
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Overview of Compilers

UC Santa Barbara

Compilers

A) Why do we need a compiler?

B) What steps do we need to take to realize a compiler?

C) How is a compiler put together?

UC Santa Barbara

Compilers

• What is a compiler?
– A program that translates a program in one language (source language) into an

equivalent program in another language (target language), and it reports errors
in the source program

• A compiler typically lowers the level of abstraction of the program
C -> assembly code for Intel x86

Java -> Java bytecode

• What is an interpreter?
– A program that reads an executable program (one instruction at a time) and

produces the results of executing these instructions

• C is typically compiled

• Script languages (Python, Javascript) are typically interpreted

• Java is compiled to bytecode, which is then interpreted

UC Santa Barbara

Why Build Compilers?

• Compilers provide an essential interface between applications and
architectures

• High level programming languages:
– Increase programmer productivity

– Better maintenance

– Portable

• Low level machine details:
– Instruction selection

– Addressing modes

– Pipelines

– Registers and cache

• Compilers efficiently bridge the gap and shield the application developers
from low level machine details

UC Santa Barbara

Effectiveness of A Compiler

[Charles Leiserson, MIT 6.172]

• Performance of a matrix multiplication kernel (with n = 4,096) on Intel Xeon
E5-2666 v3E, with mostly just compiler software optimization:

53,292X performance difference!

UC Santa Barbara

Desirable Properties of Compilers

• Compiler must generate a correct executable
– The input program and the output program must be equivalent; the compiler

must preserve the meaning (semantics) of the input program

• Output program should run fast
– We expect the output program to be more efficient than the input program

• Compiler itself should be fast

• Compiler should provide good diagnostics for programming errors

• Compiler should support separate compilation (modules, object files)

• Compiler should work well with debuggers

• Compiled code should be small

• Optimizations should be consistent and predictable

• Compile time should be proportional to code size

UC Santa Barbara

Compiler - Example

• Source code
– Written in a high-level

programming language

//simple example

while (sum < total)
{

sum = sum + x*10;

}

• Target code
– Assembly language, which in turn is

translated to machine code

L1: MOV total,R0
CMP sum,R0
JL L2
GOTO L3

L2: MOV #10,R0
MUL x,R0
ADD sum,R0
MOV R0,sum
GOTO L1

L3: first instruction
following the while
statement

UC Santa Barbara

Compilers

A) Why do we need a compiler?
B) What steps do we need to take to realize a compiler?
C) How is a compiler put together?

UC Santa Barbara

What is the Input?

• Input to the compiler is not

//simple example
while (sum < total)
{

sum = sum + x*10;
}

• Input to the compiler is

//simple\bexample\nwhile\b(sum\b<\btotal)\b{\n\tsum\b=
\bsum\b+\bx*10;\n}\n

• How does the compiler recognize the keywords, identifiers, the
structure, etc.?

UC Santa Barbara

First Step: Lexical Analysis (Scanning)

• The compiler scans the input file and produces a stream of tokens

WHILE,LPAREN,<ID,sum>,LT,<ID,total>,RPAREN,LBRACE,

<ID,sum>,EQ,<ID,sum>,PLUS,<ID,x>,TIMES,<NUM,10>,

SEMICOL,RBRACE

• Each token has a corresponding lexeme, the character string that
corresponds to the token
– For example, “while” is the lexeme for token WHILE
– “sum”, “x”, “total” are lexemes for token ID

UC Santa Barbara

Lexical Analysis (Scanning)

• Compiler uses a set of patterns to specify valid tokens
– tokens: LPAREN, ID, NUM, WHILE, etc.

• Each pattern is specified as a regular expression
– LPAREN should match: (
– WHILE should match: while

– ID should match: [a-zA-Z][0-9a-zA-Z]*

• It uses finite automata to recognize these patterns
a-zA-Z 0-9a-zA-Z

ID automaton

UC Santa Barbara

Lexical Analysis (Scanning)

• During the scan the lexical analyzer gets rid of the white space
(\b,\t,\n, etc.) and comments

• Important additional task: Error messages!
– Var%1® Error! Not a token!
– whle® Error? It matches the identifier token.

• Natural language analogy: Tokens correspond to words and
punctuation symbols in a natural language

UC Santa Barbara

Next Step: Syntax Analysis (Parsing)

• How does the compiler recognize the structure of the program?
– Loops, blocks, procedures, nesting?

