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Abstract
Fuzzing reliably and efficiently finds bugs in software,

including operating system kernels. In general, higher code
coverage leads to the discovery of more bugs. This is why most
existing kernel fuzzers adopt strategies to generate a series of
inputs that attempt to greedily maximize the amount of code
that they exercise. However, simply executing code may not
be sufficient to reveal bugs that require specific sequences of
actions. Synthesizing inputs to trigger such bugs depends on
two aspects: (i) the actions the executed code takes, and (ii) the
order in which those actions are taken. An action is a high-level
operation, such as a heap allocation, that is performed by the
executed code and has a specific semantic meaning.

ACTOR, our action-guided kernel fuzzing framework,
deviates from traditional methods. Instead of focusing on
code coverage optimization, our approach generates fuzzer
programs (inputs) that leverage our understanding of triggered
actions and their temporal relationships. Specifically, we
first capture actions that potentially operate on shared data
structures at different times. Then, we synthesize programs
using those actions as building blocks, guided by bug
templates expressed in our domain-specific language.

We evaluated ACTOR on four different versions of the Linux
kernel, including two well-tested and frequently updated
long-term (5.4.206, 5.10.131) versions, a stable (5.19), and
the latest (6.2-rc5) release. Our evaluation revealed a total of
41 previously unknown bugs, of which 9 have already been
fixed. Interestingly, 15 (36.59%) of them were discovered in
less than a day.

1 Introduction

The operating system (OS) kernel acts as a mediating layer be-
tween the hardware and user-space applications. The kernel’s
direct, unrestricted access to system resources, particularly
physical memory, makes it an appealing target for attackers.
Vulnerabilities in the kernel can have disastrous consequences

* These authors contributed equally to this work.

on the entire system. For example, Use-After-Free (UAF)
bugs can be exploited to launch a local privilege escalation
attack [6], a remote code execution attack [4], or even to break
the security boundary by escaping from a container [5].

Popular OS kernels support a wide range of CPU archi-
tectures, peripherals, and hardware and software protocols,
leading to a large code base. Finding vulnerabilities in
a code base of this magnitude is a challenging task. For
example, the Linux kernel consists of over 30 million lines of
code [2]. Therefore, in recent years, substantial research effort,
from both industry and academia, has been directed toward
developing new techniques to uncover bugs in OS kernels.
Fuzzing, a popular dynamic analysis technique, has shown
significant promise toward achieving this goal and has found
thousands of bugs in the Linux kernel [17].

The kernel exposes its functionality through system calls
(syscalls), which are functions that can be invoked from
user-space processes, and make for a natural starting point to
test the kernel for vulnerabilities. In most approaches, a syscall
fuzzer first synthesizes inputs, also called fuzzer programs,
that consist of a series of syscalls along with their arguments.
Once created, the fuzzer executes the programs on the kernel
under test and leverages sanitizers [8, 10, 11, 20], in-kernel
fault injection [13], runtime verification frameworks [14], and
assertions injected by the developers [12] as oracles to signal
when a bug is triggered.

Since the kernel maintains a vast global state across the
invocation of syscalls, it can be seen as a “state machine”
with (essentially) infinite states. During their execution,
fuzzer-generated programs drive the kernel from one such
state to another, looking for latent bugs that may surface
only when the kernel is in certain states. Therefore, recent
research explored ways to better navigate this state-space by
synthesizing effective programs, with coverage as the (proxy)
metric to measure a fuzzer’s success.

If a fuzzer program simply invokes arbitrary syscalls with
random arguments, it would inevitably result in poor code and
state coverage, as these invocations would fail quickly along
shallow error paths. Even if they do not fail, they are likely not
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to penetrate deep into the kernel code. Thus, to address these
challenges, fuzzers adopt different strategies to invoke related
syscalls in a meaningful order and with proper arguments.
For example, SYZKALLER [18], a popular coverage-guided
fuzzer, requires manually written descriptions of inter-syscall
relations that are then refined dynamically based on the
observed coverage. Other examples are MOONSHINE [45]
and HEALER [58], which infer if two syscalls are related,
either directly (using static program analysis and dynamic
traces) or indirectly (using coverage feedback), with the goal
of synthesizing programs that yield higher coverage.

We believe that, given the complex nature of the OS kernel,
code coverage alone is insufficient for effective fuzzing.
While optimizing for coverage is certainly important, many
vulnerabilities are triggered only when the executed code
(i) takes certain actions (ii) in a specific order. Thus, it is
important to augment code coverage with the awareness of
(higher-level) actions and their ordering. The former ensures
that the fuzzer reaches individual code parts that contain a
bug. If a bug is present, then the latter makes it more likely
that the bug is actually triggered. For example, to discover
a Use-After-Free (UAF) vulnerability, an input is required
to reach the allocation action (performed by syscall sa), the
free action (performed by syscall s f ), and a subsequent use
action (performed by syscall su). In addition, the actions need
to operate on the same data structure in that exact order. A
coverage-maximizing fuzzer may execute the three syscalls
sa, s f , and su (triggering their respective actions) as part of
different programs, which operate on different data structures.
However, unless a fuzzer synthesizes the sa → s f → su
sequence, the UAF bug will not trigger. This shows that code
coverage alone is not enough: A coverage-maximizing fuzzers
will execute the right code, but fail to find the bug. This is
because it does not execute the code in the right order.

Inspired by the observation above, we present ACTOR, a
system that introduces action-awareness to kernel fuzzing. In
particular, we propose a novel technique to synthesize poten-
tially bug-inducing programs (inputs) instead of optimizing
for code coverage. Our approach follows a two-step process:
action mining, followed by program synthesis.

Action Mining. Unlike traditional coverage-guided fuzzers
that view the execution of code as a series of instructions, AC-
TOR captures it as a sequence of actions. Actions are high-level
operations with a specific semantic meaning, such as the allo-
cation of memory buffers, the increment of a kernel reference
counter,or the writing of a pointer field inside a structure. While
a coverage-guided strategy strives to generate programs that
attain progressively higher coverage, our action-guided strat-
egy aims to generate programs that result in actions operating
on shared objects. The assumption is that these actions, when
executed in the right order, are more likely to trigger bugs.

In our approach, actions are recorded during the ex-
ecution of a fuzzer program. Interestingly, the notion of
coverage-guidance and action-guidance are not conflicting, but

complementary. Since triggering diverse actions is challenging
because of classic coverage issues, we “piggyback” our action
discovery process on a coverage-guided strategy.

Syscalls trigger actions. We first instrument the kernel to
observe those actions. Initially, actions might be fairly generic.
For example, a heap read could be a read of a value, an array
index, or a pointer. Therefore, we refine actions with the
help of a static analysis-based step called semantic labeling.
We then collect the association between a system call and
its actions, along with the stack trace of the instruction that
triggers the action. We refer to such an association as a dart.

We consider two actions to be related if they operate on the
same memory region. Related darts that come from the same
program and operate on a common region are aggregated into
a group. Finally, multiple smaller groups, potentially coming
from different programs, are merged into larger groups on the
basis of common stack traces. Following the example above,
sa, s f , and su will end up in the same group G, as they operate
on the same region.

Program Synthesis. We design a flexible domain-specific
language (DSL) to express and encode a wide range of
vulnerability templates, which are used to synthesize likely
bug-triggering programs. While we present a diverse set of
templates inspired by our observation of real-world bug types,
our DSL enables an analyst to easily extend ACTOR by adding
support for additional templates, if needed. For example, UAF
is encoded as alloc→ f ree→ [read|write] in our DSL.

To synthesize a fuzzer program, ACTOR first selects a group
and a bug template. It then chooses appropriate darts from
the group and uses syscall information from those darts to
instantiate the given template. For example, if the group G is
selected, our approach synthesizes the sequence sa→s f→su,
which triggers the UAF bug.

We evaluated ACTOR on four different versions of the
Linux kernel, including two well-tested and actively-patched
long-term (5.4.206 and 5.10.131) versions, a stable (5.19),
and the latest (6.2-rc5) release. In those kernels, ACTOR
discovered a total of 41 previously unknown bugs, of which
9 have already been fixed.

In this paper, we make the following contributions:

Action-guided fuzzing. We introduce the notion of actions
in kernel fuzzing. While coverage-guided fuzzers interpret
program execution as a series of instructions, ACTOR views
it as a sequence of actions, which is used to drive program
generation during fuzzing.

Novel application of program synthesis. While program
synthesis has traditionally been used in different research
contexts, to our knowledge, we are the first to apply template-
guided synthesis for generating fuzzer programs. ACTOR
generates programs guided by templates that are written in a
domain-specific language, and are more likely to trigger bugs
in a vulnerable code snippet.
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Prototype implementation and new bugs. We implement
our technique in a tool called ACTOR, which discovered 41
previously-unknown bugs in the latest and long-term versions
of the Linux kernel. We will release both the code of the tool
and the experimental data to facilitate future research [1].

2 Motivation

We first discuss the limitations of existing coverage-guided
fuzzers. Then, we motivate the need for template-guided
program synthesis, on the basis of a real-world example.
Specifically, we show that certain sequences of actions are
unlikely to be inferred by the existing techniques, but they are
important to trigger kernel bugs. We also provide an overview
of ACTOR, highlighting how it circumvents those limitations.

Order-sensitivity of existing coverage-guided fuzzers.
SYZKALLER [18] employs a choicetable that records the
probability of one syscall getting invoked before another.
The choicetable is populated both statically and dynamically.
SYZKALLER ships with manually-written system call
descriptions that specify their arguments and return types.
If a pair of syscalls share arguments of the same type, they
are assigned a higher probability. Dynamically, the fuzzer
increases the probability for a pair of syscalls when they appear
together in a fuzzer program that contributes to new coverage.

