occur performs prior work on testing embedded Prmware. Our
for reasons unrelated to the PrmwareQOs overall behavior, such prototype found 12 previously unknown vulnerabilities
as to check a peripheralOs status or set its conbguration. For in core embedded network stacks which we responsibly
the accesses thdb inf3uence its behavior, the Prmware often disclosed to the affected vendors.

leaves large parts of its input unused, e. g., directly by extract- To foster research on this topic, we will relede&zzwARE,

ing only a couple of bits from a 32-bit value, or indirectly by the experimental data sets, and the bug detaitstps://
differentiating between only a handful of status values. By github .com/fuzzware-fuzzer/fuzzware

regularly querying more data than it uses, the brmware incurs

signibcaninput overheadvhile accessing hardware.

To eliminate this overhead, once per unique peripheral ac-
cess, we utilize locally-scoped dynamic symbolic execution
(DSE) and analyze which parts of the hardware- generated
value are actually meaningful to Prmware logic. However,
unlike prior approaches, we do not use the DSE engine to
solve towards specibc values for exploring specibc parts of
the brmwareQs functionality. Instead, we use the generate@. 1 Monolithic Embedded Systems
constraints to infer generccess modelgeared towards in-
put overhead elimination. These access models are then useffmbedded systems are often purpose-built, resource-
to conbgure an emulator, and their concrete values are latefonstrained devices. The code these systems run is known as
served by the fuzzer. An |mp0rtant aspect of this mode“ng prmWareThe Prmware Of an embedded SyStem |S I’esponSIb|e
approach is that at no point during emulation do our models for all the deviceOs functions and may or may not contain a
take actual decisions, or prioritize one decision over anothertraditional OS. Monolithic Prmware images, which are the
The Sing|e goa| of this mode“ng isto present the 0rigina| set focus of this Work, contain none of the traditional metadata
of choices to the fuzzer with as little overhead as possible.found in binary executables. This makes them difbcult to
Consequently, the fuzzer can still explore all paths that the analyze by traditional means.

Prmware could take based on hardware-generated values.

We implement our approach in a tool nanfeazzwARE 2.2 Memory-mapped |10
and evaluate it against 77 brmware images spanning a total
of 19 hardware platforms. Our evaluation shows that while Modern CPU architectures allow for accesses to its periph-
consuming 0.5%-2% of the total experiment computation erals viamemory-mapped I/O (MMIO)These peripherals
time, our access models eliminate up to 95.5% of inputs asare assigned a region of the deviceOs physical memory space.
input overheagallowing the fuzzer to focus on mutating only ~ Each of the regionOs memory locations, terM®HO regis-
the relevant 4.5% of hardware-generated values. Comparedersin chip documentation, is accessed via regular load/store
to state-of-the-art toolslB,57], FuzzwARE achieves up to instructions. Rather than behaving like normal memory, these
3.25 times the coverage (over a period of 24 hours), discoversinstructions instead trigger hardware behaviors in the affected
additional bugs in samples already analyzed by those toolsperipheral. For example, consider a button connected to a
and is the Prst approach to achieve a perfect passing score ofPIO pin of an embedded microcontroller (MCU). The MCU
the rehosting unit test benchmark introduced by P218g].[can check whether the button is pressed by reading from the
Finally, we show howFuzzwARE can be used to identify ~MMIO register that represents its GPIO pin. MMIO registers
vulnerabilities in complex, real-world targets. To this end, we of different types perform certain roles, such as identipcation,
analyze the network stacks of two widely-used embeddedstatus (e. g., whether a button is pressed), conbguration, and

2 Technical Background

Before explaining the technical details of our approach,
we brst discuss different aspects of embedded systems and
Prmware that make them interesting and difpcult to analyze.

Prmware frameworksZEPHYR [55] and CONTIKI-NG [12]. data transfer. As such, MMIO registers aguickly change
We discovered 15 previously unknown vulnerabilities, leading valuesat any time. Registers vary in terms of their size (bit-
to the assignment of 12 CVEs. width) as well as allowing read and/or write operations.
Consider brmware code running on an MCU with a serial
In summary, we make the following contributions: port. Figurel shows how the 1/0 of such an MCU may be
¥ We propose a novel, bne-grainedcess modelingp- organized. After conbguring the serial baud rate, the Prmware

proach which preserves all paths through bPrmware logic waits for a command to initiate a data transfer. The user con-
and allows a fuzzer to efpciently mutate only meaningful nects via their own computer to a serial communication port
hardware-generated values. in the MCU. The brmware notices incoming data by check-

¥ We describe and implemeRtzzwWARE, a highly efp- ing the serial peripheralOs status registers and reads the serial
cient, self-adapting fuzzing system capable of testing data via the peripheralOs data register. Note that there exists no
monolithic Prmware images in an OS-agnostic way. standardized source of input, suchsédin . Inputinto embed-

1240 31st USENIX Security Symposium USENIX Association

' o t Jeomv | 7:B5'< behavior of each MMIO register. While this approach can

o) e | e precisely emulate MMIO, it requires a signibcant amount of
ST ol el engineering effort for each emulated peripheral, as well as

. m— “DiD +HOOR R access to full hardware documentation.
38 An alternative approach to modeling MMIO peripheral be-
RO SRZH) | . &R | %$8" havior isapproximation The basic idea is to involve a fuzzer

. o | 83 | o [to handle MMIO accesses just as they would occur in practice.

OHPRI 00,2 5HIIRQ BHUSKHUD) In its most nasve form, a fuzzer-provided value can directly

be served as a hardware-generated value, whenever brmware
code accesses an MMIO register. This general approach is
appealing, as it allows running the brmware without a priori
knowledge about MMIO usage and handling MMIO accesses
ded systems may come from numerous hardware peripheralsgven if no precise implementation of a peripheral is available.
potentially even multiple sources in the same device. However, as we will discuss next, this is very challenging: a
fuzzer has to provide inputs for an overwhelming amount of
MMIO accesses, many of which are irrelevant to Prmware
2.3 Interrupts and DMA behavior, and hence such an approach does not scale to real-

In addition to the software-initiated communication channels, world systems.
the hardware has two additional means to communicate with
its Prmware: First, hardware uses interrupts to notify the soft-
ware of asynchronous even®?]. For example, a serial port

could be conbgured to trigger an interrupt when data arrives, ,
allowing it to be processed immediately. The CPU tracks As discussed in the previous section, Prmware universally re-

these interrupts by their interrupt number and maintains a ta-1€S 00 MMIO accesses. Therefore, handling MMIO accesses
ble of Prmware functions, so-called interrupt service routines during emulation is crucial to enabling efbcient Prmware

(ISRs), which process new events. Depending on the cpufuzzing. In the following, we investigate yvhy a naeve fuzzing-
model, interrupts can also be selectively disabled, or given Paseéd approach to MMIO access handling exposes the fuzzer

a priority level, allowing some interrupts to take precedence. [© l2rge amounts ahput overheadNext, we discuss previous
The association of the peripheral with its interrupt number de- @PProaches to removing this overhead via MMIO modeling

pends on the specibc CPU model in use and may vary Widely,and their shortcomings in enabling effective, scalable fuzzing.
even within products from the same vendor. The second asyn-

chronous communication channel is called direct memory 3.1 Input Overhead

access (DMA), which is conbgured via MMIO. Using DMA,

a peripheral is able to update Prmware-accessible regulassume a nasve approach where bits from a random byte
memory by talking directly to the memory controller and stream generated by a fuzzer are servedhasiware-
without involving the CPU. While interrupts are universally generated value§. e., values which, from the brmwareQOs
used as a source of input into Prmware, DMA is primarily perspective, are provided by a hardware MMIO register). We

Figure 1: Memory layout of a hypothetical embedded system, showing the
correspondence between the memory map, peripherals, and MMIO registers.

3 MMIO Access Handling

used in high-throughput scenarios such as USB. refer to these bits as the fuzzer-mutaieplut spacevhich is
then processed by the brmware logic. This input space con-
2.4 Re-Hosting Embedded Systems tains bothrelevantbits, i. e., bits affecting the brmware logic,

andinput overheadFor each MMIO access, we differentiate
Firmware re-hosting is a way to run a Prmware binary im- between two types of input overhead:
age without relying on actual hardware. Emulating brmware ¥ Full input overhead No bit provided by the fuzzer is
in a fully virtualized environment allows multiple emulator relevant. In other words, the emulator could have han-
instances to be run in parallel and thus enables effective dy- dled the MMIO access statically, e. g., by providing an
namic analysis techniques such as fuzzing. Generally speak- arbitrary value.
ing, to re-host Prmware, one needs to emulate three main in- ¥ Partial input overheadOne or more bits are relevant,
teractions between brmware and hardware: interrupts, DMA, i. e., they inBuence the brmware logic (e.g., by inBuenc-
and MMIO. From these three, MMIO, which we focus on in ing control-Bow decisions), while other bits do not. For
this work, represents a signibcant share and is used univer- example, consider brmware code that accesses a 32 bit
sally. We need to properly handle MMIO accesses to even wide MMIO register, but actually uses only 8 bits of the

reach the parts of Prmware that perform DMA. To handle resulting hardware-generated value. If the full 32 bits of
MMIO behavior in Prmware, various approaches take differ- fuzzing input are consumed to serve the access, 24 bits
ent directions. For example, QEMU fully re-implements the of partial input overheadire introduced.

