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Type
• Type: for each data value in the program, there is a collection of 

properties associated with it, known as the value’s type

• With each type T we associate values and operators that we can 
apply to values of type T. 
– Type of int also gives ranges of values −231 ≤ i < 231

– To values of type string, we can apply operations such as println, but 
we cannot multiply two string.

• Conversely, with each operator with associate types that describe 
the nature of the operator’s arguments and result. 

Result Types for Addition in FORTRAN77
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Benefits: Types for expressiveness

• An operator that has different meanings based on the types of its 
arguments is "overloaded" 

• Still, for the previous example. Fortran has a single addition operator, 
+, and uses type information to determine how it should be 
implemented. 
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Benefits: Types as two-version programming

• In languages such as Java, programs are annotated with types.

• This can be seen as a weak form of two-version programming: the 
programmer specifies twice what the program should do, once by the 
actual code, and a second time through the types. 

• By saying something twice, but in somewhat different languages (Java
computation vs types) the probability that we make the same mistake 
in both expressions is lower than if we state our intention only once. 

• The key idea behind semantic analysis is to look for contradictions 
between the two specifications and reject programs with such 
contradictions.
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Type is not everything

• Note that types can only prevent basic mistakes such as 
"hello" * "world". 

• They cannot (usually) prevent more complicated problems, like out-
of-bounds indexing of arrays. 

int [] a = new int [ 10 ] 
a [ 20 ] = 3
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Type Checking

• Type checking is a part of context-sensitive analysis
• A type-checker verifies that the type of a construct matches the 

type that is expected by its context

• Examples
– dereference operation is only applied to pointers
– indexing is only done for an array
– in a method call, number of arguments and their types match the 

declaration
– arguments of modulo operation are both integers
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Type Checking

• An important distinction is that between type checking (old-
fashioned) and type inference (modern). 

• In type checking (e.g., Java), we verify that the programmer-written 
type-annotations are consistent with the program code. 

def f ( x : String ) : Int = { 
if ( x = "Moon" ) true 
else false 

} 

is easy to see as inconsistent. 
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Type Inference

• Types are determined from the context of the reference, rather than 
just by explicit statements

• Inference rules that specify mapping between operand types and 
result type

• The compiler can trace how values flow through variables and 
function arguments

• Any remaining ambiguity is treated as an error the programmer 
must fix by adding explicit declarations
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Type inference

def f ( y : ??? ) : ??? = { 
if ( x = y ) y 
else x+1 

}

What types could you give to x, y and the return value of f? 

Clearly x has type integer, y has type integer, no value is returned.
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Another Example

That was easy. What about this program 
def f ( x : ??? ) : ??? = { 

while ( x.g ( y ) ) { y = y+1 }; 
if ( y > z ) z = z+1 
else println ( “hello” ) ；

} 

What types could you give to x, y, z, g and f? 
y and z are integers, x must be a class A such that A has a method g 
which takes an integer and returns a Boolean
Finally, f returns nothing, so should be of type void
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Contrasts in Type Systems

Type systems are often described by their design decisions along 
several dimensions

• Static vs. dynamic types
– Time of the type binding

• Strong vs. Weak typing
– Explicit vs. implicit type conversion
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Type Binding

Type binding is an association between a name and a type attribute

Type binding time is the time at which a binding takes place.
• Compile time, e.g., bind a variable to a type in C or Java
• Link time
• Load time, e.g., references to DLLs in C/C++
• Runtime, e.g., dynamic type bindings
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Static Type Binding

• In a static type system, types are fixed before the program is run 
(e.g., compile time)

• Compatibility checking can be done by a compiler and errors 
flagged

• The advantage is that the resulting code need not check for type 
mismatches at run time, which speeds up execution

• It typically requires adding type declarations (can be annoying), but 
these can also be seen as a kind of documentation (a benefit), note 
that this is only for explicit declarations
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Dynamic Type Binding

• A variable’s type can change as the program runs
• Might be re-bound on every assignment.
• Used in scripting languages (JavaScript, PHP)

• Here’s a JavaScript example

list = [2, 4.33, 6, 8];
list = 17.3;



UC Santa Barbara

Dynamic Type Binding

• Flexibility for the programmer
• Obviates the need for “polymorphic” types
• Development of generic functions (e.g., sort)
• But there are disadvantages as well

– Types have to be constantly checked at run time
– A compiler cannot detect errors via type mis-matches
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Types of Typed Languages

• Definition: Strong versus weak typing
– Strong/weak typing is about how strictly types are distinguished (e.g.,

implicit conversion).

– If a language specification requires its typing rules strongly (i.e., more 
or less allowing only those automatic type conversions that do not lose 
information), one can refer to the process as strongly typed, if not, 
as weakly typed

– Strongly-typed languages do not allow implicit conversions between 
unrelated types. 