A seed distillation system, MOONSHINE [45] distills mil-
lions of program traces down to a compact, minimized collec-
tion of seeds. Its algorithm is greedy; it favors syscalls that pro-
duce the highest coverage. It iterates over the syscalls accumu-
lated from all the traces sorted by descending order of the cover-
age they produce. If a syscall s yields new coverage, they add s,
along with the other syscalls in the program that s depends on to
the minimized seed corpus. While MOONSHINE prepares the
corpus before fuzzing begins, HEALER [58] performs relation-
learning online in the fuzzing loop so that the relations can be
continuously refined as the fuzzing progresses. If a fuzzer pro-
gram P yields new coverage, HEALER first minimizes P such
that the minimized program P ′ exhibits the same coverage as
P . Then, it systematically removes each syscall si that comes
before a syscall s j, one by one. If the removal of si alters the cov-
erage produced by s j, HEALER learns an influence relation be-
tween those two syscalls, which is recorded in a relation table.

In summary, state-of-the-art fuzzers learn a specific ordering
of syscalls to maximize coverage. However, an increase in
coverage does not always lead to the discovery of bugs. For
example, AGAMOTTO [57] covered 47.8% more paths in
drivers, while it found just one new bug. As we will show next,
oftentimes a specific sequence of actions is likely to trigger
bugs in the code, regardless of the coverage they produce.

Importance of actions. Existing fuzzers are suboptimal due to
their bias towards ordering system calls so that they maximize
code coverage. Unfortunately, it may happen that multiple
different orderings produce near-similar coverage, but only

1. fd = openat(0, “/dev/infiniband/rdma_cm”, …)
2. write(fd, &{RDMA_USER_CM_CMD_CREATE_ID}, …)
3. write(fd, &{RDMA_USER_CM_CMD_DESTROY_ID}, …)
4. write(fd, &{RDMA_USER_CM_CMD_LISTEN}, …)

4. __rdma_create_id(…) {
5.     struct rdma_id_private *id_priv
6.     …     
7.     id_priv = kzalloc(sizeof *id_priv, …)
8.     …
9. }

10. rdma_destroy_id(…) {
11.     …     
12.     kfree(id_priv)
13.     …
14. }

15. cma_listen_on_all(…) {
16.     …     
17.     list_add_tail(&id_priv->list, 

  &listen_any_list)
18.     …
19. }

Allocates id_priv

Frees up id_prev

Uses id_prev

1

2

3

Reproducer

Figure 1: Use-after-free: used id_priv after release
one of those is triggering a bug. How do we choose that one out
of those many orders? We believe that the answer can be found
in the actions that the code performs. Actions provide the
necessary signal to better understand the code’s behavior. With
a thorough analysis of a real-world bug, we will show that, in
order to trigger bugs, actions (what the executed code does)
are important, in addition to coverage (what code is executed).

The existing coverage-guided fuzzers are both action-
agnostic and order-senstitive, i.e., not only do they
disregard operations that a syscall performs, but also
they are likely to favor coverage-maximizing ordering
of syscalls over others.

We hope to motivate the importance of actions and order
awareness by walking the reader through a real-world bug
in the Linux kernel. First, we provide a reproducer, which is
a fuzzer program that triggers the bug. We then discuss the
actions taken by those syscalls to trigger the bug.
▶ Use-After-Free (UAF). Figure 1 shows a simplified
example of a UAF in the Remote Direct Memory Access
(RDMA) functionality of the InfiniBand driver. For the sake of
presentation, we use the following notation: {val} represents
a structure, possibly with many fields, where val shows the
value of one of those fields. Lines 1–4 present the reproducer
to trigger the bug. In Line 1, the openat syscall acquires a file
descriptor fd by opening the appropriate device.
Alloc. In Line 2, the second argument of the write syscall
accepts a pointer to a rdma_ucm_cmd_hdr structure (not
shown in the figure). The structure has a command code cmd
field, which is set to RDMA_USER_CM_CMD_CREATE_ID. This
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command invokes 1 __rdma_create_id(), which allocates
id_priv (Line 7), a struct of type rdma_id_private (Line 5).

Free. In Line 3, the RDMA_USER_CM_CMD_DESTROY_ID
command invokes 2 rdma_destroy_id(), which now
deallocates the same id_priv at Line 12.

Use. In Line 4, the RDMA_USER_CM_CMD_LISTEN command
invokes 3 cma_listen_on_all(), which attempts to put the
already-freed id_priv in a list. When the id_priv->list
field is accessed in Line 17, it triggers a UAF bug, because it
has already been freed.

Bug-triggering action sequence. In order to trigger this
bug, one needs to identify the actions (action mining), and
then invoke an alloc→ free→use action sequence (program
synthesis), all operating on the same id_priv buffer.

Existing coverage-maximizing fuzzers are likely to do
the following. From the syscall grammar, they derive that
write accepts the file descriptor fd produced by openat,
and therefore will infer that an openat→write sequence is
promising to achieve better coverage. Beyond that, they would
not specifically attempt to trigger a UAF bug (lack of order-
awareness). In fact, they are oblivious to which specific write
triggers which of the actions required to trigger the bug (lack
of action-awareness). Therefore, they would just randomly
order those syscalls, and monitor for an increase in coverage.

From analyzing real-world bugs, we learn that: (i) often,
bugs are only triggered when certain actions occur in a specific
order, (ii) existing fuzzers are optimized to increase coverage,
not necessarily to trigger bugs, and (iii) with current fuzzers,
a user has no good way to ensure that they are generating
programs that conform to a specific structure.

Based on these observations, we design ACTOR, which
(i) identifies relationships between a syscall and the actions
it triggers (action-awareness), (ii) uses those actions in a
specific order to generate potentially bug-inducing programs
(order-awareness), and (iii) allows the writing of program
specifications in a domain-specific language with precise
control over actions and their order.

3 ACTOR Design

ACTOR, our kernel fuzzing framework, introduces a novel
approach to fuzzing, called action-guided fuzzing. Comple-
mentary to the popular coverage-guided program generation
strategy (used in most fuzzers) that greedily optimizes for
code coverage, our strategy leverages the generated coverage
to synthesize potentially bug-inducing programs. Specifically,
we use a combination of dynamic analysis and template-based
synthesis, where templates are written in a domain-specific
language (DSL). Figure 2 shows ACTOR’s main components
and how they operate along two phases. During action mining
(Section 3.1), we collect relevant actions performed by the
executed code, as well as the associated syscalls (along
with their arguments) that trigger those actions. We call
this information darts. In the following program synthesis
phase (Section 3.2), we stitch those darts together to generate
potentially bug-inducing programs.

3.1 Action mining
The goal of the action mining phase is to infer relationships
between syscalls and the actions that they trigger during
execution. The outputs of this phase are action groups, which
are consumed by the program synthesis algorithm. We will
first define actions, and then explain the stages of the action
mining phase in more detail.
Actions. Actions are the building blocks of ACTOR’s action-
guided fuzzing approach. Traditional grey-box fuzzers rely on
code coverage as the primary feedback to decide which inputs
deserve further exploration. They view program execution
(traces) as a stream of low-level instructions, but they are
oblivious to the semantics of the executed code. Instead,
ACTOR interprets an execution trace as a series of high-level
operations, called actions, which forms the unit of abstraction
that helps our fuzzer to build a deeper semantic understanding.

In principle, one can define a wide range of actions to
accommodate multiple classes of bugs. In this work, we use
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the following types of actions: (kernel) heap allocation (Aa),
heap deallocation (Ad), heap value read (Avr), heap pointer
read (Apr), heap index read (Air), heap value write (Avw), heap
pointer write (Apw), and heap index write (Aiw). Apr and Apw
refer to the read/write of the value (address) of a pointer. The
set of all action types is called the actiontype set AT.

We define action a = ⟨at, addr, size⟩ as a triplet, where
at ∈AT, addr is the address associated with the action, and
size refers to the size (in bytes) of the memory object that this
action operates on. The interpretation of addr depends on the
action in question. For example, for Aa, it is the base address
of the allocated memory region.

A fuzzer program P ={s1,s2,...,sn} consists of a sequence
of syscalls, along with their arguments. When the fuzzer runs
this (user-mode) program – by invoking each syscall si in the se-
quence – a portion of the kernel code is executed. An action is a
certain high-level operation that is performed by this executed
code and that has a specific semantic meaning associated with it.
For example, consider the kmalloc function, which allocates a
chunk of memory on the kernel heap. While a coverage-guided
approach is sensitive to the precise set of instructions executed
inside the allocator, our action-guided approach views the
invocation of kmalloc as one single allocation action. Each
syscall si yields a series of actions {a1,a2,...,an}.

As we will discuss inSection 3.2, these actions are sufficient
to generate programs targeting a broad class of diverse bugs.
We will discuss in Section 6 how the framework can be ex-
tended to support additional action types for other bug classes.

Action guidance is, by design, less granular than coverage
guidance. Continuing with the previous example, allocators
contain complex logic to handle diverse heap states and alloca-
tion sizes. Depending on the kernel state when the allocator is
invoked, paths exercised inside the allocator will be different,
and so will the coverage. Now, as explained in Section 2,
the core idea behind ACTOR is to synthesize programs that
exercise certain actions in a specific order. In our approach,
it is important to focus on which action is taken (allocation),
rather than how it is taken (e.g., which specific slab cache the
allocation happens from, which locks are taken, and so on).

Dart. A dart associates a syscall invocation (a syscall along
with its arguments) with an action that it triggers. Formally,
a dart d = ⟨s,a,∆⟩ is a triplet consisting of a syscall s (along
with its arguments) that triggers an action a with a stack trace
∆. If a syscall triggers multiple actions, e.g., a heap allocation
followed by a read from the allocated buffer, it will produce
one dart for each action. Darts are essential for our fuzzer to
be able to re-trigger observed actions. Specifically, during
program synthesis, ACTOR re-uses the syscall s (with the
same arguments) from a dart d, assuming that it triggers the
associated action a with the same stack trace ∆.