USENIX Association 31st USENIX Security Symposium 1241

X VHULDOBJHWEF
%XV\ FKHFN IRU GDWD SUHVH
ZKLOH PPLR !VWDWXV +$GBO

YRLGSHUIRUPBRS
&KHFN UHTXHVWHG RSHUDWLRQ
VZLWFK PPLR IRS *

,QGLFDWH UHDG YLD *3,2 FDVH $KDQGOHBS$ EUHDN
JSLR !YDO JSLR !YDO _ 8$%$57R)D) FDVH %KDQGOHB% EUHDN
5HDG IXOO GDWD UHJLVWHU FDVH & . .
X GDWD PPLR !GDWD O LI PPLR IVWDWXV 63(&,$/
ODVN GDWD SDUW DQG UHWXL . H'B'D\/%GAOHB&BVSHFLDO EUHD?®
UHWXUC(; GDbwD [HO o o KDQGOHB&BGHIDXOW EUHDI
T |‘| i T |"—‘%| o '—‘%l i GHIDXOWRXVHNHHSLQJ
+$6B'$7 +$6B'$7 8$578B F

Figure 3: An example of a function that takes actions based on MMIO input

Figure 2: An example of a function for retrieving input from a serial port using switch/case and if/else constructs.

peripheral. The annotations indicate resulting MMIO accesses relating to
overhead (gray) and actual application data (black).

execute based on a hardware-generated value (Line 3) and, in

While fundamentally simple, these overhead types govern one case (Line 7), also checks the peripheralOs status register.
the fuzzerOs efbciency: Exposing the fuzzer to input overheadVithout further insight, the fuzzer would have to provide 4
leads the fuzzer to mutate bits that do not affect Prmware logic,bytes (32 bits) for each MMIO access and correctly guess
hence wasting resources. To better understand this in practiceneaningful values. The fuzzerOs large input space is con-
we explore two code examples which are inspired by real-trasted by the limited number of meaningful values it can bPnd:
world brmware and represent typical brmware operations. The Prmware differentiates between only 2 status conditions
(special or non-special) as well as 4 different operations (A,

B, C, or default). These choices can be expressed by only 1
and 2 meaningful bits respectively, resulting in 94% and 97%
partial input overhead

Example 1.Figure2 shows a typical Prmware function that
retrieves a character from a serial port. This function waits for
the serial port to have data availab@ {n Figure?2), triggers

a GPIO write (e. g., to turn on a busy indicator LED)@x

and Pnally returns one byte of data. The waiting for serial
data involves polling for a specibc valu@y, debned by the
hardware, which indicates that one byte has arrived. Without
modeling, the fuzzer is rather unlikely to feed the correct value N essence, recently proposed hardware-less rehosting ap-
to the MMIO access, thus bottle-necking on the loop until the Proaches deploy one of the following strategies to deal with
correct input is found by chance. As only one specibc value Unknown peripherals:

is accepted, this is a prime example of full input overhead
hindering the fuzzing process. While writing to GP1O might
be seen as an MMIO write operation, GPIO bits are typically
packed into registers with 32 bits representing 32 GPIO pins.
Therefore, to perform a GPIO operation without affecting the
nearby bits, we must read 4 byt@@), Bip the desired bit, and
write the result back. The data initially read has no impact
on the program (full input overhead). Eventually, we read the
actual data from the serial po@)). While this serial port is
byte-oriented, the MMIO register itself is typically 4 bytes
wide, i. e., we read 3 bytes more than needed. To prevent any
side-effects of this operation, the Prmware masks off only the
data byte and returns it. This is a case of partial input overhead.
As aresultpnly a single on®f the 12 (or more) bytes read

in this function is passed on to brmware logic (marked as a
black square in Figurg). For this function, a nasve modeling
approach that passes fuzzer input to each MMIO access has
a minimum input overhead of 92%. The actual overhead is

3.2 Previous MMIO Modeling Approaches

¥ High-level emulatiorgets past the need of modeling
specibc hardware peripherals by completely avoiding
MMIO accesses. Previous work abstracts Prmware code
that performs low-level MMIO accesses by hooking
into, and manually handling, higher-level library func-
tions [11, 35].

¥ Pattern-based MMIO modelingckles MMIO accesses
directly. They allow emulated bPrmware to perform
MMIO accesses and attempt to reduce the input space by
using access pattern-based heuristié 72, 23]. This
means that one observes accesses to an MMIO register,
matches these observations to common, pre-debned pat-
terns, and assigns a model to that specibc MMIO register.
This model then determines how to serve future accesses
to this register.

¥ Guided Symbolic Execution-based modelirap-

likely even larger if the fuzzer needs multiple attempts to
guess the value d(AS_DATA

Example 2.Figure3 shows another set of typical brmware

code constructs that introduce a less obvious sourpaief
tial input overheadThe function decides which operation to

proaches T, 57] improve upon pattern-based MMIO
modeling. Instead of assigning static patterns based on
heuristics, accesses to hardware are treated as symbolic
values. Whenever a concrete value for one MMIO
access is needed, the underlying symbolic variable is

1242 31st USENIX Security Symposium

USENIX Association

solved towards the mogiromising path, i.e., more same time, regular Prmware behavior that inconspicuously
coverage of the brmware logic. waits for asynchronous events may appear as an inbnite loop

) _) which does not perform any meaningful operations. This di-
We identify three problems with the current approaches to rectly reRects on state-of-the-art solutions, which run into
MMIO modeling: (1) per-Prmware manual effort, (2) incom- oyacution stalls without human assistantg 57.

plete overhead elimination, and (3) .path el|m|nat|on. . Following these insights, we conclude that an effective
Per-prmware manual effort. All prior solutions require renhosting solution for fuzz testing must avoid path elimination,
manual work when preparing speciPc brmware for fuzzing whjle at the same time reducing the per-brmware manual

campaigns. For instance, this includes the creation of HAL effort and eliminate as much input overhead as possible, which
abstractions, correcting misclassiped MMIO registers, or iden-js directly reRected in our design.

tifying alive andkill points to steer the symbolic execution
engine. Although recent approach&sq7] deploy heuristics

to reduce the manual involvement, we note that in practical
usage, Prmware-specibc knowledge is still required, limiting
the Rexibility for fuzz testing.

Incomplete overhead elimination While effective in remov- In the_followmg, we mt_roduce the design BUZZWARE, &
ing full input overhead, pattern-based approaches generallyd€neric Prmware fuzzing approach that allows a fuzzer to
make assumptions about hardware behavior based on Corp_fbmentl)_/ explore Drmware behavior by precisely eliminating
ventions of how brmware is Otypically® implemented rather?th Partial and full input overhead.
than considering actual brmware logic. However, they are To this end, we base our modeling on lightweight pro-
unable to identify which parts of an input are actually used by gram analysis techniques that allow us to spot partial uses
Prmware, i. e., they cannot elimingtartial input overheads ~ Of hardware-generated values. To analyze the behavior of
Consider Example 1 from the perspective of pattern-basedPrmware code, we employ dynamic symbolic execution
register modeling. As pattern-based MMIO modeling ap- (DSE) [43]. DSE allows us to generate a set of constraints
proaches lack insight into brmware-internal logic, they are representing all possible uses of a hardware-generated value.
unaware of the fact that 3 out of the 4 bytes read from the Evaluating these constraints allows us to narrow down the
serial data registe@ in Figure?) are discarded. As a result, Set of values to be explored by the fuzzer. Typically, using
these approaches cannot eliminate the 75% of partial inputsymbolic execution for modeling introduces high computa-
overhead introduced by the access. tion costs due to the state explosion problem. We avoid this
While incomplete overhead elimination does not affect re- drawback by usingpcal DSE where DSE is used only to ex-
hosting itself, it becomes problematic during fuzz testing: a €cute the code in the context of a specibc MMIO access. We
fuzzer will spend a signibcant amount of time mutating values describe the details of limiting the DSEOs scope in Se¢tion
that have no impact on program logic.

Path elimination. While guided symbolic execution-based
approaches reduce large parts of input overhead, they will-4.1 Prerequisites and Threat Model

ingly accept to leave specibc parts of the brmware unexplored

during fuzz testing, i. e., eliminating available execution paths FUZZWARE has the following prerequisites and threat model:
from the brmware. High-level emulation replaces full parts of
the Prmware with abstractions, and pattern-based MMIO may

4 Design

Prerequisites. FuzzwARE shares two basic prerequisites

)) ; . | lude th with all other re-hosting systems: First, we assume that we
miscategorize certain registers or wrongly conclude that no 5 .o o6 19 obtain a binary Prmware image for the target de-

relevant options exist for a given MMIO access. Guided sym- vice. Second, just like other re-hosting systems, we assume

bolic execution-based approaches use heuristics and humaBasic memory mappings such as RAM ranges and the broad
insights to decide which paths are worthwhile to explore. MMIO space to be provided. Depending on the target CPU

AIthough path elimination allows for rehosting .Of the_ architecture, these generic ranges may be standardiked [
Prmware, it has severe consequences for fuzz testing. First,

eliminating specibc paths may render large parts of the Threat Model. Given no additional knowledge about the
pPrmwareQs functionality unreachable and in turn impossiblespecibc hardware environment of a given binary Prmware
to analyze. Even assuming correct modeling, path elimination image, we assume during fuzzing that an attacker is able
will affect error handling and recovery functions, which may to control the inputs provided to the Prmware. Commonly,
contain bugs, and should not be dismissed. Furthermore, wethese inputs may correspond to the contents of an incoming
argue that differentiating between regular brmware behavior network packet read via MMIO, data received via a serial
and error handling functionality is an undecidable problem interface, or sensory data such as temperature measurements.
in the general case: Error conditions may be met in PrmwareWe analyze situations where an attacker has less control over
logic with complex diagnostics and recovery attempts. At the hardware-generated values in Sectioh

USENIX Association 31st USENIX Security Symposium 1243

MMIO access contexthe pair of current program counter and

6% (PXODW @ " MMIO MMIO address). In a separate emulator instance, we create a
g:;c;vrv;tg EEED Access snapshot of the brmwareQs state (i. e., register and memory)
Value wansiate |50 5> $EEHVV ORG right before the MMIO access. We use symbolic execution
CIT1 T nput from this snapshot to derive a matching model (described in
02 ,g_sﬁ](vv -------- - Chunk detail in Sectiont.3). We then re-conbgure the emulator with
) new models, allowing the fuzzer to more effectively discover
Q—f—J Covetage further Prmware logic with less input overhead.
)X]ILQJ (QJY We bootstrap this fuzzing loop by providing no initial

. ~ . . _ . MMIO access models. Models are continuously generated
Figure 4:FuzzwarReOs MMIO access handling design. The fuzzing engine . . .
generates a raw input Ple. Upon MMIO accesses, chunks of the input Ple areand added to the emulator conbguration while the fuzzer is
consumed by MMIO access models and translated into (potentially larger) active. This design provides a generic, self-adapting Prmware
hardware-generated values, which are then served to the emulated Prmwarg@mulation environment, which allows a fuzzing engine to

Once the raw input is exhausted, coverage feedback is provided to thefuzzingexmOre unknown brmware with minimized input overhead
engine to guide the fuzzing process. ’

4.3 Modeling Approach

4.2 Fuzzware Os Emulator , _ _
As previously explained, for each MMIO access context (i.e.,

We now describe the design BfizzwarReOs emulation com- program counter and accessed MMIO address), we construct
ponent. Figure! shows that, from a high-level point of view, ~an access model. To do so, we replay the input for which the
FuzzwARE uses an ISA emulator and a coverage-guided new MMIO access is performed, and snapshot the emulatorOs
fuzzing engine (fuzzer). AEUZZWARE aims to eliminate register and memory state just before brmware would perform
partial input overheadwe introduceaccess models mech- the MMIO access. We pass this snapshot on to our DSE en-
anism totranslatesmall amounts of fuzzing input bits into ~ gine for modeling, and symbolically execute the code, starting
values that are meaningful to Prmware logic, while eliminat- from the snapshot. Each MMIO access observed during the
ing input overhead in the process. symbolic execution is treated as a separate symbolic variable.