– Weakly-typed languages make conversions between unrelated 
types implicitly.
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Languages

1. Weakly and dynamically typed
2. Strongly and dynamically typed
3. Strongly and statically typed
4. Weakly and statically typed

C#
scala Java

Haskell

C
C++PHP

JavaScript

Python
Ruby

ERlang

Weak

StaticDynamic

Strong
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Weakly and Dynamically Typed Language

A small JavaScript program
• Any Error?

• What is the result?

• What happened?

o No Error

o 1010

o 10 is implicitly converted to a
string “10”, and then
concatenated with the other
string

function add(a, b) {
result = a + b;
return result;

}

x = "10"
y = 10

result = add(x, y);

console.log(result);
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Strongly and Dynamically Typed Language

A small Python program • Any Error?

• What is the result?

• What happened？

Note: All these discussion are based on common features of these
languages. For example, we could also use type annotations in 
Python and enable checking statically the types.
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Strongly and Statically Typed Language

A small Scala program
• Any Error?

• What is the result?

• What happened？

add.scala: error: type 
mismatch; 
found : String 
required: Int 

val result = add_(x, y)
^ 

one error found

This makes the code feel dynamically typed. 
But it is not. The key is type inference
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Weakly and Statically Typed Language

A small C program
• Any Error?

• What is the result?

• What happened？

o No Error

o 58
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Untyped Languages?

• Assembly language for instance is said to be untyped since there 
is no type checking

• The absence of type checking allows a lot of freedom, necessary 
for strong optimizations

• In general, you don‘t write assembly code except for very specific 
projects

• We write in a higher-level language and the compiler produces 
Assembly code for you
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Type System

• Type system: The set of types in a programming language, along 
with the rules that use types to specify program behavior, are 
collectively called a type system. 

• A set of base types, or built-in types
• Programming languages typically include base types for numbers (int, 

float), characters, Booleans, etc.

• Rules for constructing new types from the existing types
• array, function, pointer, product
• programmers need higher-level abstractions to combine and aggregate 

objects and to derive types for the resulting objects.

• Rules for type inference: the process of determining a type for each 
name and each expression in the code. 
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Type Systems

• Base types
– Programming languages typically include base types for:

numbers (int, float), characters, Booleans

• Compound and constructed types
– Programmers need higher-level abstractions than the base types, such 

as lists, graphs, trees, tables, etc.
– Programming languages provide mechanisms to combine and 

aggregate objects and to derive types for the resulting objects
– arrays, structures, enumerated sets, pointers

• A type system consists of a set of base types and a set of type-
constructors
– array, function, pointer, product

• Using base types and type-constructors each expression in a 
program can be represented with a type expression



UC Santa Barbara

Type Systems

• A type-expression is either a base type or is formed by applying a 

type constructor to a type-expression

• Inference rules for type-expressions:
– (Pascal) If both operands of the arithmetic operators addition, 

subtraction and multiplication are of type integer than the result is of 
type integer

– (C, C++) The results of the unary & operator is a pointer to the object 
referred to by the operand. If the operand is of type “foo”, then the 
type of the result is a “pointer to foo”

• A sound type system eliminates the need for dynamic checking 

because it statically determines whether errors will occur or not
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Example Type Expressions

• Base types:
integer, char, float

• Type constructors:
array, product (´), record,  pointer, function (®)

int A[10] type expression for A is: array(10, integer)

Example type expressions in C

type expression for foo is: function(product(char, pointer(integer)), integer)
or using notation:   char ´ pointer(integer) ® integer

int foo(char a, int *b)

struct fie {
int a, b;

}

type-expression for fie is: record((a ´ integer) ´ (b ´ integer))

Note that we used product to show the field 
names a and b in the type expression
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Type Equivalence

• Structural equivalence
– Two types are equivalent if they have the same structure

– Two type-expressions are structurally equivalent if either they are the 
same basic type or they are formed by applying the same type 
constructor to structurally equivalent types

• Name equivalence
– Each type name is viewed as a distinct type
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Type Equivalence Check

Always correct

This depends
Yes, for structural equivalence
No, for name equivalence
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Checking Structural Equivalence

function sequiv(s, t)
begin

if s and t are the same basic type then
return true;

else if s = array(s1, s2) and t = array(t1, t2) then
return sequiv(s1, t1) and sequiv(s2, t2); 

else if s = s1 ´ s2 and t = t1 ´ t2 then
return sequiv(s1, t1) and sequiv(s2, t2);

else if s = pointer(s1) and t = pointer(t) then
return sequiv(s1, t1);

else if s = s1 ® s2 and t = t1 ® t2 then
return sequiv(s1, t1) and sequiv(s2, t2);

else 
return false;

end 

Using type constructors: array, product (´), pointer, and function (®)
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Type Checking: Example