Note that when a dart is re-executed, the kernel state is
often different from when this dart was recorded. Since a state
difference can divert the control flow within the syscall, it can
interfere with the ability of the dart to trigger the intended

action. Fortunately, as we will empirically demonstrate in
Section 5, darts have an acceptable success rate of re-execution
so that they can effectively be used for program synthesis.

On execution of a program P = {s1,s2,...,sn}, we record
the actions triggered by the respective syscalls. A syscall si
triggers actions {ai j}, where ai j represents the j-th action in
the series. We then transform the action ai j to its corresponding
dart di j. The dart set D = {di j|i ∈ [1,n], j ≥ 1} of P is the
set of all darts generated by P . For a dart d ∈ D, we define
the following operators—(i) ts(d): returns the timestamp
when a dart d is generated. (ii) ActsOn(d): returns the heap
allocation that the dart d operates on. (iii) Alloc(d): returns
the heap allocation performed by the dart d, if any. The
allocation set At = {Alloc(d)|d ∈ D,ts(d) < t} at time t
is the union of all allocations performed by P until time t.
To determine the heap allocation that the dart d operates on,
ActsOn(d) compares if d.a.addr falls in the range of address
[da.a.addr,da.a.addr+da.a.size], where da∈At .

Dart reduction. Depending on the number and types of actions,
a program can generate a large number of darts. For example,
it is quite common for a syscall to repeatedly read values from
the heap memory, and, therefore, heap value read (Avr) darts
are typically frequent. This poses a problem for two reasons:
(i) the communication overhead to transfer the darts from the
guest VM to the host increases proportionally with the number
of darts, and (ii) as the number of darts increases, it becomes
harder for the synthesis algorithm to choose the most effective
ones. In other words, redundant darts degrade the performance
of the fuzzing loop without yielding any additional benefit.

We observe that many common bugs manifest only when
related syscalls interact with each other. The relationship is
frequently established through shared memory accesses [45,
58]. The goal of the dart reduction phase is to limit the number
of darts without hurting the performance of the fuzzer. To keep
the downstream analysis tractable, we enforce two policies
based on shared memory access: (i) ACTOR keeps darts that
operate on previously-observed heap allocations. Consider a
dart setD, and the allocation setAt . We keep a dart d∈D only if
ActsOn(d)∈At , where t=ts(d). By only retaining darts that
access previously-seen allocations, ACTOR not only cuts down
the overall number of darts but also ensures that it deals only
with related darts going forward. (ii) ACTOR records only the
first read/write dart per syscall, per allocation. In other words, if
a syscall generates multiple read/write darts that operate on the
same allocation, we record only the first access for both types.

Dart labeling. Initially, the darts lack high-level semantic
information. For instance, when we record a heap read/write
action, we do not have any knowledge of what the action
semantically means, i.e., if it is a pointer, index, or value
read/write. Instead, we first record a generic read (Ar)/write
(Aw), and then, in this phase, we attempt to refine darts and
their action types with the information collected using static
source code analysis. Our approach works in two phases: In
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Algorithm 1: Semantic labeling of actions
1 Function RecoverSemantics

Input :Kernel source K
Output :Index access types Γ, Pointer access types Ψ

2 Π←{},Γ←{},Ψ←{}
3 foreach instruction I∈GetAllInstructions(K) do
4 if IsArrayAccess(I) then
5 foreach OP∈GetOperands(I) do
6 RecordStructField(OP)

7 foreach instruction I∈GetAllInstructions(K) do
8 if IsStructAccess(I) then
9 Γ←Γ∪IdentifyIndexAccess(I,Π)

10 foreach instruction I∈GetAllInstructions(K) do
11 Ψ←Ψ∪IdentifyPointerAccess(I)

12 return Γ,Ψ

13 Function RecordStructField
Input :Instruction I
Output :None

14 if IsStructAccess(I) then
15 struct, f ield←GetStruct(I),GetField(I)

Π[struct]←Π[struct]∪ f ield
16 return

17 if IsLocalVariable(I) then
18 foreach MD∈GetMemoryDependencies(I) do
19 RecordStructField(MD)

20 foreach IOP∈GetOperands(I) do
21 RecordStructField(IOP)

22 Function IdentifyIndexAccess
Input :Instruction I, Struct fields used as indices Π

Output :Index access performed by I and its type γ

23 γ←{}
24 struct, f ield←GetStruct(I),GetField(I)
25 if f ield∈Π[struct] then
26 if IsLoadInstruction(I) then
27 accessType← IDX_READ

28 else if IsStoreInstruction(I) then
29 accessType← IDX_WRITE
30 else
31 return γ

32 γ[I]←accessType

33 return γ

34 Function IdentifyPointerAccess
Input :Instruction I
Output :Pointer access performed by I and its type φ

35 φ←{}
36 if IsPointerValueAccess (I) then
37 if MayReadFromMemory(I) then
38 accessType←PTR_READ

39 else if MayWriteToMemory(I) then
40 accessType←PTR_WRITE
41 else
42 return φ

43 φ[I]←accessType
44 return φ

the semantic recovery phase, we glean information from the
source code; then, we inject this information in the fuzzing
loop during the semantic refinement phase.

▶ Semantic recovery. The algorithm to determine the access
types (index/pointer, read/write) is depicted in Algorithm 1.
The top-level RecoverSemantics routine iterates over source
instructions and dispatches calls to appropriate subroutines.
It builds an index map Γ and a pointer map Ψ that map a

source-level read/write instruction to its respective type, i.e.,
index/pointer read/write. This is a one-time analysis that can be
reused over multiple fuzzing runs for a particular kernel build.

Index access. To identify an index read/write, we leverage our
observation that when a heap value is used as an index, then
typically a structure S is allocated on the heap, and one of its
fields S.f is used as the index. We expect a structure, because
it would be unusual to allocate a primitive type on the heap.

First, we build a map Π that records the fields of a structure
S that influence array indices, i.e., we record a field S.f if it is
used in computations that eventually end up in an index (Step
I). Next, we use Π to identify any instruction I where such
a field S.f is used. We determine the access type of I based
on the operation it performs (Step II).

Step I (RecordStructField). For an array access operation
arr[i], S.f can influence i in two ways: (i) i is directly
loaded from S.f (Line 14), i.e., i = S.f, and, in this cases, we
record S.f in the map Π; or (ii) i is a local variable (Line 17)
loaded indirectly from S.f through intermediate variable(s) v,
i.e., v = S.f; i = v; arr[i]. Then, we perform a backward
data-flow analysis of i to find out v, and then recursively call
RecordStructField on v (Line 19). In the end, Π contains
all the structure fields S.f that influence array indices.

Step II (IdentifyIndexAccess). In this phase, for each
instruction I that accesses a structure field S.f, we consult
Π to check (Line 25) if S.f has been used as an index. If yes,
then we label I as Air or Aiw depending on whether it is a load
or a store instruction, respectively. In the end, we output Γ, the
list of all index reads/writes.

This two-step approach is necessary. Consider this example:
I1: S.f++; I2: i = S.f; I3: arr[i]. If the analysis
encounters I1 first, it will not know that it is an index write
(and not a value write), unless it has seen I2 and I3 already.
Since there is no guarantee that the analysis will always
encounter instructions in the required order, we had to resort
to this two-phase approach. Therefore, we first collect the
interesting structure fields (S.f), and then label all instructions
(I1 as Aiw, and I2 as Air) that use those fields.

Pointer access. To identify a pointer read/write, we check if
an instruction accesses a pointer value (Line 36). If it is, then
we label it Apr or Apw depending on whether it reads from
(Line 37), or writes to (Line 39), the memory. The analysis
builds Ψ, the list of all pointer reads/writes.
▶ Semantic refinement. We leverage the information derived
from the previous phase to determine the true action types of
the darts. For a dart d=⟨s,a,∆⟩ of type Ar/Aw, we leverage the
debug information compiled into the kernel image to recover
the source instruction I from the stack trace ∆. We use I to look
up both Γ and Ψ to determine if a is an index/pointer read/write.
If I is found in any of those maps, we label the dart accordingly.
Otherwise, we assume that the dart performs a read/write of
a value, and its type is changed to Avr/Avw, respectively.

Dart grouping. From a dart set D, ACTOR forms dart
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Bug class Template Bug class Template

Use After Free Aa→Ad→ [Ar |Aw] Null Ptr Deref Ax
a→Ax

d
Double Free Aa→Ad→Ad Invalid Free Ad
Out of Bounds (1) Aa→A∗iw→Air Memory Leak (1) A∗a
Out of Bounds (2) Aa→A∗pw→Apr Memory Leak (2) Aa→Apw→Ad
Uninitialized Read Aa→Ar - -

Table 1: The bug templates defined by ACTOR

groups to combine related darts. Each group g contains one
allocation dart da ∈ D, and all other darts that operate on
the allocation Alloc(da) performed by da, i.e., the group
g={d|ActsOn(d)=Alloc(da)}.
Group merging. Grouping works on a dart set, which includes
all darts generated by running a single program. To expand our
scope and also attempt to learn relationships between syscalls
invoked by different programs, we perform a merging step.
This step works on groups that are generated from multiple
programs. Consider two groups g1 and g2. If the stack trace
and action type of a dart d1∈g1 in the first group match those
of a dart d2∈g2 in the second group, then ACTOR merges the
darts from both the groups to form a larger group g12=g1∪g2,
and discards the parent groups.

The intuition behind merging builds on the transitivity of
the relation between the darts. Suppose that grouping initially
generates two groups g1 and g2. These two groups contain
darts that operate on the same allocation (by definition). In
other words, all the darts in a group are related to other darts
within the same group. Merging discovers that darts d1 ∈ g1
and d2 ∈ g2 have identical stack traces. Since the darts are
generated from the same program context (stack trace), they
are semantically the same. This semantic similarity represents
our notion of relation between syscalls. Thus, d1 and d2 are
related. Since we know that both d1 and d2 are related to all
other darts in their respective groups, we conclude that all the
darts in both groups are related, too. Hence, the larger groups
produced by our merging strategy contain related syscalls.