We start by loading a given monolithic Prmware image into Modeling Analysis ScopeWe track the bPrst MMIO access
the ISA emulator. We set up a harness that dynamically inter-(as well as any additional accesses from the same access con-
cepts allMMIO accesses. e., memory operations performed text), to follow whether the resulting symbolic variable is still
by the emulated Prmware code on all addresses within MMIO alive, i. e., at least one symbolic expression in memory or a
regions. The harness is providedsav input(i. ., a plain bi- register still depends on it. The symbolic execution continues
nary ble) generated by the coverage-guided fuzzer; then, ituntil one of the following events occurs:
starts Prmware code emulation. The raw input is consumed 1. All tracked symbolic variable are dead (i. e., not alive),
in chunks to serve MMIO accesses. Whenever brmware code 2. the current function returns,
performs an MMIO access, the harness checks whether we al- 3. a tracked symbolic variable is leaving the scope of the

ready assigned aMMIO access modeb this specibc access. analysis (i. e., it is written to global memory or to a stack
If a model is available, and depending on the type of input frame of a function higher in the call stack), or
overhead, the harness may be able to handle the access with-4. a pre-debned limit of computation resources is exhausted
out consuming any raw input (in casefafl input overheadl (timeout, number of symbolic states, or number of DSE

Otherwise, the harness consumes a chunk of raw inputand steps was reached).
translates it into a hardware-generated value via the modelUsing these exit conditions, we narrow down DSE to a small,
(partial input overheadl The hardware-generated value is manageable scope, in which we are able to observe all actions
then used to serve the MMIO access. The emulator runs thethat brmware takes based on an MMIO access. At the same
prmware code until the fuzzerOs raw input is exhausted and itime, we do not model uses of a hardware-generated value
can no longer serve MMIO accesses. We term this emulationbeyond this scope. The rationale behind this scoping decision
cycle anemulation run As an emulation run is concluded, the lies in the short-lived nature of MMIO register states (see
harness restores brmware to its clean state, and reports coGection?.2), which forces Prmware to frequently access and
erage feedback for the previous emulation run to the fuzzerquickly discard hardware-generated values. As we will show
Based on this feedback, the fuzzer generates another raw inpuin Section6.1, our evaluation supports this notion.
and provides it to the harness for the next emulation run. Upon hitting one of the exit conditions, the modeling logic
However, if during emulation a specibc MMIO access has analyzes the resulting symbolic states. Each symbolic state
no model assigned yet, raw input chunks are used as hardwarezorresponds to a possible path that brmware code could take
generated values without translation. In parallel to ongoing depending on hardware-generated values. A symbolic state
fuzzing, FuzzwaRE initiates modeling of each newly seen has a set of different path constraints, i. e., conditions that

1244 31st USENIX Security Symposium USENIX Association

Table 1: MMIO Access Models. HW denotes the Hamming Weight. Each of these models provides a blueprint to the emulator
for how to handle a specibc MMIO access and systemati-

Model Type || Overhead | Parameters | # Fuzzing Bits Output

Constant full constant constant valug cally remove input overhead, full or partial, either for typical
Passthrough full | . (b- 3 Sltloaeg Valui control-Bow based MMIO uses (i. e., taking different actions
Bitextract partial itmas HW(bitmasl blled bitmas| _ . .

Set partial constants | Togo|constantk | selected value baseq ona yalue) or data basgd MMIO uses (i. e., readmg data
identity none - full access sizd _fuzzing bits and dismissing all or parts of it). Some of these generic mod-

els accept parameters by specibcation. We use the symbolic

states to prst assign a generic model and then instantiate it via
hardware-generated values need to adhere to, as well as possrarameters for the given MMIO access. The generic models
ble symbolic expressions containing tracked variables which contain a specibcation for the emulator on how to apply the
are still alive. These symbolic states are then used as input tomodel parameters to determine a hardware-generated value.
assign and conbgure a model for the analyzed MMIO accessfFor models handlingull input overheadmodel parameters
Model Design ConsiderationsBased on the previous dis- alone are sufpcient to handle the access, without consuming
cussions, two aspects are central to our model design: Firstany fuzzing input. For models handligrtial input over-
models provideeproducibletranslations. Performing an emu- head the emulator requires fuzzing input to apply the mode!.
lation run for a given raw input multiple times has to resultin In these cases, it uses the modelOs parameteasistatea
identical Prmware executions. We require identical behavior fuzzing input chunk into a hardware-generated value.
as we generate MMIO access snapshots for modeling in sep- We now detail our bPve generic models. For each one, Ta-
arate emulator instances, in parallel to ongoing fuzzing. To ble 1 shows which type of input overhead it handles (Over-
keep translations reproducible, we derive hardware-generatechead), which parameters it uses (Parameters), how many raw
values exclusively from chunks of fuzzing input. Second, we fuzzing bits an access consumes (# Fuzzing Bits), and how
design our models tpreserve Prmware code path&hile models use parameters to translate the raw fuzzing input into
we aim to eliminate as much input overhead as possible, wethe hardware-generated value (Output).

conservativel_y appl_y models that do not make Prmware codel) Constant Model. This model describes MMIO accesses
paths unavailable in the process. Thus, we only model acyhere a specibc constant is used as part of a comparison,

cesses based on variable uses that we can fully observe. IQhich must be satisbed to allow execution to proceed@ee
case a live variable leaves our analysis scope, we base ouj, Figure?).

modeling on the constraints that brmware logic has already

placed on the modeled variable (e. g., a bit mask has beer12) Passthrough Model.This model is assigned to accesses
applied before data gets returned @éﬁ Figure?) where the hardware-generated value is determined to not af-

_) fect the PrmwareQOs state. We treat the MMIO access like a
Error Handling and Execution Stalls. Naturally, by pre-

) regular memory access. These include, for example, accesses
serving all Prmware code paths, we also allow the fuzzer to conbguration registers (s@in Figure?)

exercise error paths. This is intentional: Contrary to previous
modeling approaches, we explicitly do not try to prioritize

specibc paths or remove entire paths #pgtearuninteresting

(cf. Section3.2). Instead, we Pnd that code which handles

3) Bitextract Model. The bitextract model is used when only
a portion of the bits read from MMIO are used by the brmware.
For example, this is the case when four bytes are read from

irregular conditions may contain bugs, and should likewise be 2" MMIO register and a bitmask is applied to only retain a
included in the analysis. This inevitably leads to inputs that €W Pits while the others are discarded (@en Figure2).

result in stalled Prmware execution. However. we note that Note that similar effects occur for bit shifts, truncations, and
’ quivalent instruction composites.

these cases are seamlessly dealt with by the fuzzer: Whenf . , , ,
ever execution is stalled, the fuzzer will recognize missing EX@mplesA 4 byte-wide MMIO access is performed with
code coverage. Consequently, the corresponding inputs will2 Model-computed bit mask of 0x00ff0000. The emulator

be discarded as uninteresting, and the mutation engine will CONSUMes a byte of fuzzing input, e. g., Ox4e. The emulator
quickly yield inputs with more signiPcant code coverage. We S€TVes 0x004e0000 as the hardware-generated value for the

want to stress that this conscious decision to explore errorMMIO access. For a bit mask of 0xfff0000f and a consumed
handling does not only allow for discovery of bugs which "W input chunk Oxabf8, the emulator serves 0xabf00008.

may be missed otherwise, but also enables truly robust and4) Set Model.The set model handles the situation where a
automated fuzzing of Pbrmware, as neither a human analyst(part of the) hardware-generated value is checked against dif-
nor heuristics are needed to identififerestingpaths. ferent values to determine control Bow. The model is applied
in case a discrete list of values can be precomputed such that
each value represents exactly one of the possible control-Zow
options. A chunk of raw fuzzing input is interpreted as the
We dePbne a total of bve generic MMIO access models thatfuzzerOs choice from among the different options for each
can be assigned from a DSE-produced set of symbolic statesndividual access. Possible instances include status and iden-

4.4 FuzzwARE Model Debnitions

USENIX Association 31st USENIX Security Symposium 1245

tibcation registers, where the brmware performs different Similar to how fuzzing input is used by access models to
actions based on the hardware-generated value (see B)gure determine hardware-generated values, fuzzing input can be
Example:A 2 byte-wide MMIO access is performed for a used to determine the timing of the next interrupt, as well as
model-computed list of four precomputed values [1,5,7,128]. its number. This allows the fuzzer to discover the inuence of
The emulator consumes 2 bits of fuzzing input, e. g., 0x1. The very specibc interrupt timings on brmware behavior.
emulator serves 0x0005 as the hardware-generated value. Note thatFuzzwARE can support some forms of DMA by

5) Identity Model. This model is assigned if DSE determines dePning transfer buffers as MMIO regions. Howeweszz-

that all bits of a hardware-generated value are meaningful WARE currently does not explicitly model DMA in an auto-
(i.e., used by brmware). It is also used as a fallback in case anmated way given that this is out of scope for this work.
unconstrained symbolic variable escapes the analysis scope,

or if DSE does not complete within its resource limits. In]

these situations, we conservatively assume that every bitofthed Implementation

hardware-generated value may later be used by the Prmware.