• Parse the stream of tokens -> parse tree
– program will be on the leaves of the tree

UC Santa Barbara

Syntax Analysis (Parsing)
Stmt

WhileStmt

WHILE

LPAREN
RPARENExpr

RelExpr

<ID,sum> LT <ID,total>

Stmt
Block

LBRACE Stmt RBRACE

AssignStmt

<ID,sum> EQ
Expr SEMICOL

ArithExpr

Expr

<ID,sum>

PLUS
Expr

ArithExpr
Expr Expr

<ID,x>

TIMES

<NUM,10>

UC Santa Barbara

Syntax Analysis (Parsing)

• The syntax of a programming language is defined by a set of recursive
rules. These sets of rules are called context free grammars.

Stmt ® WhileStmt | Block | ...

WhileStmt ® WHILE LPAREN Expr RPAREN Stmt
Expr ® RelExpr | ArithExpr | ...

RelExpr ® ...

• Compilers apply these rules to produce the parse tree
• Again, important additional task: Error messages!

– Missing semicolon, missing parenthesis, etc.
• Natural language analogy: It is similar to parsing English text. Paragraphs,

sentences, noun-phrases, verb-phrases, verbs, prepositions, articles,
nouns, etc.

UC Santa Barbara

Intermediate Representations

• The parse tree representation has too many details
– LPAREN, LBRACE, SEMICOL, etc.

• Once the compiler understands the structure of the input program,
it does not need these details (they prevent ambiguities during
parsing)

• Compilers generate a more abstract representation after
constructing the parse tree, which does not include the details of
the derivation

• Abstract syntax trees (AST): Nodes represent operators, children
represent operands

UC Santa Barbara

Intermediate Representations

while

<

<id,sum> <id,total>

assign

<id,sum>
+

<id,sum> *

<id,x> <num,10>

UC Santa Barbara

Semantic (Context-Sensitive) Analysis

• Not everything that we care about is related to the structure of the
program, in some cases we have to check the meaning (or
semantics)

• Are variables declared before they are used?
– We can find out if “whle” is declared by looking at the symbol table

• Do variable types match?
sum = sum + x*10;

UC Santa Barbara

Semantic (Context-Sensitive) Analysis

+

<id,sum> *

<id,x> <num,10>

may become

+

<id,sum>

*

<id,x> <num,10>

int2float

sum

x

float

int

Symbol
Table

sum can be a floating point number,
x can be an integer

UC Santa Barbara

Runtime Environment

• Efficient implementation of programming language abstractions
– Symbolic names
– Name spaces
– Procedures
– Parameters
– Control Flow

• Bridge the gap between useful idea and practical application

UC Santa Barbara

Code Generation

• Abstract syntax trees are a high-level intermediate representation
used in earlier phases of the compilation

• There are lower-level (i.e., closer to the machine code)
intermediate representations
– Three–address code: Every instruction has at most three operands.

Very close to (MIPS, x86) assembly
– Stack based code: Assembly language for JVM (Java Virtual

Machine), an abstract stack machine.

• Intermediate code generation for these lower level representations
and machine code generation are similar

UC Santa Barbara

Improving the Code: Code Optimization

• Compilers can improve the quality of code by static analysis
– Data flow analysis, dependence analysis, code transformations,

dead code elimination, etc.

temp = x*10;

while (sum < total)
{

sum = sum + temp;

}

while (sum < total)

{
sum = sum + x*10;

}

We do not need to recompute x*10 in
each iteration of the loop

transformation
to more efficient
code

UC Santa Barbara

Code Generation: Instruction Selection

• Source code
a = b + c;

d = a + e;

• Target code

MOV b,R0
ADD c,R0
MOV R0,a
MOV a,R0
ADD e,R0
MOV R0,d

If we generate code for each statement separately
we will not generate efficient code

code for
the first
statement

code for
the second
statement

This instruction is redundant

UC Santa Barbara

Code Generation: Register Allocation

• There are a limited number of registers available on real machines
• Registers are valuable resources (keeping the values in registers

prevents memory access), the compiler has to use them efficiently

t = a - b;
u = a - c;
v = t + u;
d = v + u;

d = (a-b)+(a-c)+(a-c); MOV a,R0
SUB b,R0
MOV a,R1
SUB c,R1
ADD R1,R0
ADD R1,R0
MOV R0,d

source code three-address code assembly code

UC Santa Barbara

Compilers

A) Why do we need a compiler?