3.2 Program synthesis
In program synthesis, we consume the groups produced by the
action mining phase. We specify bug templates for real-world
bugs using a domain-specific language (DSL). We instantiate
those templates by choosing appropriate darts from the groups
to generate potentially bug-inducing programs.
Supported bug templates. We have defined nine bug
templates (listed in Table 1) to capture important classes
of bugs. As we will show later, it is easy to expand this list
with additional templates in the future. Note that though the
templates increase the probability of triggering targeted bug
types, the generated programs can still trigger other bugs as
well. For the sake of our presentation, instead of using DSL,
we use a form of regex-like expression to describe relevant
sequences of actions. In reality, a regex is not as expressive as
our DSL is. With regex, it is not possible to express relations
like two darts have to be the same, or same/different darts are

to be chosen to repeat an action, etc.
We use Ar := Avr|Apr|Air for a generic read, and

Aw :=Avw|Apw|Aiw for a write action. We are presenting the
bug templates in Table 1.
▶ Use After Free (UAF): We first allocate a buffer, deallocate
it, and then attempt to access (read/write) the allocation.
▶ Double Free (DF): We first allocate a buffer, and then
perform two deallocations, hoping that the second one would
trigger the bug.
▶ Out of Bounds (OOB-1): Consider a structure S with two
fields: S.i (integer) and S.arr (array). Moreover, S.i is used
to index into S.arr. Indices are often incremented inside
loops. We expect that if we repeatedly use a A∗iw dart, it might
increment S.i beyond the length of S.arr, so that the next
access Air would trigger an OOB bug.
▶ Out of Bounds (OOB-2): Consider a structure S with a
pointer field S.p that points to an object O. Repeated writes
A∗pw of S.p could increment the pointer past the end of O. Next,
a pointer read Apr would dereference the pointer, and trigger
an OOB.
▶ Uninitialized Read (UR): We force a read Ar immediately
after the allocation Aa to read from uninitialized memory.
▶ Null Pointer Dereference (NPD): Oftentimes, arrays in the
kernel code hold pointers to allocated memory objects, and
a separate counter c records the number of such objects. In
presence of a bug, c is incremented first, even if the allocation
of an object O fails. Imagine, we perform n number of Aa, one
of which fails, setting a pointer p to NULL. Also, c incorrectly
gets set to n, which makes it possible to force n number of Ad .
The Ad on p would trigger an NPD.
▶ Invalid Free (IF): One single Ad dart could trigger an IF if
the syscall forgets to check the validity of the pointer, which
is supposed to point to a valid memory object, before invoking
the deallocator.
▶ Memory Leak (ML-1): Pointers to allocated memory
objects may be stored in a buffer of fixed size, e.g., a ring
buffer. Enough allocations A∗a may overflow the buffer, thus
accidentally overwriting pointers to previously allocated
objects. Buffers with lost references can no longer be freed,
thus causing a memory leak.
▶ Memory Leak (ML-2): Suppose there are two memory
objects O1 and O2. O2 is referenced from a pointer field O1.p.
If we free O1 without freeing O2 first, the kernel loses the
reference to O2, which results in a memory leak. For our bug
template, we allocate O1, write the pointer to O2 into O1.p, and
then deallocate O1.
Domain-specific language (DSL). The templates presented
above, in reality, are specified using our domain-specific
language (DSL). Our DSL design is motivated by the
following reasons—(i) We do not claim completeness in terms
of the bug templates ACTOR ships with. Therefore, we design
a DSL to let an analyst specify additional bug templates.
This is optional; ACTOR can be used as-is with the default
templates. (ii) While theoretically, it could be possible to make
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modifications to the fuzzing engine directly to incorporate a
new template, we wanted to shield the user from understanding
the complexity of the implementation internals, thus making it
usable. For example, with the DSL we designed, it took us only
up to 5 minutes to add support for each bug type we presented.

Each bug template bt={⟨at,id,repeat⟩} is a list of 3-tuples,
where at ∈ AT is the desired action type, an id (specified
below), and a repetition specifier repeat that specifies the
number of times the respective dart needs to be repeated. The
program synthesis engine in ACTOR consumes a bug template
and substitutes each tuple with one or more darts (determined
by the repeat field) chosen from the selected groups.

id is an arbitrary non-zero integer that serves two purposes:
(i) a positive id creates a connection between two tuples in
a bug template. Specifically, if two tuples have the same at
and id fields, ACTOR will use the same dart for both. For
a valid template, the same id implies the same at as well.
Also, a positive id makes the engine use the same dart for all
repetitions. (ii) a negative id instructs the engine to pick a new
dart for each repetition.

repeat is an optional element that can have three possible
values—(i) if the field is omitted, then only a single dart
is used. (ii) if repeat = X (X is an integer), then the dart is
repeated exactly X times. Whether the same or different dart
will be used is determined by whether the id field is positive
(same) or negative (different). (iii) if repeat = rX , then rX
(e.g., r3) is treated as a meta-variable. Two tuples with the
same meta-variable will be repeated the same, yet random,
number of times, uniformly chosen from [1,20].

The DSL primarily allows one to specify the relative
ordering of actions, the number of repetitions, and influence
the selection of darts (optionally, with respect to multiple
actions). It does not support expressing any control/data-flow
primitives. Below we show how our DSL can specify bug
templates discussed in the previous section.

Use After Free (UAF). The bug template for UAF is
Aa→ Ad → [Ar|Aw]. Since our DSL does not have support
for OR operator, this template is specified by a set of six rules
covering the six types of reads and writes. The only difference
between these rules is the action type specified in the last tuple.
For example, the rule for a pointer read is specified by the
following list: bt pr

UAF ={⟨Aa,1⟩,⟨Ad ,2⟩,⟨Apr,3⟩}.
Double Free (DF). The bug template for DF is Aa→Ad→Ad .
This template can easily be specified by the following list
of three tuples: btDF = {⟨Aa,1⟩,⟨Ad ,2⟩,⟨Ad ,3⟩}. Since the
bug class does not require the deallocation to be triggered by
the same instruction, we chose to not reuse the same dart for
both the Ad actions to allow for more freedom to the synthesis
engine. We omit the optional repeat field because we do not
want any of the darts to be repeated. Otherwise, that could
also be explicitly set to 1. Alternatively, we could also specify
this bug pattern as btDF ={⟨Aa,1⟩,⟨Ad ,−2,2⟩}. Here, we use
a negative id, combined with repeat = 2 to declare that this

template requires two independently picked darts.

Out of Bounds (OOB-1). The bug template for OOB-1
is Aa → A∗iw → Air. This template can be represented
as btOOB(1) = {⟨Aa, 1⟩, ⟨Aiw, 2, r1⟩, ⟨Air, 3⟩}. We use the
meta-variable r1 to ensure that the number of repetitions for
the second tuple is randomly picked.

Out of Bounds (OOB-2). The bug template for OOB-2 is
equivalent to the template for OOB-1 except for the type of
read and write. Therefore, the template can be expressed as
btOOB(2)={⟨Aa,1⟩,⟨Apw,2,r1⟩,⟨Apr,3⟩}.
Uninitialized Read (UR). The bug template for UR is
Aa → Ar. This template can simply be specified by the list
btUR={⟨Aa,1⟩,⟨Ar,2⟩}.
Null Pointer Dereference (NPD). The bug template for NPD
is Ax

a→Ax
d . Here, we need to specify a meta-variable to ensure

that the Aa and Ad get repeated the same number of times. This
template can be expressed as btNPD={⟨Aa,1,r1⟩,⟨Ad ,2,r1⟩}
with our DSL. r1 signals the synthesis engine that the
respective tuples are connected, and they have to be repeated
a random, yet equal number of times.

Invalid Free (IF). The bug template for IF is Ad . This
template can be specified by the following list of 1 element:
btIF ={⟨Ad ,1⟩}.
Memory Leak (ML-1). The bug template for ML-1 is A∗a .
This template can be specified using a meta variable by
btML(1)={⟨Aa,1,r1⟩}. The meta variable r1 ensures that the
number of repetitions is randomly picked.

Memory Leak (ML-2). The bug template for ML-2 is
Aa→Apw→Ad . The corresponding specification in our DSL
is btML(2)={⟨Aa,1⟩,⟨Apw,2⟩,⟨Ad ,3⟩}.
Template-guided synthesis. ACTOR’s synthesis engine (SE)
consumes two inputs: the bug templates and the dart groups.
Recall that our action-guided strategy is complementary
to coverage-guided exploration, so we run our synthesis
algorithm in parallel to a traditional fuzzer. Specifically,
when a fuzzer’s generation/mutation routine is invoked to
generate the next program, we call our synthesis engine with
a probability p (p=0.5 in our implementation).

During synthesis, the engine first chooses a bug template bt
from the set of available templates (with uniform probability).
It also records the types of darts needed to instantiate a
program based on that template. Next, it chooses a group
g from the set of available groups (again, with uniform
probability). If g does not contain all the required types of
darts, then a new group is picked. This process is repeated until
the synthesis engine finds a group g with all the required types
of darts, or a threshold th number of attempts (th=400 in our
implementation) is reached (in which case it gives up). If it
finds an appropriate group, then the required number and types
of darts are chosen from each type, as specified in the template,
to produce a new program to be used as the next fuzzer input.
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4 Implementation

We implemented the fuzzer component of ACTOR on top
of SYZKALLER [18] (commit: 0d5abf15). For semantic
labeling, we developed a static analysis pass on LLVM 14 [19].
To record actions, we developed a Linux kernel module and
modified the Kernel Address SANitizer [10] (KASAN). Our
kernel module is mostly self-contained (850 LoC), meaning
that the changes made to the core part of the kernel are minimal
(49 LoC). Therefore, our modifications can be ported across
different kernel versions with relative ease.