Thus, we allow the fuzzer to try all values and therefore to We implement a prototype ¢fuzzwARE targeting the ARM
discover all brmware paths. As we will show in Sectibf, Cortex-M standard. We chose this platform due to its wide
this fallback is rarely required in practice. adoption in practice and projected future popularity The
Model Computation By Example. For further explanation, implementqtion is .desi.gned such that support for other tar-
we re-visit the busy check of the serial peripheral®s statugeted ISAs is possible in the future.

shown in@ in Figure 2. While stepping through the loop,
our symbolic execution reaches the comparison and splits the ~
execution into two statesNone which exits the loop and an- 5.1 FuzzwaARrEe Os Emulator

othe_rwhich takes an additiongl loop iteration. By gen(_arating Our implementation is based on Unicorn Enginé][as the
multiple of these states and mspeqmg path constraints, Wepase ISA emulator and we use legacy ABU][as the fuzzing

can show that for each state that exits the Iqop, the hardwareéngine for a fair comparison with other modeling approaches.
generatepl valge has to be equalms_DA'ﬂNrmg the lastac- \yg 5150 integrated AFL++1[0)] for its extended feature set
cess, while prior accesses had t_o be different fFMS_DATA and baseline performance. We handle MMIO accesses by
Consequently, brmware executlon_ does not continue W'thOUtregistering memory access hooks for MMIO regions with
the hardware-generated value being equalAS_DATWe the native Unicorn API. We handle hooked read accesses

can use this information to assign tBenstant Modelpa- by writing the output of the assigned model (as described in

raFr)r:eteri(zjed V,Vith t[r)weé/algfle ?ASHDAgsimilquz,rTor;he Sectior4.3) to the accessed MMIO address before the read
GPIO update i@, DSE will show that the queried hardware- operation is performed. We associate a memory access with

generated value is only written back to an MMIO address, its corresponding model by itdMIO access context e., the

but not involved in a constraint on the execution state other—pair of program counter and MMIO address. If no associated

WISE. I-;]ence,k\:ve ashs_||gn tRassthrough MpdeFlnﬁIIy, fok:@, it Model exists, we default to handling the access according to
DSE shows that while no constraints exist on the path itself, a theldentity Model We use three generic bles as initial fuzzing

masked part of the hardware-generated value is returned fron\nputs (each 512 bytes in size): All zero-bits, all one-bits, and
the function. As the DSE terminates on the function boundary .. .otanated 32-bit values with a shifting 1-bit each

(to avoid path explosion), we assigiaextract Model Empirically, we have found that consuming raw fuzzing

input provided by an unmodibed byte-oriented fuzzer on
4.5 Interrupt, Timer and DMA Handling a bit-granular level conBicts with the heuristics that drive
the fuzzerOs input mutation process. Consequently, to handle
MMIO accesses, we consume raw inputs on a byte-granular
level. For example, while each access to a set model with four
elements requires a minimum of two bits of fuzzing input, a
byte is consumed in our current implementation.

As described in Sectioh. 1, interrupts are an asynchronous
source of input into Prmware logic. As an ISA emulator
does not contain any notion of peripherals to raise interrupts,
this behavior has to be triggered ByzzwaRE. Per default,
FuzzwARE raises each of the currently-enabled interrupts in
a rolling fashion after a certain number of basic blocks is exe- Timers and Interrupts. Timers and interrupts are a source of
cuted. The set of enabled interrupts is tracked by examiningnondeterminism in Prmware execution. As discussed in Sec-
the state of the CPUOs interrupt controller during execution. tion 4.3, we require emulation runs to be fully reproducible.

Among other peripheral behavidFuzzwARE mimics To achieve precisely reproducible timing behavior, we mea-
interrupt-based timer peripherals this way. To provide ad- sure elapsed time by the number of emulated basic blocks.
ditional Rexibility in exploring how Prmware logic reacts We also extended the Unicorn Engine with an implementation
to specibcally-timed eventBuzzwARE allows precise con- of the interrupt controller (NVIC) and the system tick timer
trol over both when and which interrupts should be raised. (SysTick), which are debned in the Cortex-M standard.

1246 31st USENIX Security Symposium USENIX Association

5.2 MMIO Access Modeling RQ 2 How many optimized modeling opportunities does

. L . FuzzwARE miss due to its conservative scoping?
For DSE, we chose ang#4,45] as an engine, as itNjust like ping

Unicorn EngineNreadily supports a wide range of ISAs and RQ 3 Are FuzzwarReOs MMIO access models applicable to
lends itself well to including more architectures. a wide variety of brmware and hardware platforms?
After loading a brmware state snapshot into angr and cre-
ating a symbolic variable for the hardware-generated value RQ 4 How doesFuzzwARE perform compared to previous
representing the tracked MMIO access, we track the variable®s ~ methods in fuzzing monolithic Prmware?
liveness via reference counting. We increment the reference
count whenever DSE writes a symbolic expression containing
the tracked variable to a register or to memory, and we decre-
ment the count whenever such an expression gets overwritten.
To track whether register value assignments from a concrete
restored state snapshot inBuence modeling results, we tain
registers after loading the snapshot.
Upon hitting an exit condition as described in Sectiof
we check the live symbolic expressions and constraints on

the resulting states for adherence to each model debnition as, .\ orid brmware samples used in concurrent work. Third

detailed in the following.) we usedFUZZWARE to test network stacks of widely-used
1) Constant Model: All tracked variables are no longer ref- ampedded Prmware frameworks with the goal of uncovering

erenced, but constrain the resulting states. A single commonnetwork packet processing bugs. Finally, we analyzed the root

ing states with the following property: For any previous-to-
last variable, assigningdoes not satisfy the state constraints.
The constant value parameterizes the model.

2) Passthrough Model:All tracked variables are no longer In a brst step, we focus on the costs and the general applica-
referenced and do not constrain any of the resulting states. bility of FuzzwarReOs access modeling on the fuzzing-based
3) Bitextract Model: All state constraints and symbolic ex- Prmware exploration procesRQ 1, RQ 2, andRQ 3).
pressions remain unchanged after a bit mask has been applied For the initial part of our evaluation, we use two sets of
to each tracked symbolic variable in each state. The bit maskPrmware targets: First, we created a uniPed application-level
with the lowest Hamming weight parameterizes the model. program from which we generate Prmware images for ten
4) Set Model: All variables are no longer referenced, but hardware platforms supported by ARMOs Mbed G. [
constrain the resulting states. For each state and referencée use a unibed application as from a modeling point of
counted variable, a value can be found that does not satisfy/i€W (and probably counter-intuitively), compiling the same
the path constraints of any of the other states. In other words PPlication-level program for 10 different boards will look
the sets of constraints on each path form partitions of the vastly different, while compiling 10 different application-level
input space between states. The minimum representative ofrograms for the same board will effectively look the same

each partition is chosen as a value in the conbgured set, whicHo MMIO modeling. This is why we reach diversity by com-
parameterizes the model. piling the same program for 10 boards. To expand on the

application-level diversity, we also testzzWARE on the 66
unit tests originally published by the authors of P2IM]

RQ 5 CanFuzzwaRE be used to uncover previously un-
known bugs in real-world Prmware?

To answer these questions, we performed different experi-
ments, targeting 77 different Prmware images for 19 different
hardware platforms, summarized in Tabilan the appendix.
First, we quantibed the amount of input overhead that ac-
cess modeling eliminates and studied how this translates into
code coverage. Second, we applfeazzwARE to a set of

6.1 Access Modeling for Fuzzing

5) Identity Model: None of the above models apply, or no

model w_as found within DSE fimits. . . : Our test application repeatedly triggers hardware platform-
I.f multiple model_s apply, the one W'th_ th_e highest reduction specibc driver behavior by calling different high-level Mbed
of input overhead is chosen. As the limit for the DSE com- g apjs which then resolve to its platform-specibc driver
putation, we set the default run time to 5 minutes per model functions and thus trigger MMIO accesses. The test applica-
anq a maximum of 1,000 symbollcglly exeg:uted basic blocks, tion then prompts the user for a password over the serial port.
which we have found to work well in practice. If the correct password was entered, the Pbrmware exposes
a vulnerable function accepting input from the serial port.

6 Evaluation We use this application to repeatedly trigger the underlying
hardware-specibc driver implementations for each platform.
We evaluateFuzzwARE by considering the following re- To provide the baseline data for our evaluation, we fuzz
search questions: each of the ten Mbed OS targets for 24 hours, once with
RQ 1 How computationally expensive is the implemented L0originally, this data set consisted of 70 Pbrmware unit tek8§ put a
symbolic execution-based modeling? recent errata removed four of them for validity reasons.