B) What steps do we need to we need to take to realize a compiler?

C) How is a compiler put together?

UC Santa Barbara

History of Compiler Development

UC Santa Barbara

• Must recognize legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS and linker on format for object code

High-level View of a Compiler

Source
code

Machine
code

Compiler

Errors

UC Santa Barbara

A Higher Level View: How Does the Compiler Fit In?

source
program

executable
machine code

CompilerPreprocessor

Assembler Loader/Linker

skeletal
source

program

target
assembly
program

relocatable
machine

code

library routines,
relocatable object files

generates machine code
from the assembly code

• collects the source program that
is divided into separate files
• macro expansion

• links the library routines and
other object modules
• generates absolute addresses

UC Santa Barbara

Traditional Two-pass Compiler

• Use an intermediate representation (IR)
• Front end maps legal source code into IR
• Back end maps IR into target machine code
• Admits multiple front ends and multiple passes

– Typically, front end is O(n) or O(n log n), back end is NP-complete
• Different phases of compiler also interact through the symbol table

Source
code

Front
End

Errors

Machine
code

Back
End

IR

Symbol
Table

UC Santa Barbara

Responsibilities
• Recognize legal programs
• Report errors for the illegal programs in a useful way
• Produce IR and construct the symbol table
• Much of front end construction can be automated

The Front End

Source
code

Scanner IRParsertokens IR Type
Checker

Errors

UC Santa Barbara

The Front End

Scanner
• Maps character stream into words—the basic unit of syntax
• Produces tokens and stores lexemes when it is necessary

– x = x + y ; becomes
<id,x> EQ <id,x> PLUS <id,y> SEMICOLON

– Typical tokens include number, identifier, +, -, while, if
• Scanner eliminates white space and comments

Source
code

Scanner IRParsertokens IR Type
Checker

Errors

UC Santa Barbara

The Front End

Parser
• Uses scanner as a subroutine

• Recognizes context-free syntax and reports errors

• Guides context-sensitive analysis (type checking)

• Builds IR for source program

• Scanning and parsing can be grouped into one pass

Source
code

Scanner IRParsertokens IR Type
Checker

Errors

UC Santa Barbara

The Front End

Context Sensitive Analysis
• Check if all the variables are declared before they are used
• Type checking

– Check type errors such as adding a procedure and an array

• Add the necessary type conversions
– int-to-float, float-to-double, etc.

Source
code

Scanner IRParsertokens IR Type
Checker

Errors

UC Santa Barbara

The Back End

Responsibilities
• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which values to keep in registers
• Schedule the instructions for instruction pipeline

Automation has been much less successful in the back end

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

UC Santa Barbara

The Back End

Instruction Selection

• Produce fast, compact code
• Take advantage of target language features

– E.g., addressing modes
• Usually viewed as a pattern matching problem

– Ad hoc methods, pattern matching, dynamic programming
• Especially problematic when instruction sets are complex

– RISC architectures simplified this problem

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

UC Santa Barbara

The Back End

Instruction Scheduling
• Avoid hardware stalls (keep pipeline moving)
• Use all functional units productively
• Optimal scheduling is NP-Complete

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

UC Santa Barbara

The Back End

Register Allocation
• Have each value in a register when it is used
• Manage a limited set of registers
• Can change instruction choices and insert LOADs and STOREs
• Optimal allocation is NP-Complete

Compilers approximate solutions to NP-Complete problems

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

UC Santa Barbara

Traditional Three-pass (Optimizing) Compiler

Code Optimization

• Analyzes IR and transforms IR
• Primary goal is to reduce running time of the compiled code

– May also improve space, power consumption (mobile computing)
• Must preserve “meaning” of the code

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

UC Santa Barbara

The Optimizer (or Middle End)

Typical Transformations
• Discover and propagate constant values (constant propagation)
• Move a computation to a less frequently executed place
• Discover a redundant computation and remove it
• Remove unreachable code

Errors

Opt
1

Opt
3

Opt
2

Opt
n

..

.

IR IR IR IR IR

Modern optimizers are structured as a series of passes