Recording actions. We instrument KASAN, a dynamic
memory error detector for the Linux kernel, to intercept
actions of interest (i.e., heap allocations, heap deallocations,
heap reads, and heap writes). KASAN uses a shadow memory
to keep track of whether each byte of memory is safe to access.
To update the shadow memory and to verify memory accesses,
KASAN leverages two types of hooks: (i) it instruments kernel
memory allocator APIs to intercept heap allocation/dealloca-
tion, and (ii) the compiler inserts __asan_load*(addr) and
__asan_store*(addr) function calls before each memory
access of size 1,2,4,8 or 16 bytes to intercept heap reads and
writes. We instrument these hooks to call into our kernel mod-
ule, passing on information such as the address of the access,
the allocation size, and the access type (alloc/free/read/write).

Our custom kernel module actrack records the intercepted
actions and exposes the same to the user-space through a
debugfs file. The module aims to collect actions that are
related to syscall inputs. Thus, we do not collect actions in
soft/hard interrupts and some inherently non-deterministic
parts of the kernel, e.g., scheduler, locking, etc. Action
collection is enabled on a per-process basis. We store
action-tracking metadata by extending the task_struct, a
structure that holds process-related information and that is
instantiated once for every process created. actrack provides
an appropriate ioctl interface to initialize, enable, and
disable action tracking for a particular process.

SYZKALLER [18] has three main components: (i)
syz-fuzzer, the fuzzing engine, (ii) syz-executor, which
executes fuzzer-generated programs to test the target kernel,
and (iii) syz-manager, which coordinates multiple fuzzer
instances. Components (i) and (ii) run on the guest virtual
machine running the target kernel, while component (iii)
runs on the host. As we describe below, we modify different
SYZKALLER components to implement our fuzzing strategy.
Figure 3 shows how the kernel-space components (actrack

and KASAN) record actions for each syscall and then propa-
gate those up to the user-space components (fuzzer and execu-
tor). To execute a program P , the fuzzer invokes 1 the execu-
tor. When the executor is spawned 2 , action tracking starts
disabled 3 . Then, the executor maps 4 two shared memory
regions: shmem-1 (between fuzzer and executor), and shmem-2
(between executor and actrack). The required size of the shared
memory regions and the cost to propagate actions across layers
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Figure 3: The interaction between the user-space components
(fuzzer and executor), and the kernel-space components (ac-
track and KASAN). Actions are recorded in-kernel for each
syscall invoked, and then propagated up to the user-space

grow in proportion to the number of actions recorded. There-
fore, the executor sets an upper limit 6 for the number of
recorded actions while initializing 5 actrack. Next, the execu-
tor invokes an ioctl 7 to enable action tracking 8 for the
executor process itself, and then immediately calls 9 the first
syscall s of the fuzzer input program P . Actions generated on
execution of s are intercepted 10 by KASAN, which then calls
back 11 into actrack to record those actions. actrack checks
12 whether action tracking is enabled, and whether the number
of actions recorded so far is within the threshold. If this is the
case, then our module writes the action information to shmem-2.
For every action generated, the callback method in this module
is called. To prevent unrelated actions from getting recorded,
the executor immediately invokes another ioctl 13 to dis-
able action tracking 14 for itself. The executor repeats steps
7 through 14 for each syscall in P (this is not shown in the
figure). In the end, it copies 15 all the actions from shmem-2 to
shmem-1 to share with the fuzzer. Finally, the fuzzer reads 17
the actions from shmem-1 when the executor process exits 16 .

Filtering redundant actions. A program can generate a large
number of actions. To remain scalable, we only consider ac-
tions with known, matching allocations. In other words, we
discard a read/write/free action, unless it operates on a buffer
that has been allocated by one of the alloc actions that we have
seen until that point. Therefore, to decide if an action 10 is
worth recording 11 (Figure 3), we need to look up the address
a associated with the action against a list of allocations. For that
reason, we store the allocations key-ed by their addresses in a
red-black tree inside the actrack module to enable fast lookup.

Sending actions from guest to host. The actions we collect
inside the fuzzer need to be passed to the manager, because
that is where the action grouping and merging take place.
SYZKALLER uses a Remote Procedure Call-based (RPC)
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mechanism to send code coverage information from the fuzzer
to the manager. We first attempted to piggyback onto the same
communication channel to send our action data. However, the
amount and frequency of sending action data is higher than
that for the coverage. As a result, RPC turned out to be too slow
for our case. Therefore, we use Inter-VM Shared Memory [9]
(ivshmem) to share a memory region between a QEMU guest
and the host. QEMU exposes the memory region as a PCI
device to the guest. Shared memory offers higher throughput
than RPC, which is leveraged by the fuzzer to send the action
data to the manager running on the host at a faster rate.

5 Evaluation

We find answers to the following research questions in our
evaluation: RQ1. Can ACTOR find new bugs? RQ2. Can
darts successfully trigger recorded actions when re-executed
on a different kernel state? RQ3. Is ACTOR able to trigger
more shared accesses than SYZKALLER? RQ4. Does ACTOR
generate more programs with likely bug-inducing patterns than
SYZKALLER? RQ5. Can ACTOR learn syscall relations that
SYZKALLER does not find? RQ6. How does ACTOR compare
to the state-of-the-art fuzzers in terms of bugs and coverage?

Experimental setup. We performed our experiments on a
server equipped with 2× Intel(R) Xeon(R) E5-2690 v2 @
3.00GHz CPU and 256 GiB of memory running Ubuntu
20.04.4 LTS 64 bit OS.

To answer RQ1, we chose long-term versions of Linux
(5.4.206 and 5.10.131), a stable release (5.19), and the latest
(6.2-rc5) release. These were the kernel versions for which
the Linux kernel maintainers accepted patches for new bugs at
the time of our experiments. We fuzz each of these kernels for
12 days. All fuzzer instances used 4 VMs, each having 4 GiB
of RAM, and 2 CPU cores. While compiling the kernels, we
enabled KCOV to collect code coverage. Since ACTOR relies
on KASAN for action mining, we always enabled KASAN
when ACTOR was involved. We leveraged KASAN, KMSAN,
and KMEMLEAK to detect memory errors in RQ1.

RQ2–RQ6 expose properties of Actor, not the underlying
kernel, which makes corresponding evaluations kernel-version
agnostic. We chose the kernel used during development (5.17)
for these experiments. Each experiment was run for 24 hours
and repeated 5 times. We report the average values of the
results to limit the impact of randomness, except for RQ6
where we combined the bugs discovered in all the runs.

To study the effectiveness of ACTOR’s program synthesis,
we designed SYZKALLER+, which is SYZKALLER with
additional logging enabled. This allows us to track actions
triggered by vanilla SYZKALLER (and collect the metrics used
for this evaluation).

5.1 New bug discovery (RQ1)
To demonstrate the bug-finding abilities of our fuzzer, we run
ACTOR on kernel 5.4.206 (LTS), 5.10.131 (LTS), 5.19 (stable),
and 6.2-rc5 (latest) for a period of 12 days each. We specifically
chose Long-Term Support (LTS) kernel versions because they
are maintained by the kernel community over a long time (sev-
eral years), and bug fixes are regularly back-ported or applied.
In addition, SYZBOT [17] fuzzes the Linux kernel continuously
with the latest SYZKALLER version, deploying significant
resources to do so. Despite this high bar, ACTOR found a total
of 41 previously unknown bugs (zero-days). Moreover, 15
(36.59%) of them were discovered in less than a day.

We only reported a bug to the kernel developers if we could
generate a reproducer for it. We managed to do so for 24 bugs.
For 17 bugs, reproducer generation failed due to the well-
known statefulness issue of the kernel. Until the time of writing,
the developers confirmed 13 bugs, and already patched 9. The
details of the bugs we discovered are presented in Table 2.

Another bug, the UAF in reiserfs_fill_super, was first
discovered by SYZKALLER in 2020, and got fixed shortly
after. Again, SYZKALLER discovered the same bug in 2022
in the linux-next kernel tree, but it got auto-closed due to
SYZKALLER not being able to find a reproducer. ACTOR could
not only trigger the bug in 5.19, but also we could generate
a reproducer. We already reported the bug to the developers.
ACTOR clearly demonstrates its ability to discover bugs that
are hard to discover by the state-of-the-art kernel fuzzers.

Manual analysis of the bugs we discovered shows that
63.41% are memory corruption bugs, largely discovered
through KASAN and KMSAN. 26.83% of the bugs are
discovered through WARNINGs, INFOs and assertions,
suggesting that the underlying root causes of these bugs are
related to logical errors. The remaining bugs are page faults
and other kinds of memory-related bugs.

RQ1: ACTOR found 41 previously unknown bugs in four
LTS, stable, and latest versions of the Linux kernel.

Case Study: One of the bugs discovered by ACTOR, the
warning in inet_sock_destruct, was initially reported by
SYZKALLER in 2017, but considered as fixed in 2018 because
SYZKALLER was not able to trigger it anymore. However,
ACTOR was not only able to re-trigger this bug in kernel
5.19, but we were also able to provide the developers with a
reproducer, which led to this bug getting patched.