USENIX Association 31st USENIX Security Symposium 1247

MMIO access modeling enabled and one time with MMIO Table 2: Percentage of fuzzing inp F) used and overhead reduction (M)
access modeling disabled. We repeated this experiment terff\chieved, per model type. We analyze how much fuzzing input each model
.) ~ . . consumes (if the model consumes any) and how much input overhead each
times to account for the fuzzerOs inherent nondeterminism ag,odel eliminates (the Identity model does not eliminate input overhead).
recommended by Klees et a9. We used a 40-core Intel (CN: Constant, PT: Passthrough, ID: Identity)

Xeon Gold 6230 CPU @ 2.10 GHz machine running Ubuntu . |

18.04.4 LTS and assigned eaéhzzwARE instance two CPU R CNIPT| °t | Srexwact | D Tol

cores. We visualize the time spent to discover the individ- arcH_pro 25| 458 | 33| 901 05 o o503 493 507

. . . . bits 06 0.1 49.7 50.3
ual characters of the password in Figéra the appendix. 03 01338 113 798 202

EFM32GG_STK3700| 45.2 | 0.4 8.8

. . . 04 00| 339 113 79.9 201

Based on these experiments, we collected additional metrics 55 RONR 51 WG T miEE
~ . EFM32LG_STK3600| 46.3 | 0.4 : . . ’ 6.6 : ’

on several aspects ofUZzWAREQOs operation. 0.4 ROION 34.7 WIS 81.9 [gto:R
LPC1549 a6 16| o5 0T 0 0496 0% 400

Costs of Model Generation.To evaluate the (one time) com- Lpe1768 w6 33| 01 08| 5 o 4eq 0T 499

putation costs mcurre.d by'OL'Jr modelirg@ 1), we collepteq p———— s oo [200 67284 95| 5 [[833 167
the start and completion timings of all model generation jobs. - - ggg gg ggg gg ' gg; 1‘712
On average, 62 models have been generated during a 24-hour NUCLEO_F103RE | 323 | 0.7 | 56'a g9 | 349 32| 13| 947 ‘53
experiment for a single Prmware image, which took an aver- nNucleo_Fe07zG | 257 | 10 | 222 741292 1350, ,) 781 219

. 28.7 09]385 42 938 6.2
age of 6.34 minutes (6 seconds per model) to compute. NUCLEO_LIS2RE | 344 | 06 | 204 08| 2809317, [[8347166
Input Overhead Elimination. After analyzing the costs in- UBLOX_C027 ase| 82| 01 081 o oar7|| 229 281
curred by modeling, we quantify its overall elimination of bytes 35.9‘ 08 ‘ g - ‘ sy ‘ a6 H sy 7

input overhead. Tabl2 shows how much input overhead (M)
different models eliminated and how much fuzzing input (F)

they consumed. As described in Sectigithe currentimple- after reading it, as MMIO register states are short-lived, and
mentation of access models operates with byte granularitymay quickly change values.

Every second row shows the input overhead reduction for an .

assu>r/ned bit-granular model inl?plementation. The resulting MN”O Access Model Generaﬁty. The authorg (.)f P2IM qu'

data shows that in total, the current implementation eliminates lished a set of 46 "m.“”are IMmages comprising 66 unit te_st

a minimum of 49.3% and a maximum 83.4% of the input cases. These are de:&gned to test the ability of an emulgtlon

space (in ARCH_PRO and NUCLEO_L152RE, respectively). system to_deal with dlve_:rse_ types of common hardware periph-
erals on different combinations of brmware and hardware plat-

When considering a bit-granular implementation, these values _ :
increase to 49.7% and 95.5%, respectively. Over all runs, theforms (eight hardware peripherals, three MCUs, and three OS

input space was reduced by nearly 80% and could have beer{ibrar_ies), as weII_ as interrupt-based and synchrono-us input
reduced by nearly 90% with bit-granularity. We can also see passing mechanisms. For these 66 test cases, previous work

that depending on the target, input overhead differs signiI:>—""Ch'eve.S passing rates of 83% and S5fiéspectively 18,57 :
cantly. It is worth mentioning that depending on the brmware RegardindRQ 3, we _reproduced these test cases by running
sample, some model types simply do not apply. If the bit- FuzzwaRE for 10 minutesFuzzwARE passedll of the 66
widths of MMIO accesses exactly match the amounts of data test cases. ConsequenfyyZZWARE is the brst automated

. ! 0 :
actually used within Prmware code, Bitextract optimizations and generic emulation .system to pass 100 /° of the P2|M unit
are not required (see ARCH_PRO). test cases, demonstrating the robustness of its models, its gen-

eral applicability, and the advantage of approaches not relyin
To determine the opportunities of input overhead reduction bp ¢ g PP ying

that FuzzwaRE might have missedRQ 2), we re-visited the on path elimination.

cases where an Identity model was assigned, meaning that no

input overhead was eliminated for the given MMIO accesses.6.2 Comparison with the State of the Art
In total, of the 623 unique models that were generated during
the experiment, 34 have been assigned the Identity Model
We manually veribed that in 19 instances, full values were
used within Prmware logic, leaving no room for overhead

To assessFuzzwarReOs efbcacy, we compare it with
UEMU [57] and P2IM [L8], two state-of-the-art tools for
hardware-less re-hosting. LikEuzzwARE, they support

reduction. The remaining 15 cases (less than 2.5% of thegeneric monolithic Prmware fuzzing without signibPcant man-
|) ual intervention. As the evaluation data set, we use the 21

623 models) involved processing where DSE resource limits o
. . : i real-world Pbrmware samples presentegiimu, which in-
applied. In these cases, modeling conservatively assigned an

Identity model and fell back to allowing the fuzzer to try all Cludes 10 samples previously tested by P2IM. .
values. This ensures that we are not assigning a wrong model. For each sample, we perfqrmed bve 24-hour f_uzzmg |tgra-
which could hide parts of brmware code from the analysis. tions for each target on virtualized dual core machines running
Only rarely encountering this fallback is expected: Prmware on Intel Xeon Silver 4114 CPUs at 2.20 GHz on Ubuntu
typically processes a hardware-generated value immediately 2Based on the remaining 66 of 70 unit tests, adjusted from 79% and 93%.

1248 31st USENIX Security Symposium USENIX Association

®-//0123 4156 A.78.

CNC 1$5% Drone %$% Heat Press Reflow Oven 's$ Soldering Iron
$s &)'s oo IR T 8)$8 :;g;
8)%5¢ () S a i S s

Riass &)'$$ 5% &)%

&)138 58 &y'ss
&)(s8)93 58 »
‘ &8s

&% ;; 13$!

"$$;‘i
2
3 bl &39 195 "$$

133 133

SSHSS SUHSS &S &USh WSS ©
Console (8% Gateway 155 PLC

$:

$6#6S ShoHSS &WSS | &WSH'HSS
Steering Control

SSHSS SUHSS &IMSS &S rufiSSASS SUASS RIASS | GASS IHSS DSOS SUess &S | &#es WSS
Robot

=>7?

V. ,ssss‘ &% +85
& $r")$3$ L &)'s3, %

;s (88 & &)'ss

5)35

8 1)55$ B)vs$

'35 E

it &)(ss 55 "

- &8ss 158 '35

ass s 38 55

Soous Sws &GS @#es 1SS CGASS SUHSS GMSS &#SS IHSS DSSASS SUGASS WSS GASS WSS TSOHS GWHSS &IASS GGG WSS DSOS SUess &S a#es 1Hss

@A83<BCC#88D

Figure 5: Uniquely discovered basic blocks for P2IM real-world Prmware samples over bve 24h runs. Displayed are the median number of discovered basic
blocks, alongside with minima and maxima over the individual runs.

18.04.4 LTS. For all experiments, we re-used exact input and LiteOS_10T, wher&uzzwARE showed variable perfor-
seeds where provided, and used the conbgurations publishedthance, all results are statistically signibcant according to the
alongside the tools where applicable. FarzzwARE, we MannbBWhitney U test, as recommended by Klees e€l. [
always use its default conbguration except for bve brmware One interesting aspect in Figuses that P2IM often out-
samples in which we reproduce parti@&muOs conbgura- performspuEmMU. We believe the reason for this to be the
tions. In four of these cases, we disable interrupts (3D_printer,aggressive path elimination that is at the corquBfuOs
RF_door_lock, Thermostat, xml_parser), while in the Pfth invalidity-guided approach (cf. Sectici): The framework
case, we add support for DMA operations by manually debn-deploys heuristics to decide on viable paths and provides hard-
ing pass-through models for two DMA buffer address MMIO ware values accordingly. When no clear distinction can be
registers (utasker_Modbus). In contrasFtazzwarReOs min- made, this choice is left to randomness, which either makes
imal conbguration overhead, the most recent target conbgularge parts of the Prmware available for analysis or removes
rations ofuEmMU available at the time of writing(1) specify them entirely from the ongoing run. This may also explain
custom dePnitions of input peripherals, (2) apply custom con-why individual runs perform better than P2IM. Further, we
pgurations to tweak exploration parameters to the target, andassume both approaches to path elimination are also respon-
(3) specify custom path validity information (alive points sible for the fact that basic block discovery graphs Ratline
and/or kill points). This customization requires a human ana- early. FuzzwARE does not eliminate paths, resulting in a
lyst with domain knowledge of the respective target. As noted higher code coverage. We discuss path elimination and code
by thepEmu authors, without further human assistance, P2IM coverage in Sectiofi.
is unable to analyze the 11 samples introducegdibyu [57). Alongside the signibcant increase in coverage and automa-
Hence, we compare the fuzzing performance of all three tion, FuzzwARE uncovered previously unreported bugs in
systems on the 10 targets supported by P2IM, visualized inthree targets. Manual root cause analysis showed-hat -
Figure5, and provide the data for all experiments, including WARE identibed one concurrency issue (Soldering Iron), a
the ones for the 11 remaining Prmware samples in Table missing pointer veribcation (CNC), and an unchecked AT
in the appendix. The results show tHaizzwARE consis- command parsing crash (GPSTracker). For all three targets,
tently discovers (signibcantly) more basic blocks compared the discovery of additional bugs found ByzzwWARE coin-
to the state of the art. In one case (CNE)zzWARE doubles cides with a signibcant increase in code coverage.
P2IMOs coverage and triplgEmu Os coverage. For the targets ~ RegardingRQ 4, the results indicate that oaccess mod-
in Figure5, FUzZWARE yields on average ~44% more code elingallows a fuzzer to clearly outperform the current state of
coverage than P2IM and ~61% more coverage {iamu the art. Toward®kQ 5, we observe thatuzzwARE is able to
(~57% when averaged over all targets). In 19 out of 21 times, identify bugs in real-world Prmware and also Pnd new bugs
theminimumcoverage achieved yuzzwARE exceeds the that previous work does not locate.
maximuncoverage of the prior approaches. In other words,
even the worst run dfuzzwARE performs better than the
best run ofuEmu and P2IM. With the exception of PLC

30ur evaluation bases on git commits 5012949325 and 67e50000bb of FUZZINg Targets. To _EXpand OI‘RQ 3 a_n_d RQ 5, we used
the uEmu-real_world_Prmware and uEmu repositories, respectively. FuzzwaRE to test different functionalities of the core net-

6.3 Fuzzing New Targets

USENIX Association 31st USENIX Security Symposium 1249

work stacks of two popular embedded Prmware frameworks: Table 3: Root cause categories of unique crashes generatesziay&RE.
Zephyr B5], and Contiki-NG [L2]. Both projects are well-

maintained, with hundreds of contributors, and backing com- ~ Fimwareset ~ fnaue - #Seculy - Huncieted e
panies such as Intel and Google. Synthetic Samples 10 10 -
We chose the radio layer implementations of these two Sém b . ; N
systems as a fuzzing target. Connected devices heavily rely zephyr 12 10 - 2
on network stacks, and the corresponding low-level parsing "G 4 4 i

Total 61 42 16 3

code exposes a universal attack surface. As successful attacks

can potentially propagate from one device to another, RBaws

in these types of interfaces put whole RBeets of devices at risk.)))))
We based all of the Prmware images on code samplesIOgIC can .be tncl;ed mtp creating an ynmtended cychg refer-

demonstrating uses of different network stacks. Similar to ence within the list, which translates into an eventual integer

the rationale for re-using identical application-level code in unde.rl’Sow, fqllowed by a buffer overl’Sow..