• Given the following grammar for a very simple language

• We want to write an ad-hoc translation scheme for type-checking
• We will use type-constructors to construct type-expressions 
• We will do type-checking using these type-expressions

P ® D ; S

D ® D ; D | id : T

T ® char | int | array [num] of T | pointer T | function T to T

E ® literal | num | id | E mod E | E [ E ] | * E | E ( E ) | E = E

S ® id := E | if E then S | while E do S | S ; S

function call

pointer dereference

array access

array declaration
(of size num)

pointer declaration

function declaration

character 
literal

integer literal
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Type Checking: Example

• We will use the following type constructors
– array(I,T) : creates a type expression for an array of type T with index 

set I 
– pointer(T) : creates a type expression of type pointer to type T
– function(T,T) : creates a type expression of type function from type T to 

type T
• We will also use the following:

– id.entry : this attribute gives the location of the corresponding identifier 
in the symbol table

– addtype(id.entry, type) : enters the type information to the symbol table
– lookup(id.entry) : returns the type information stored in the symbol 

table
• If we detect an error, we will set the type of the corresponding 

program segment to type-error



UC Santa Barbara

Type Checking: How should it work?

• Let’s examine a program that is part of the language defined above

x: char;  //this declares a new variable “x” of type char
y: pointer char;  //this declares “y” to be of type pointer(char)
x := ‘c’; //this assignment is a literal (which should be a char) to a char
x := * y; //this de-references y (of type pointer(char)) to get something

//of type char, and then assigns it to x (which is of type char)

• Let us now draw the parse tree for this program
• We will walk the parse tree (depth first walk –

walk down the left-most un-touched branch and then back up)
• Show how the type-checking should progress
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Type-Checking Example: Parse Tree

Direction of
Traversal  =

P

D ; S

D ; D

Id : T

char

Id : T

pointer T

char

Id := E

literal

Id := E

* E

id

S ; S

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Insert code for type-checking
At the points labeled in red
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Type Checking Example: Simple Example

(1) T.type = char

(2) assert(x not in symbol table)
add (x,char) to symbol table

(3) T.type = char

(4) T.type = pointer(T) = 
pointer(char)

(5) assert(y not in symbol table)
add (y,pointer(char)) to sym

(6) E.type = char

(7) lookup(id); assert(id.exists); 
assert(id.type==E.type) 

(8) lookup(id); assert(id.exists); 
E.type = id.type = pointer(char)

(9) assert(E.type == pointer(z)
for some z);  

E.type = z = char

(10) lookup(id); assert(id.exists); 
assert(id.type==E.type);
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Type Checking Example: Declarations

P  ® D ; S

D  ® D ; D 

D  ® id : T { addtype(id.entry, T.type); }

T  ® char { T.type ¬ char; }

T  ® int { T.type ¬ integer; }

T  ® array [num] of T1 { T.type ¬ array(1...num.val, T1.type); }  

T  ® pointer T1 { T.type ¬ pointer(T1.type); }

T  ® function T1 to T2 { T.type ¬ function(T1.type, T2.type); }



UC Santa Barbara

E ® literal { E.type ¬ char; } 

E ® num { E.type ¬ integer; } 

E ® id { E.type ¬ lookup(id.entry); }

E ® E1 mod E2 { if (E1.type = integer  and  E2.type = integer) 
then E.type ¬ integer;
else E.type ¬ type-error; }

E ® E1 [ E2 ] { if (E2.type = integer  and  E1.type = array(i,t))
then E.type ¬ t;        /* for some i and some t */
else E.type ¬ type-error; }

Type Checking Example: Expressions
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Type Checking Example: Expressions

E ® * E1 { if (E1.type = pointer(t))   /* for some t */
then E.type ¬ t;
else E.type ¬ type-error; }

E ® E1 ( E2 ) { if (E2.type = s  and E1.type = function(s,t))
then E.type ¬ t;       /* for some s and some t */
else E.type ¬ type-error; }

E ® E1 = E2 { if (E1.type == E2.type)
then E.type ¬ boolean;       
else E.type ¬ type-error; }
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Type Checking Example: Statements

S ® id := E { if (id.type = E.type) 
then S.type ¬ void; /* we could assign type of E  here */
else S.type ¬ type-error; }

S ® if E then S1 { if (E.type = boolean)
then S.type ¬ S1.type;
else S.type ¬ type-error; }

S ® while E do S1 { if (E.type = boolean)
then S.type ¬ S1.type;
else S.type ¬ type-error; }

S ® S1 ; S2 { if (S1.type = void and S2.type = void)
then S.type ¬ void;
else S.type ¬ type-error; }