The root cause of this bug is a race condition between closing
a socket (deallocation of a structure) and transmitting/re-
transmitting data buffered by that socket (read/write accesses
to the socket structure). ACTOR’s action-guided technique
helps to discover this bug as the kernel needs to perform
concurrent actions on the same socket object. ACTOR
synthesized programs that performed specified actions on the
same socket, which is why we were able to trigger this bug,
while other general-purpose fuzzers could not.
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Kernel crash description Crash type Kernel version Repro Reported Patched Days

KASAN: use-after-free Read in drm_gem_object_release Use-After-Free v5.4.206 ✓ ✓ ✓ 0.73
UBSAN: undefined-behaviour in tdp_page_fault Undef Behavior v5.4.206 ✗ - - 0.73
general protection fault in sock_def_error_report GPF v5.4.206 ✓ ✓ - 2.96
general protection fault in dd_insert_requests GPF v5.4.206 ✗ - - 3.77
general protection fault in reset_interrupt GPF v5.4.206 ✗ - - 4.74
BUG: unable to handle kernel paging request in imageblit Page Fault v5.4.206 ✓ ✓ - 6.55
KASAN: use-after-free Read in tcp_retransmit_timer Use-After-Free v5.4.206 ✗ - - 6.45
general protection fault in vmx_vmenter GPF v5.4.206 ✗ - - 11.30
WARNING: ODEBUG bug in netdev_run_todo Reachable Warning v5.4.206 ✗ - - 8.54
UBSAN: undefined-behaviour in xprt_calc_majortimeo Undef Behavior v5.4.206 ✗ - - 11.40
KASAN: vmalloc-out-of-bounds Write in snd_pcm_hw_params OOB access v5.10.131 ✓ ✓ ✓ 0.03
KASAN: null-ptr-deref Write in rhashtable_free_and_destroy Null ptr deref v5.10.131 ✗ - - 1.01
WARNING: kmalloc bug in kvm_arch_prepare_memory_region Reachable Warning v5.10.131 ✗ - - 5.02
KASAN: use-after-free Read in post_one_notification Use-After-Free v5.10.131 ✓ ✓ ✓ 1.63
KASAN: vmalloc-out-of-bounds Write in imageblit OOB access v5.10.131 ✗ - - 6.49
INFO: task hung in gfs2_read_super Reachable Info v5.10.131 ✓ ✓ - 3.83
general protection fault in start_motor GPF v5.10.131 ✓ ✓ - 0.61
BUG: soft lockup in br_multicast_port_group_expired Soft Lockup v5.10.131 ✗ - - 4.45
KASAN: slab-out-of-bounds Read in ntfs_get_ea OOB access v5.19-rc6 ✓ ✓ ✓ 4.36
KASAN: vmalloc-out-of-bounds Read in cleanup_bitmap_list OOB access v5.19-rc6 ✓ ✓ - 4.11
KASAN: use-after-free Read in run_unpack Use-After-Free v5.19-rc6 ✓ ✓ ✓ 4.35
KASAN: use-after-free Read in __io_remove_buffers Use-After-Free v5.19-rc6 ✓ ✓ ✓ 4.78
KASAN: invalid-free in __io_uring_register Invalid Free v5.19-rc6 ✓ ✓ ✓ 7.29
KASAN: use-after-free Read in reiserfs_fill_super Use-After-Free v5.19-rc6 ✓ ✓ 9.53
INFO: task hung in __bread_gfp Reachable Info v5.19-rc6 ✓ ✓ - 2.33
WARNING in inet_sock_destruct Reachable Warning v5.19-rc6 ✓ ✓ ✓ 6.57
kernel BUG in f2fs_new_node_page Reachable Assertion v5.19-rc6 ✓ ✓ ✓ 9.10
kernel BUG in ntfs_read_folio Reachable Assertion v5.19-rc6 ✓ ✓ - 0.13
INFO: task hung in __floppy_read_block_0 Reachable Info v5.19-rc6 ✓ ✓ - 1.94
BUG: unable to handle kernel paging request in kvm_dev_ioctl Page Fault v6.2-rc5 ✗ - - 0.17
KMSAN: uninit-value in __dma_map_sg_attrs Uninit Value v6.2-rc5 ✓ ✓ - 0.94
KMSAN: uninit-value in sr_check_events Uninit Value v6.2-rc5 ✓ ✓ - 0.05
KMSAN: uninit-value in post_read_mst_fixup Uninit Value v6.2-rc5 ✓ ✓ - 0.25
general protection fault in get_cpu_entry_area GPF v6.2-rc5 ✗ - - 0.02
KMSAN: uninit-value in nilfs_add_checksums_on_logs Uninit Value v6.2-rc5 ✓ ✓ - 0.45
KMSAN: uninit-value in generic_bin_search Uninit Value v6.2-rc5 ✓ ✓ - 0.01
BUG: unable to handle kernel NULL pointer dereference in ntfs_iget5 Null ptr deref v6.2-rc5 ✓ ✓ - 0.12
BUG: unable to handle kernel paging request in get_cpu_entry_area Page Fault v6.2-rc5 ✗ - - 0.02
BUG: unable to handle kernel paging request in bpf_ringbuf_alloc Page Fault v6.2-rc5 ✗ - - 2.47
KASAN: null-ptr-deref Read in gfs2_evict_inode Null ptr deref v6.2-rc5 ✗ - - 0.45
KASAN: null-ptr-deref Read in soft_cursor Null ptr deref v6.2-rc5 ✗ - - 2.33

Table 2: New bugs found by ACTOR. ✓: reproducer generated/ reported/ patched, ✗: the crash logs were not sufficient to extract reproducers, :
reproducer extraction is still ongoing.

5.2 Re-execution success (RQ2)

When ACTOR synthesizes a new program, it instantiates a
bug template with darts that were previously recorded. Of
course, these darts will execute on a kernel state that is likely
different from the one on which they were recorded. These
differences might prevent a dart’s ability to re-trigger the
underlying action. In this experiment, we measure the fraction
of darts that are able to re-trigger the same action, as successful
re-execution is important for our approach to work effectively.

Recall that our synthesis engine chooses a bug template
bt and a group g when generating a program P . Assume
that a dart d = ⟨s,a,∆⟩ from g is used in P . The dart, when
re-executed, generates actions Ra = {ai, ∆i}. We declare
success if any one of the triggered actions and its stack trace
match the previously recorded one, i.e., (a,∆)∈Ra. If bt starts
with allocation(s) (A∗a ), and one of the allocation(s) fail(s), we
exclude subsequent syscalls (generated by bt from g) from our
check. The reason is that when an allocation fails, we cannot
expect subsequent accesses to this object to succeed.

During our experiments, we noticed that 14 out of a total

Action Re-ex. success Action Re-ex. success

Alloc (Aa) 68.07% Dealloc (Ad ) 42.92%
Val Read (Avr) 38.91% Val Write (Avw) 32.91%
Ptr Read (Apr) 38.18% Ptr Write (Apw) 56.27%
Idx Read (Air) 29.37% Idx Write (Aiw) 18.49%

Overall 54.68%

Table 3: Re-execution success of all event types on Linux 5.17

of 2,072 syscalls exhibited poor re-execution success. That
is, they were almost never able to re-trigger recorded actions.
Upon further investigation, we realized that the operations
they perform are not repeatable unless the kernel state is reset.
For example, the mount syscall mounts a new file system.
Re-executing this dart, i.e., mounting the same file system
under the same mount point for the second time, will invariably
fail and trigger a different set of actions (along the failure path
inside the syscall). Consequently, we exclude those syscalls
(Appendix A) for this experiment.

We measure ACTOR’s re-execution success averaged over
5 runs of 24 hours each. Table 3 shows the result of this
experiment. We see that re-execution works best for Aa, Ad ,
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and Apw, while Aiw and Air exhibit a lower success rate.
We can intuitively see why Aa has a re-execution success

rate higher than almost all the other action types. Imagine, there
is a list in the kernel where an allocation gets stored. When the
Aa dart was recorded, it got stored at slot 1. The recorded Ar
dart reads from slot 1, too. When both darts are re-executed, Aa
still succeeds, but now the allocation gets stored in slot 0, while
the Ar dart still tries to read from slot 1—which makes it fail.

The success rate of Aa is positively correlated with Apw,
which also has a high success rate. When an allocation
happens, the allocated region gets stored in a pointer variable,
thus generating an Apw action. Since the success rate of Aa is
high, and a fraction of those allocations will be stored in heap
pointers, they will immediately generate Apw actions—leading
to a high success rate.

Aiw has the lowest success rate. Recall that we only record
the first write, per allocation, per syscall. Such a write would
mostly be an “initializing” write, which should happen only
once, unless, of course, there is a bug. We use Aiw darts in
the OOB-Index template, where we attempt to repeat (A∗iw)
this action. In a bug-free execution, all but the first Aiw attempt
would fail, thus lowering its success rate.

RQ2: Darts of almost all action types have acceptable
re-execution success rates for ACTOR’s strategy to work.

5.3 Shared accesses (RQ3)

The core idea of ACTOR is based on the insight that a set of
actions – performed on the same memory buffer in a certain
order – is required to expose a bug. To generate input programs
that invoke such actions on the same objects (allocations),
our system performs group merging (Section 3.1). Thus, if
ACTOR’s merging strategy is effective, it should generate
groups with related darts that operate on a common memory
buffer. Then, during program synthesis, since ACTOR chooses
darts from these groups, the darts should result in actions that
generate shared memory accesses.

The amount of shared accesses is our proxy metric to
understand the efficacy of the group merging algorithm. The
more shared accesses we can trigger, the better we consider
our merging strategy to be.