Sections. 1, logic within higher layers (such as the application 'S €xperiment shows that our modeling approach allows

layer) does not inBuence the inner workings of lower layers a_fuzzer to effectively test and bnd bugs in well-maintained,
(e.g., low-level radio packet processing). widely-used real-world Prmware code@ 5).

Bug Case StudieslIn total, FuzzwaRE discovered 12 dis-

tinct bugs in these targets, for which 12 CVEs have been6.4 False Positive Crash Analysis

assigned after a coordinated disclosure. In the following, we

provide case studies for some of these bugs. A full overview Finally, we investigated the crashes produced-byzwARE.

of these bugs can be found in Talslén the appendix. To this end, we deduplicated the crashing test cases generated

CVE-2020-121411n the tested version of Contiki-NG, the across the previous experiments and performed a manual root

Simple Network Management Protocol (SNMP) parsing logic ca(u)se anallyS|_s. 'I;]abﬂasg(:r\:v St Tze re:ulft;}of :Shle expenmenth
of incoming SNMP messages did not correctly validate the ur anadys(;sts owe " & ou od 1: uhmque cras des
user-supplied size of the variably-sizesmmunitypeld. This corrésponded to security ISSUes, an crashes occurred as

lead the logic to access the user-supplied buffer out of boundsg rmvvtarﬁ |OE.'C df)hes n?t robulstly *}"’T”fi'.'el.'”'tt'?‘ I'Zitgin' _?_'hg"
resulting in a brmware crash (DoS). y not checking the return value of initialization s. The

]) three remaining test cases related to omitted Prmware checks.
CVE-2021-3321.As a translation layer from radio frames e jdentify these three crashes as false positives, since the
to IPv6 packets, the IPv6 over Low-Power Wireless Per- pgs exist in the Prmware, but will not occur on real hard-
sonal Area Networks (6LOWPAN) standard debPnes a cusyyare. Two of these crashes occurred in Zephyr: In the brst
tom header compression mechanism. Before decompressiorbase, the length of a radio packet was implicitly assumed to
Zephyr checked the required size of the decompressed headegaye a maximum value of 127, while a full byte of hardware-
payload, and would correctly allocate an appropriately-sized generated MMIO value was used without checks in a size
destination buffer to hold the decompressed contents. Thegriaple (maximum value: 255). This leads to a buffer over-
logic did not check, however, whether theurceframe was Row for size values greater than 127. In the other case, an
actually large enough to hold tkempressetieader payload. jnterrupt handler used a pointer variable without initialization
As aresult, it consumed more bytes from the frame-holding checks. It assumed the variable to be initialized when an inter-
buffer than available, leading to a size beld integer underow,rpt was raised. If an interrupt was raised by the fuzzer before
followed by a corruption of memory. this initialization was performed, interrupt handling would
CVE-2021-3330.To transport IPv6 packets from small radio result in a NULL pointer dereference. The third false positive
frames, 6LOWPAN debnes a fragmentation layer. To differ- crash was caused in tiMemu utasker_USB sample, where
entiate between the start and subsequent entries of a list othe USB receive channel number register Peld CHNUM may
fragments, frames are assigned the fragment types FRAGhave a maximum value of 15, but only less USB channels are
and FRAGN, respectively. When encountering a FRAGN frag- actually in use, leading to another out-of-bounds access.
ment, the reassembly logic would insert the fragment to the In essence, the results show that we abstract away hardware
start of the fragment list, and correctly check that its contents from brmware in the fuzzing process. This implies that if a
are marked for insertion at the beginning of the reassembledbug exists in the software regardless of the hardware envi-
buffer. Before reassembling, however, the logic did not check ronment,FuzzwARE might identify it. However, it does not
whether a FRAG1 fragment is present. Assuming a FRAG1 guarantee that the bug can be triggered in a specibc real hard-
fragment to be present, the fragment sorting logic would predi- ware deployment. On the contrary, it might just demonstrate
cate its algorithm on a pre-sorted brst element. Using a craftedthat the software developers are trusting a specibc hardware.
set of input fragments which exactly match the required over- Becoming aware of these types of issues may have some
all size, but does not contain a FRAG1 fragment, the sorting upside: the same brmware running in a different hardware en-

1250 31st USENIX Security Symposium USENIX Association

vironment might suffer from a security vulnerability (since the Implicit Peripheral Semantics. During our evaluation, we
hardware cannot be trusted). This wByzzwWARE pinpoints found that implicit assumptions made by Prmware about the
possible security issues, even before the code is deployed in dehavior of its surrounding hardware account for some of the
different hardware environment. crashing test cases. The underlying notion could open up po-
tential future research: Intuitively, we assume that the way in
which brmware code is built and operates exposes information
about the implicit assumptions it makes about its surrounding
hardware. This may include assumed size limits, as well as
the expected order in which certain events are assumed to
occur. Further analyses could use this type of information to
derive increasingly complex models of peripheral behavior.

7 Discussion

In this section, we further discuss our design decisions, the
applicability of FuzzwARE outside our prototype implemen-
tation, and possible future research directions.

Direct Memory Access (DMA).As discussed in Sectich5,
while FuzzwARE allows handling DMA via additional con-
Pguration, automatically modeling DMA is not the focus of 8 Related Work
this work. However, we see one central contribution of this
work towards automated DMA handling: As DMA-handling
Prmware code is often part of more complex code (where,
in practice, heavy MMIO use is inevitable), achieving a high
baseline code coverage (as we show is the caseRwittz-
WARE in Section6) is a prerequisite to even triggering any
use of DMA. The authors of DICE3[/], while recently de-
scribing a generic DMA handling approach, encountered this
issue: Their evaluation shows that previous brmware fuzzing
systems are unable to reach DMA logic for more than a third
(36%) of detected DMA, which can likely be attributed to
missing Prmware code coverage.

Coverage-guided fuzzers, suchABL [54] and more ad-
vanced approaches8,[g, 19,41,47,52], have found numerous
critical bugs in major applications and OSes. One important
line of research focuses on increasing the quality of fuzzing
inputs, for instance via taint tracking(,41], symbolic execu-
tion [20,47,52], or by additional program state analysiJ].
While we can leverage the described techniques to improve
our work, the fuzzers implementing them target desktop appli-
cations and are not directly applicable to embedded systems.
Multiple studies apply black-box fuzzing to embedded de-
vices P,31,40], but generally suffer from a lack of coverage in-
]) o formation and the inability to reset the device to a known state.
Using Access Models outside zzwWARE . The tightinte- s challenge is commonly overcome by re-hosting embed-
gration ofFuzzwAREOs MMIO access models in the fuzzing yeq systemsO brmwaté&,[51]. Recent work uses QEMUS],
process raises the question whether those models can be Useé’specially for emulating Linux-based brmwagel[4, 28, 56].
mdependently. Luckily, once these models are generate_d, theUnfortunater, these approaches heavily rely on the abstrac-
only information needed to serve a request are access size, Igjgns provided by the Linux kernel and, thus, are not applica-
cation, and program counter value b information which is read-p|e to monolithic brmware as analyzed in our work.
ily available in other analysis frameworks. To demonstrate gjmilar to using abstractions provided by the Linux kernel,
that this allows interoperability, we integratédzzwARE one rehosting approach builds on top of the hardware ab-
generated models into avat4B8] as so-callepyperipherals straction layers present in many Prmware imagdsd3, 35].
This enables dynamic analysis capabilities beyond fuzzing, ynfortunately, identifying and modeling those abstractions
such as taint analysis using the PANDA framewdr&]{ still requires target-specibc knowledge and manual effort,
Merits of Path Elimination. Previous approaches (e.g/,[even with the automation presented in HACINATOR [11].
18, 57]) eliminate code paths to steer brmware execution. Hardware-in-the-loop approaches (e. 43,R6,27, 30,38,
As we describe in Sectiof.2, eliminating paths bears the 48,53]) avoid the need for abstractions by forwarding hard-
risk of excluding relevant functionality from the analysis, ware accesses to a physical device during emulation. While
either by removing error handling or by forcing execution this allows for dynamic analysis of Prmware, these approaches
into complex error handling routines, away from ordinary have limited applicability to fuzz testing. On top of forward-
functionality. As a heuristics-based classiPcation of Ocorrect@ng being a typical bottle-neck for most of these systems, they
code paths is error prone, and a misclassibcation requiresequire one instance of the target hardware per fuzzing thread,
manual intervention to remediate, we aimed for robustnessas the hardware state and fuzzer must be kept consistent.
in a fully automated setting by avoiding such classipcation The recent trend of pattern-based MMIO modeling was
attempts. To facilitate automatioRyzzwARE allows hitting introduced byPRETENDER [22], which still required a
stuck cases (such as hitting tight inPnite error loops), and hardware-in-the-loop recording phase. This hardware depen-
relies on the fuzzing engine to avoid them based on timeoutsdency was later resolved by P2INIg], and then addressed
and coverage feedback. Future work could improve upon this by JEMU [57], as extensively discussed in Sectichand6.
in a middle ground approach by identifying and eliminating Various further approaches integrating dynamic symbolic
stuck cases that can be safely removed without reducing theexecution in the rehosting process to infer correct values
amount of reachable bPrmware logic. for hardware accesses have been propogetls 24, 34].