We run both ACTOR and SYZKALLER+ for 24 hours to
measure the shared accesses generated by each fuzzer, for
each kernel subsystem. We excluded the same 14 syscalls that
we identified in RQ2. Shared access is measured after the dart
grouping phase. Recall that a group contains darts that operate
on a common allocation (buffer), by definition. Therefore, for
a group with d darts, we count d shared accesses. For groups
with only one allocation dart, we exclude that group from
counting. To gain subsystem-specific insight, we map each dart
to a kernel subsystem. We first assign each dart to a subsystem,
which is determined by the location of the instruction that

Subsystem ACTOR SYZKALLER+ Improvement

arch/ 389,978 321,947 21.13%
block/ 158,012 168,602 −6.28%
certs/ 0 0 0.00%
crypto/ 29,405 41,628 −29.36%
drivers/ 1,068,698 775,113 37.88%
fs/ 4,222,386 4,733,901 −10.81%
ipc/ 132,340 141,906 −6.74%
kernel/ 3,684,928 2,734,836 34.74%
lib/ 1,408,382 659,223 113.64%
mm/ 132,374 117,369 12.78%
net/ 6,178,633 3,409,346 81.23%
security/ 3,020,899 2,925,410 3.26%
sound/ 261,289 224,960 16.15%

total 20,687,324 16,254,239 27.27%

Table 4: Shared accesses of ACTOR and SYZKALLER+ per subsystem

triggered the respective action. A group’s subsystem is then
taken to be the one to which the majority of its darts belong.

The number of subsystem-specific shared memory accesses
generated by both fuzzers are presented in Table 4. ACTOR
triggers 27.27% more shared accesses than SYZKALLER+
across all subsystems. Interestingly, ACTOR significantly
underperforms with respect to SYZKALLER+ in the crypto,
ipc, and block subsystems. This is because ACTOR can
only start using groups for program synthesis once we have
darts for all the action types that the chosen strategy uses.
Those subsystems being small, it takes quite some time to
accumulate enough darts of all required types. That is why the
program synthesis starts delayed and also happens at a lower
rate, which together hurts ACTOR’s performance.

RQ3: ACTOR achieves 27.27% more shared accesses
than SYZKALLER+ across all subsystems.

5.4 Bug-inducing program generation (RQ4)
A coverage-guided fuzzer such as SYZKALLER lacks specific
strategies to create inputs that target specific bug patterns. The
goal of this experiment is to measure if SYZKALLER generates
likely bug-inducing programs.

Since we rely on ACTOR’s groups to compute this metric,
we compare ACTOR with SYZKALLER+, which generates
ACTOR-style groups but uses SYZKALLER’s synthesis
algorithm. We record 10% of all programs generated by both
ACTOR and SYZKALLER+ during 24-hour runs, along with
the discovered groups. We then count the number of programs
that conform to one of our bug templates.

For example, to see if a program P = {s1, s2, s3, s4, ...}
matches a bug template bt = A1→ A∗2→ A3 (where Ais are
action types), (i) we consider all possible continuous subse-
quences of syscalls of P to which bt can possibly be expanded,
and (ii) for each subsequence, we check if all syscalls si appear
in any one of the recorded groups with the action types expected
by bt. Considering P ’s first subsequence {s1,s2,s3}which bt
could be expanded to, we would count the number of groups
containing {s1, s2, s3} syscalls (darts) having {A1, A2, A3}
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action types, respectively. However, while finding darts in
groups, we disregard the syscall arguments, and perform the
matching only on the basis of syscall names. The rationale is
that, even if a syscall appears with a different set of arguments
in a group, it is hard to determine if it still triggers the intended
action. We relaxed the matching criteria since any resulting
imprecision affects both fuzzer versions in the same way.

Table 5 shows the number of programs that match a bug
template, for both fuzzers. The improvement column shows,
for each template and finally across all templates, the factor
by which ACTOR generates more bug-inducing programs
than SYZKALLER+. It can be seen that ACTOR outperforms
SYZKALLER+ on all patterns. In addition, ACTOR does not
improve much for IF, ML-1 and UR. Those templates are fairly
short and simple, hence, it is relatively easy for a program
to match with those templates. For instance, IF requires one
single Ad syscall, which is not challenging for SYZKALLER+
to generate. For longer and more complex patterns, such as

Strategy ACTOR SYZKALLER+ Improvement

Use After Free (UAF) 2,085,492 92,844 22.46
Double Free (DF) 2,266,692 79,440 28.53
Out of Bounds (OOB-1) 517,092 24,702 20.93
Out of Bounds (OOB-2) 422,298 11,160 37.84
Uninitialized Read (UR) 5,906,130 1,960,104 3.01
Null Ptr Deref (NPD) 7,468,788 652,764 11.44
Invalid Free (IF) 26,296,746 22,583,958 1.16
Memory Leak (ML-1) 215,840,400 180,381,540 1.20
Memory Leak (ML-2) 986,856 45,486 21.70

Total 261,790,494 205,831,998 1.27

Table 5: Bug-inducing programs generated by ACTOR vs.
SYZKALLER+

OOB-1/2, DF, and ML-2, ACTOR significantly outperforms
SYZKALLER+.

RQ4: ACTOR generates significantly more programs that
target specific (and interesting) bug patterns compared
to SYZKALLER+.

5.5 Syscall affinity (RQ5)
Unlike traditional coverage-guided fuzzers such as
SYZKALLER, ACTOR performs group merging (during
action mining) to discover relationships among darts (and
syscalls). In this section, we explore if the merging step
discovers relations that SYZKALLER does not find.

Recall that SYZKALLER maintains a choicetable ct to
choose the next syscall during program synthesis. The
choicetable is a two-dimensional matrix that holds a weight
for each pair of syscalls si and s j. SYZKALLER uses this
weight value to determine the likelihood of placing those
two syscalls together in an input program (this likelihood is
called affinity). The choicetable is computed based on both
static and dynamic feedback. The static feedback relies on
the argument and return types of syscalls. If si and s j share

arguments of the same type, the corresponding static weight
will be higher. The dynamic feedback is based on the number
of times that two syscalls appear together in a program that
is part of the fuzzing corpus. Programs are added to the corpus
if they find new coverage. Hence, the dynamic component
increases the weight of a syscall pair when the corresponding
syscalls frequently appear together in the corpus. In summary,
when the weight for a syscall pair in the choicetable is above
average, we can assume that SYZKALLER has identified some
type of relationship between the two corresponding syscalls.

When ACTOR decides to merge two groups g1 and g2, it
basically infers a relationship between every pair of syscalls
(s1,s2)∈g1×g2. For every pair (s1,s2), we can then check how
likely it would be for SYZKALLER to put these two syscalls
together in a program. We do this by consulting its choicetable.
Specifically,we compute the average weights av1=Avg(ct[s1])
and av2 =Avg(ct[s2]) across all pairs of syscalls that contain
s1 or s2. We call a merge unlikely if the probability of s1
appearing in a program next to s2 (or vice versa) is less than
average, i.e., either ct[s1][s2]<avg1 or ct[s2][s1]<avg2.

We ran ACTOR for 24 hours on Linux kernel 5.17, and sam-
pled 10% of all merges. Out of 36,649 merges, 8,082 (22.05%)
were considered unlikely. This shows that ACTOR is able to in-
fer relations through merging that SYZKALLER would not con-
sider. Note that the improvement in the learned relations does
not have an impact on the produced coverage, because ACTOR
replays recorded darts. The replay, even if successful, exercises
no new path, thus not contributing to overall coverage.

RQ5: Dart merging enables ACTOR to learn syscall
relations that SYZKALLER does not discover.

Case study: We describe a relationship between two syscalls
that SYZKALLER missed, but ACTOR discovered. Specifically,
we look at the example of the two syscalls pipe2 and close.

When pipe2 is invoked with certain arguments, it will call
the function alloc_pipe_info. This function has a local
variable pipe of type struct pipe_inode_info*, which
points to a memory object. At some point in the function, the
kernel allocates another memory object and writes that (new)
address into pipe->bufs. This write is a heap pointer write
action (according to our definitions in Section 3.1), and it is
recorded by ACTOR. The syscall close, when invoked on
a file descriptor that is part of a pipe, will reach the function
free_pipe_info. In this function, the kernel will free the
struct pipe_inode_info* associated with the pipe. This
deallocation will be recorded by ACTOR as a heap deallocation
action. It is clear that these two syscalls can access the
same memory object (the struct pipe_inode_info*) and,
therefore, they have a relation.

We performed an experiment to see whether SYZKALLER
discovers this relation by checking for a high priority score for
the two syscalls in the choicetable. We also determine if AC-
TOR discovers the relationship. For this experiment, we used
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the Linux kernel 5.17. ACTOR found the relationship between
pipe2 and close in less than one hour. On the other hand, at
the time when ACTOR discovered the relationship between
these two syscalls, SYZKALLER was, according to our defini-
tion, unlikely to place these two syscalls together in a program.

5.6 Comparison to the state-of-the-art (RQ6)

We compare ACTOR with respect to the state-of-the-art fuzzers
in terms of coverage and bugs found over a period of 24 hours.

SYZKALLER [18], HEALER [58] and MOONSHINE [45]
are the closest to our work, which have the following things in
common: (a) they learn relations between syscalls, and (b) they
are general-purpose fuzzers, i.e., they do not target specific
bug-classes/subsystems. Likewise, (a) ACTOR’s dart grouping
and merging strategies implicitly learn relations between darts,
and (b) ACTOR does not target any specific class of bugs like
race [30], or any a subsytem like file-system [34, 64]. Even
though the current prototype only offers bug templates targeted
towards memory errors, it is one of the most dominant bug class
the covers many different sub-types. In addition, ACTOR can
very well be extended (Section 6) to other classes of bugs, too.

MOONSHINE distills a large corpus of seeds down to a
much smaller, yet effective one. Information theoretically
speaking, the resulting corpus has a higher entropy. Since all
other fuzzers started from an empty set of seeds, it led to much
of the fuzzing cycles being spent to build up the “knowledge”
that MOONSHINE had the leverage to start with right from the
beginning. In fact, the seeds that MOONSHINE used came from
multiple sources, and potentially a longer fuzzing campaign.
Since MOONSHINE works only with old kernel versions [15]
not supported by ACTOR, we resorted to cross-pollination [3]
as the best-effort approach to compare against their tool.
Cross-pollination is a standard practice in the fuzzing commu-
nity, and ideal for cases like this where two different libraries
(in our cases, two different versions of the kernel) accept a
common data format. Though kernel APIs may change across
versions, we do not expect the change to be significant enough
(with respect to the total number of syscalls) so that it entirely
invalidates a corpus from one version of the kernel to be used
with another. Therefore, we used the seeds that the authors
of MOONSHINE used in their experiments with the kernel
that ACTOR supports. For HEALER, we used its public version
for our evaluation (but we do note that there is also a private
version that the authors of HEALER used for their experiments).

The coverage and the number bugs found by different
fuzzers are shown in Figure 4 and Figure 5, respectively.
SYZKALLER achieves highest coverage, followed closely
by ACTOR (0.42% less) and then MOONSHINE (6.39% less).
HEALER performs significantly worse than all other tools.
During the same period, SYZKALLER found 9 unique crashes,
ACTOR and MOONSHINE found 10 each, and HEALER found
none. ACTOR had 8 crashes common with SYZKALLER and
6 with MOONSHINE. ACTOR found 2 bugs not found by any
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Figure 4: Coverage attained by ACTOR, SYZKALLER,
HEALER, and MOONSHINE over 24 hours
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Figure 5: Bugs found by ACTOR, SYZKALLER, HEALER and
MOONSHINE over 24 hours

other tool. This reinforces our hypothesis that merely covering
more code, which most fuzzers optimize for, is not enough
for triggering all bugs. Interestingly, ACTOR found 5 memory
corruption bugs, while SYZKALLER as well as MOONSHINE
found the same 3. This can be explained by the fact that
ACTOR’s templates specifically target a range of memory
bugs, which gives it an edge over other fuzzers. Additionally,
MOONSHINE is the only fuzzer that found crashes of type
"INFO", which points to potential issues in the kernel logic,
whereas ACTOR found more memory errors, which is what
ACTOR ’s templates are tailored to.

RQ6: ACTOR finds bugs that other fuzzers cannot, while
achieving comparable coverage.

6 Discussion and Limitation

Support for more action types. Currently, ACTOR only sup-
ports action types that are related to the kernel heap. This means
that ACTOR is unable to target certain bugs, for example, those
involving global variables and reference counters. Additional
action types can be supported by extending the actrack module.
These additions would then allow us to write bug templates
that target other classes of bugs, such as refcount mismatches.

In addition to the simple action types that we currently
implement, ACTOR could also benefit from more complex
ones. One such example would be an action that is based
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on the points-to relation between two memory objects. For
example, there could be a structure S1 with a pointer field
S1.p, which points to another structure S2. Identifying such
connections would allow for additional, or even more complex
strategies. For instance, we could improve the ML-2 template
by substituting the Apw action type with this specialized type.
One way of supporting complex actions would be to develop a
more sophisticated semantic labeling phase, and refine generic
actions to more specialized types, in the same way ACTOR
does in its current implementation for pointer and array index
accesses. Alternatively, instead of using the actrack module
(that indiscriminately intercepts a broad range of actions with-
out knowing their semantics), we can selectively instrument
the kernel by writing an LLVM transformation pass.

Inseparable/connected actions. When synthesizing fuzzer
programs, ACTOR assumes that it is possible to arbitrarily
reorder any action. This is not always the case. Consider
a syscall that triggers two actions: Aa and Avw. We would
currently add these actions to a group as separate and
independent darts da and dvw. Normally, actions can be
reordered fairly easily when they come from different syscalls.
If they come from the same syscall, however, they may or
may not be reordered (depending on the kernel state). In our
example, using the da dart for the uninitialized read (UR)
template may not be successful. As both the allocation and
the access actions are performed by the same syscall, they are
likely to get invoked one after the other, causing the memory to
get initialized before the read happens. There is no easy way to
determine if actions such as Aa and Avw are always ordered. A
static analysis or under-constrained symbolic execution-based
technique [33] could help. However, in that case, such an
analysis needs to be integrated within the fuzzing loop, which
would drastically slow down the input generation process.

False negatives of semantic labeling. Our semantic labeling
is unsound. As explained in Section 3.1, based on our observa-
tion, we make the assumption that the kernel heap allocations
are structures, because it would be unusual to allocate a prim-
itive data type on the heap. However, there could still be cases
where this assumption does not hold. In those cases, we will fail
to detect an Ap∗/Ai∗ action, thus, mislabeling the action type.

7 Related Work

In this section, we discuss prior research efforts on detecting
vulnerabilities in the OS kernels.

Structure/relation-learning-aided fuzzers. Such fuzzers
attempt to infer the shape of syscall arguments, as well as
inter-syscall relations, to (i) invoke syscalls with well-formed
arguments, and (ii) to order syscalls meaningfully to expose
deeper functionality. Syzlang is a domain-specific language
that can encode complex argument types for syscalls. To
learn dependence relations between pairs of syscalls, both
SYZKALLER [18] and HEALER [58] rely on manually

defined syscall descriptions written in Syzlang, as well
as on coverage-guided feedback for dynamic reasoning.
MOONSHINE [45] leverages static program analysis to infer
implicit dependencies, and a trace-based analysis for explicit
dependencies, which is similar to IMF’s [28] approach.
HFL [33] performs symbolic execution to infer complex
syscall sequences and to construct nested syscall arguments.
To recover valid commands and the argument structure of
the ioctl interfaces, DIFUZE [24] employs a combination
of static, inter-procedural, path-sensitive analysis and range
analysis. NTFUZZ [23] designed a bottom-up, summary-based
algorithm to infer the types of syscall arguments which is
captured by their abstract domain. While all these approaches
strive to improve (code) coverage by synthesizing better pro-
grams, unlike ACTOR, none of them make any particular effort
to craft inputs that are specifically tailored to trigger bugs.

Subsystem-targeted fuzzing. While syscall fuzzers mimic
adversarial attacks from user-land, driver fuzzers assume a
stronger attack model by considering peripheral devices to
be malicious. To enable fuzzing from the peripheral side,
they either use a physical device [56], a host-forwarded
physical device [39, 59], a symbolic device [36, 51], a virtual
device [57, 66], or in-process IO interception from a library
OS [29]. Moreover, fuzzers have been developed for specific
classes of kernel drivers, such as USB [32,47] and WiFi [21,42],
or for specific subsystems, such as the file system [34,43,63,64]
and parsers [38]. Unlike these fuzzers, ACTOR is neither a
peripheral surface fuzzer, nor targets any specific subsystem.

Enhancing bug-finding capabilities. While most kernel
fuzzers work with open-source OSes, few [35, 46] work with
Commercial-Off-The-Shelf (COTS) OSes, too. For example,
KAFL [50] supports COTS OSes and improves fuzzing
throughput by using Intel Processor Trace, for collecting near-
zero overhead, OS-independent, coverage feedback. Some
fuzzers adopt optimized strategies to trigger hard-to-trigger
bugs, for example, race conditions [25–27, 30]. ACTOR relies
on source code for semantic labeling, therefore can not work
with COTS OSes. Moreover, rather than focusing on one
specific bug type, ACTOR supports diverse classes of bugs due
to its template-guided approach. UAFL [60] uses operation
sequence as the coverage feedback to guide the program
mutation. STATEFUZZ [65] models the kernel state as a set
of state-variables. The fuzzer uses a combination of code cov-
erage and state changes as guidance for the exploration of the
kernel state space. Since ACTOR can precisely control the ac-
tions by controlling syscall invocations, therefore, unlike these
fuzzers which pass on new feedback signals, ACTOR leverages
actions for program generation, guided by bug templates.

Program synthesis. Given a specification, program synthesis
is the technique to automatically generating valid programs.
To this date, synthesis has been successfully used in many
different contexts. A common application of program synthe-
sis is in program repair. ANGELIX [41], SEMFIX [44], and
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DIRECTFIX [40] use semantic information obtained through
symbolic execution and constraint solving to synthesize the
correct version of a buggy program. Tools like GENPROG [37],
RSREPAIR [48] synthesize bug-free programs by traversing
the search space of possible fixes, and validating them against
test cases. ACS [62] synthesizes program conditions by first
selecting candidate variables through a ranking technique,
and then applying necessary predicates to them found in other
similar contexts. SEQUENCER [22] combines a machine
learning technique called sequence-to-sequence learning
with the construction of an abstract buggy context to generate
one-line patches. Sketching systems [52–55] consume a high-
level description of an algorithm, which is then instantiated
using program synthesis. Systems such as, PSKETCH [53],
SKETCH [55], STREAMBIT [54] use counter-example-
guided inductive synthesis. Code completion, another
application of program synthesis, is dominated by machine-
learning-based solutions [7, 16, 49, 61]. Lastly, SOUFFLÉ [31]
leverages program synthesis to generate static analyzers capa-
ble of statically analyzing software products. Unlike previous
research, ACTOR applies template-guide synthesis to the
domain of kernel fuzzing in order to generate fuzzer programs.

8 Conclusion

In this paper, we presented ACTOR, a novel program (input)
generation strategy for kernel fuzzing. Our action-guided syn-
thesis technique is complementary to the traditional coverage-
guided strategy that attempts to maximize code coverage.

ACTOR generates potentially bug-triggering programs by
following templates written in a domain-specific language
(DSL). Action-guided program generation is effective, as
ACTOR discovered 41 previously unknown bugs in two
well-tested and actively-patched long-term releases of the
Linux kernel as well as its latest stable release version.
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A Discarded syscalls

Syscall name Syscall name

lsetxattr$security_selinux openat
mount chown
ioctl$BLKTRACESETUP add_key$keyring
openat$procfs ioctl$sock_SIOCGIFINDEX_80211
syz_mount_image$tmpfs syz_clone3
syz_mount_image$iso9660 syz_mount_image$vfat
syz_mount_image$ext4 syz_open_dev$sg

Table 6: 14 syscalls that are bad for re-execution.
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