USENIX Association 31st USENIX Security Symposium 1251

LAELAPS|[7], arecent and representative approach targeting [4] Aspencore. Embedded markets study: Integrating 10T
monolithic Prmware, allows to steer the execution to inter-
esting locations by involving a human analyst. Unlikezz-
WARE, this human-in-the-loop approach is not designed for
automated fuzz testing, as fuzzing a specibc brmware image
with LAELAPSrequires signibcant target-specibc manual ef- [5]

fort,

and its emulation does not scale well due to frequent

invocations of the expensive symbolic execution engine.

9 Conclusion

In this work, we presented a novel approach for model-
ing MMIO interactions to effectively fuzz test a monolithic
Prmware binary. Ouaccess modelsre based on deeper in-
sights into brmware logic and, consequently, allow one to

eliminate types of input overhead that have previously been

inaccessible to existing MMIO modeling approaches. Apply-
ing these models results in a drastically improved fuzzing
effectiveness over the current state of the art.

10

Acknowledgements

(6]

and advanced technology designs, application develop-
ment & processing environments. EETimes Embedded,
20109.

Fabrice Bellard. QEMU, a fast and portable dynamic
translator. INUSENIX Annual Technical Conference
2005.

Marcel BShme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In ACM Conference on Computer and Communications
Security (CCS)2016.

] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-

(8]

This work was funded by the Deutsche Forschungsgemein- 9
schaft (DFG, German Research Foundation) under GermanyOsI]
Excellence Strategy - EXC 2092 CASA - 390781972, and
by NWO under 628.001.030 "Tropics" and NWA-ORC Inter-

Sect. In addition, this material is based upon work supported
by DARPA under agreement number HR001118C0060, and

by ONR under agreements NO0014-17-1-2011 and N0O0014-
17-1-2897. This material is based on research sponsored b3{10]
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding

any copyright notation thereon. The views and conclusions

contained herein are those of the authors and should not bgy1]
interpreted as necessarily representing the ofbcial policies or

endorsements, either expressed or implied, of DARPA or the

U.S. Government.

References

[1]

[2]

3]

ARM. DUI 0552A: Cortex-M3 devices generic user
guide, 2019.

Cornelius Aschermann, Sergej Schumilo, Ali Abbasi,
and Thorsten Holz. ljon: Exploring deep state spaces via
fuzzing. InIEEE Symposium on Security and Privacy
2020.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. Sgmposium on
Network and Distributed System Security (NDSB19.

(12]

(13]

(14]

agnostic brmware execution is possible: A concolic ex-
ecution approach for peripheral emulation.Annual
Computer Security Applications Conference (ACSAC)
2020.

Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards automated dynamic analysis
for Linux-based embedded Prmware.Symposium on
Network and Distributed System Security (ND2B)L6.

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhigiang Lin, XiaoFeng Wang, Wing Cheong Lau,
Menghan Sun, Ronghai Yang, and Kehuan Zhang. 10T-
Fuzzer: Discovering memory corruptions in 10T through
app-based fuzzing. 1I8ymposium on Network and Dis-
tributed System Security (NDS3D18.

Peng Chen and Hao Chen. Angora: Efbcient fuzzing by
principled search. I"EEE Symposium on Security and
Privacy, 2018.

Abraham Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christo-
pher Kruegel, Giovanni Vigna, Saurabh Bagchi, and
Mathias Payer. HALucinator: Firmware re-hosting
through abstraction layer emulation. WWSENIX
Security Symposiu2020.

Contiki-NG.
contiki-ng

https://github .com/contiki-ng/
, 2020. Accessed: October 5, 2021.

Nassim Corteggiani, Giovanni Camurati, and AurZlien
Francillon. Inception: System-wide security testing of
real-world embedded systems software. USENIX
Security Symposiun2018.

Andrei Costin, Apostolis Zarras, and AurZlien Francil-
lon. Automated dynamic brmware analysis at scale: a
case study on embedded web interfacesA@M Sym-
posium on Information, Computer and Communications
Security (ASIACCSP016.

1252 31st USENIX Security Symposium

USENIX Association

[15] Drew Davidson, Benjamin Moench, Thomas Ristenpart, [25] Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan,

and Somesh Jha. FIE on Prmware: Finding vulnerabili-
ties in embedded systems using symbolic execution. In

USENIX Security Symposiy2013.

[16] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim [26]
Leek, and Ryan Whelan. Repeatable reverse engineer-

ing with PANDA. In Program Protection and Reverse
Engineering Workshq2015.

[17] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gauvitt,

Manuel Egele, AurZlien Francillon, Long Lu, Nick Gre-

gory, et al. Sok: Enabling security analyses of embedded

systems via rehosting. IACM Symposium on Infor-

mation, Computer and Communications Security (ASI-

ACCS) 2021.

[18] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and hardware-independent brmware testing via au-

tomatic peripheral interface modeling. USENIX Se-
curity Symposiun2020.

[19] Andrea Fioraldi, Dominik Maier, Heiko Ei§feldt, and

Marc Heuse. AR++: Combining incremental steps of

fuzzing research. IRWSENIX Workshop on Offensive
Technologies (WOQOT2020.

[20] Patrice Godefroid, Michael Y Levin, David A Molnar,
et al. Automated whitebox fuzz testing. Bymposium

on Network and Distributed System Security (NDSS)

2008.

[21] Emre GYler, Cornelius Aschermann, Ali Abbasi, and

Thorsten Holz. AntiFuzz: Impeding fuzzing audits of
binary executables. IRWWSENIX Security Symposiym
20109.

[22] Eric Gustafson, Marius Muench, Chad Spensky, Nilo

Redini, Aravind Machiry, Yanick Fratantonio, Da-
vide Balzarotti, AurZlien Francillon, Yung Ryn Choe,

Christophe Kruegel, et al. Toward the analysis of embed-

ded bPrmware through automated re-hostingSympo-

sium on Recent Advances in Intrusion Detection (RAID)

2019.

[23] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye,
Koushik Sen, and Michael Grace. PARTEMU: Enabling
dynamic analysis of real-world TrustZone software us- [34]

ing emulation. INUSENIX Security Symposiu2020.

[24] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted Prmware rehosting for [35]

embedded systems. WWSENIX Security Symposiym
2021.

Kyu Hyung Lee, and Taesoo Kim. Fuzzibcation: Anti-
fuzzing techniques. IJSENIX Security Symposiyum
20109.

Markus Kammerstetter, Daniel Burian, and Wolfgang
Kastner. Embedded security testing with peripheral
device caching and runtime program state approxima-
tion. In Conference on Emerging Security Information,
Systems and Technologies (SECUWARE]6.

Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: Peripheral proxying supported em-
bedded code testing. IACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS) 2014.

Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon
Kim, Yeongjin Jang, and Yongdae Kim. Firmae: To-
wards large-scale emulation of iot Prmware for dynamic
analysis. InAnnual Computer Security Applications
Conference (ACSAC2020.

9] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,

and Michael Hicks. Evaluating fuzz testing. ACM
Conference on Computer and Communications Security
(CCs) 2018.

Karl Koscher, Tadayoshi Kohno, and David Molnar.
SURROGATES: Enabling near-real-time dynamic anal-
yses of embedded systems. USENIX Workshop on
Offensive Technologies (WOQPRP15.

Karl Koscher, Stefan Savage, Franziska Roesner, Shwe-
tak Patel, Tadayoshi Kohno, Alexei Czeskis, Damon Mc-
Coy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental security analysis of a modern auto-
mobile. InIEEE Symposium on Security and Privacy
2010.

Edward Ashford Lee and Sanijit Arunkumar Seslira.
troduction to Embedded Systems: A Cyber-Physical Sys-
tems ApproachThe MIT Press, 2nd edition, 2016.

3] Wengiang Li, Le Guan, Jinggiang Lin, Jiameng Shi, and

Fengjun Li. From library portability to para-rehosting:
Natively executing microcontroller software on com-
modity hardware. Ir'Bymposium on Network and Dis-
tributed System Security (NDS$S3D21.

Yingtong Liu, Hsin-Wei Hung, and Ardalan Amiri Sani.
Mousse: a system for selective symbolic execution of
programs with untamed environments. Haropean
Conference on Computer Syste2820.

Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE. IPACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks (WiSezf)20.

USENIX Association

31st USENIX Security Symposium 1253

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Mbed OS. https://www .mbedcom/en/platform/
mbed-os/, 2020. Accessed: October 5, 2021.

Alejandro Mera, Bo Feng, Long Lu, Engin Kirda, and
William Robertson. DICE: Automatic emulation of
DMA input channels for dynamic Prmware analysis. In
IEEE Symposium on Security and Priva2@21.

[47] Nick Stephens, John Grosen, Christopher Salls, Andrew

Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. InSymposium on Network and Distributed
System Security (NDS2)016.

Marius Muench, AurZlien Francillon, and Davide [48] Seyed Mohammadjavad Seyed Talebi, Ha.”.“d Tayakoli,

Balzarotti. Avatar2: A multi-target orchestration plat- Ha_ng Zh:_;mg, Zheng Zhaf‘.g' Ardalan Am'” Sam,_ and

form. In Workshop on Binary Analysis Research (BAR) Zh'y.““ Q!an. Charm: .Facmtatmg dynamic analys!s of

2018. device drivers of mobile systems. USENIX Security
Symposium2018.

Marius Muench, Jan Stijohann, Frank Kargl, AurZlien)))

Francillon, and Davide Balzarotti. What you corruptis [49] Unicorn Engine. https://www .unicorn-

not what you crash: Challenges in fuzzing embedded
devices. InSymposium on Network and Distributed
System Security (NDS2)018.

Collin Mulliner, Nico Golde, and Jean-Pierre Seifert.
SMS of death: From analyzing to attacking mobile
phones on a large scale. WSENIX Security Sympo-
sium 2011.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer: [
Application-aware evolutionary fuzzing. Bymposium

on Network and Distributed System Security (NDSS)
2017.

52]

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, (53]

Simon WSrner, and Thorsten Holz. Hyper-Cube: High-
dimensional hypervisor fuzzing. Bymposium on Net-
work and Distributed System Security (NDSZE)20.

Edward Schwartz, Thanassis Avgerinos, and David

Brumley. All you ever wanted to know about dynamic [54]

taint analysis and forward symbolic execution (but might
have been afraid to ask). IEEE Symposium on Secu-
rity and Privacy 2010.

engine.org/ , 2017. Accessed: October 5, 2021.

[50] Wind River SIMICS. https://www .windriver .com/

products/simics/ , 2020. Accessed: October 5, 2021.

[51] Christopher Wright, William A Moeglein, Saurabh

Bagchi, Milind Kulkarni, and Abraham A Clements.
Challenges in Prmware re-hosting, emulation, and anal-
ysis. ACM Computing Surveys (CSURP21.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. IISENIX Security
Symposiun2018.

Jonas Zaddach, Luca Bruno, Aurelien Francillon, and
Davide Balzarotti. Avatar: A framework to sup-
port dynamic security analysis of embedded systemsO
Prmwares. IrSymposium on Network and Distributed
System Security (NDS2)014.

Michal Zalewski. american fuzzy lop. http://
Icamtuf .coredumpex/afl/ , 2017. Accessed: Octo-
ber 5, 2021.

[55] Zephyr Project.https://www .zephyrproject .org/,

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice:

2020. Accessed: October 5, 2021.

Automatic detection of authentication bypass vulnera- [26] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,

bilities in binary Prmware. lsymposium on Network
and Distributed System Security (NDSX)15.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John

Grosen, Siji Feng, Christophe Hauser, Christopher [57]

Kruegel, et al. SoK: (state of) the art of war: Offen-
sive techniques in binary analysis. IEEE Symposium
on Security and Privagy2016.

Prashast Srivastava, Hui Peng, Jiahao Li, Hamed
Okhravi, Howard Shrobe, and Mathias Payer. Firmfuzz:
automated iot Prmware introspection and analysis. In
ACM Workshop on Security and Privacy for the Internet-
of-Things (IoT S&P)2019.

Hongsong Zhu, and Limin Sun. FIRM-AFL: High-
throughput greybox fuzzing of 10T Prmware via aug-
mented process emulation. USENIX Security Sympo-
sium 2019.

Wei Zhou, Le Guan, Peng Liu, and Yuqging Zhang. Au-
tomatic Prmware emulation through invalidity-guided
knowledge inference. 180th USENIX Security Sym-
posium (USENIX Security 21 SENIX Association,
2021.

1254 31st USENIX Security Symposium

USENIX Association

A Appendix

?+@2.=A24,.+4.B06:<

Table 4: Hardware platforms and Prmware samples usedizWAREOs evaluation.

Platform

Firmware Samples

ARCH_PRO
EFM32GG_STK3700
EFM32LG_STK3600
LPC1549

LPC1768

MAX32600
MK64FN1MOVLL12
MOTE_L152RC
NUCLEO_F207ZG

Password_Discovery
Password_Discovery
Password_Discovery
Password_Discovery
Password_Discovery

RF_Door_Lock, Thermostat

P2IM unit tests, Cons
Password_Discovery
Password_Discovery

ole

o s % &
78-9:9;,2:<.=03>21

SAM3X8E P2IM unit tests, Heat_Press, Steering_Control
SAM3X/A GPS tracker
SAMR21 6LOWPAN_Sender, 6LOWPAN_Receiver
STM32F103RB Password_Discovery, P2IM unit tests, Drone, Gateway, Reow_Oven, Robot, Soldering_lIron
STM32F103RE 3Dprinter
STM32F429ZI CNC, PLC, utasker_MODBUS, utasker_USB
STM32L152RE Password_Discovery, XML_Parser
STM32L431 LiteOS_loT
STM32L432KC Zepyhr_SocketCan
UBLOX_C027 Password_Discovery
*+,-./0123+45 *+,-06,./0123+45
ARCH_PRO . EFM32GG_STK3700 g EFM32LG_STK3600 g LPC1549 g LPC1768
y N) ”
1 I i Y
1& 1& 1& &
e t e bt p
by by by)
((((
& 1 & & &
; /./1//'/. : _// ? ’
¥ s 7%7&//'./(; e #. ; ‘;u ; B W s % ; T) # W) 08 % & /(‘
MOTE_L152RC g NUCLEO_F103RB g NUCLEO_F207ZG g NUCLEO_L152RE . g UBLOX_C027
. ") ,
[I(I(3 I
1& 1& &
» bt B
)))
’v*//< (((
z e £ &| & &
¥ e e ’ VAS o i i | - |

#08 % &

Figure 6: Time spent bifuzzwaRE for character discovery on 10 synthetic Prmware samples over ten 24h runs with and without modeling. Shown are individual

timings (dots), the mean and 66% intervals. Each dot represents the point of time at which the character was solved by one run. Thus, if all ten runs succeed in
Pnding a character, ten dots exist for this character. A high number of dots indicates consistency in bnding the character, while dots positioned low indicate high
speed in solving that character.

USENIX Association

31st USENIX Security Symposium 1255

Table 5:FuzzwARE (FW.) vs P2IM vsuEMU coverage generation over bve 24-hour fuzzing iterations. We compare the minimum (#BB min), average (#BB
avg), maximum (#BB max), and total number of basic blocks (#BB total) discovered across all runs by each system. We account for targets used by both P2IM
andpuEmU (upper part) and such only evaluatediimu (lower part). Bold numbers indicate the best result in each category. The last two columns show the
p-value according to the Mann-Whitney U test between the rufiazwarRE and P2IM, and betweelRuzzwARE andpuEMU. For all but two cases the-value

(p < 0.01) indicates statistical signibcance of the results.

Target #BB in #BB min #BB avg #BB max #BB total p-value
target P2IM pEmMu FW. P2IM pEmMu FW. P2IM pEmMu FW. P2IM pEmMu FW. toP2IM topEmU
CNC 3614 1096 416 2422 1252 786 2560 1578 1136 2646 1599 1140 2722 <0.01 <0.01
Drone 2728 1268 1456 1830 1270 1457 1836 1275 1459 1847 1275 1461 1850 <0.01 <0.01
Heat Press 1837 527 492 537 532 493 544 536 493 547 536 494 550 <0.01 <0.01
ReRow O. 2947 815 7971188 815 829 1189 815 875 1191 815 880 1191 <0.01 <0.01
Soldering I. 3656 1302 8372080 1302 947 2117 1302 1271 2134 1302 1283 2145 <0.01 <0.01
Console 2251 779 583 805 779 615 805 779 662 805 779 662 805 <0.01 <0.01
Gateway 4921 1756 16232423 1768 1738 2622 1804 1905 2881 1806 1977 2984 <0.01 <0.01
PLC 2303 505 436 465 507 436 603 513 436 647 513 451 649 0.07 <0.01
Robot 3034 1131 999 1267 1158 1004 1296 1190 1014 1340 1192 1017 1340 <0.01 <0.01
Steering C. 1835 498 489 598 498 497 609 498 506 613 498 506 613 <0.01 <0.01
6LoWPAN_Recv. 6977 - 2477 3056 - 2501 3099 - 2520 3142 - 2572 3155 - <0.01
6LOWPAN_Send. 6980 - 16882914 - 2342 3066 - 2522 3144 - 2550 3166 - <0.01
RF_door_lock 3320 - 605 782 - 664 1675 - 679 2262 - 679 2641 - <0.01
Thermostat 4673 - 907 2274 - 936 2747 - 980 3082 - 1020 3545 - <0.01
3D_printer 8045 - 854 889 - 854 977 - 854 1217 - 855 1221 - <0.01
GPSTracker 4194 - 587 1006 - 588 1016 - 588 1027 - 602 1040 - <0.01
LiteOS_IOT 2423 - 657 737 - 740 954 - 804 1342 - 804 1343 - 0.26
utasker_Modbus 3780 - 10431247 - 1049 1297 - 1057 1326 - 1113 1327 - <0.01
utasker_USB 3491 - 594 1587 - 961 1669 - 1121 1718 - 1150 1807 - <0.01
zephyr_socket. 5943 - 21762553 - 2282 2722 - 2396 2869 - 2456 2884 - <0.01
xml_parser 9376 - 1717 3185 - 1781 3602 - 1861 4012 - 1955 4334 - <0.01
Table 6: Overview of CVE-Assigned Bugs found byZwWARE
CVE Product Version Tested Description
CVE-2020-10064 Zephyr OS 2.2.0 Improper Input Frame Validation in ieee802154 Processing
CVE-2020-10065| Zephyr OS 2.2.0 Missing Size Checks in Bluetooth HCI over SPI
CVE-2020-10066| Zephyr OS 2.2.0 Incorrect Error Handling in Bluetooth HCI core
CVE-2020-12140| Contiki NG 4.4 Missing L2CAP frame size validation
CVE-2020-12141| Contiki NG 4.4 Missing size check during SNMP message decoding

Incorrect 802154 Frame Validation for omitted Source/Dest Address
Type Confusion in 802154 ACK Frames Handling
Integer Underf3ow in IEEE 802154 Fragment Reassembly Header Removal
Unexpected Pointer Aliasing in IEEE 802154 Fragment Assembly
Integer UnderBow in 6LoWPAN IPHC Header Uncompression
Incorrect handling of the initial HCI ACL_MTU handshake packet leads to crash of bluetooth host layer
Linked-list corruption leading to large out-of-bounds write while sorting for forged fragment list

CVE-2021-3319 | ZephyrOS @d969ac..1cc42
CVE-2021-3320 | ZephyrOS @d969ac..1cc42
CVE-2021-3321 | ZephyrOS @d969ac..1cc42
CVE-2021-3322 | ZephyrOS @d969ac..1cc42
CVE-2021-3323 | Zephyr OS @d969ac..1cc42
CVE-2021-3329 | ZephyrOS @d969ac..1cc42
CVE-2021-3330 | ZephyrOS @d969ac..1cc42

oo 0000 Q

1256 31st USENIX Security Symposium USENIX Association

