
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Procedures

UC Santa Barbara

The Procedure Abstraction

• What is a Procedure:
An abstraction (illusion) provided by programming languages

• What does the idea of procedure provide?
– Control abstraction: transfer of control between caller and callee
– Namespace (scope): caller and callee have different namespaces
– External interface: passing arguments between caller and callee

• Why have procedures?
– establishes a separation of concerns (an important software

engineering principle)
– enables modular design
– enables separate compilation

UC Santa Barbara

Why do should I care about procedures?

• This is a compilers class, not a programming languages class, right?

– A programming language has the notion of procedures

– The architecture (or whatever is going to run our output code) does not
have any notion of a procedure, of control abstraction, or even of
separate name spaces

– It is up to the compiler to take the input program (that has procedures)
and translate it into output code that the runs exactly the same (even if
the underlying machine has no notion of a procedure)

– In essence, the compiler has to implement procedures. So, we better
know what it is that we have to implement

UC Santa Barbara

The Procedure Abstraction

• There are three major things that procedures provide

• Control abstraction
– Well defined entries and exits
– Mechanism to return control to caller
– Mapping a set of parameters (arguments) from caller’s name

space to callee’s name space

• Name space (scope)
– Declare locally visible names
– Local names may hide identical, non-local names
– Local names cannot be seen outside

• External Interface
– Access is by procedure name and parameters
– Protection for both caller and callee

UC Santa Barbara

The Procedure Abstraction

Procedures are the key to building large systems

• Requires system-wide cooperation
– Broad agreement on memory layout, calling sequences
– Involves architecture, operating system, and compiler

• Establishes the need for a private context
– Create private storage for each procedure invocation
– Encapsulate information about control flow and data abstractions

• Provides shared access to system-wide facilities
– Storage management

UC Santa Barbara

The Procedure Abstraction

Procedures allow us to use separate compilation
• Separate compilation allows us to build non-trivial programs
• Keeps compile times reasonable
• Lets multiple programmers collaborate
• Without separate compilation, we would not be able to build large

systems

The procedure linkage convention
• Ensures that each procedure inherits a valid run-time environment

and that it restores one for its caller
• Highly machine dependent
• Establishes division of responsibility and separation of concerns

UC Santa Barbara

The Procedure Abstraction

• Underlying hardware supports little of this abstraction
– Procedures create named variables – Hardware understands a linear

array of memory locations (one big array)
– Procedures have nested scopes – Hardware understands a linear

array of memory locations (one big array)
– Procedures require call/return mechanisms – Hardware simply

advances its program counter through some sequence of instructions
or branches (like a GOTO statement)

• Compiler translates procedure abstraction to something that
hardware can understand (with some help from operating system
and little help from hardware)

One view is that computer science is simply the art of realizing
successive layers of abstraction

UC Santa Barbara

The Procedure as a Control Abstraction

Procedures have well-defined control-flow behavior

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

• Most languages allow recursion (Fortran does not)

int fee(a,b,c)
int a, b, c;

{
int d;
d = fie(c,b);
...

}

int fie(x,y)
int x,y;

{
return x + y;

}

UC Santa Barbara

The Procedure as a Control Abstraction

Implementing procedures with this behavior

• Requires code to save a “return address” and use it at “return”

• Must create unique location for each procedure activation
– Can use a “stack” of return addresses
– Sometimes, this stack is implemented in hardware

• Need to map actual parameters to formal parameters (c ® x, b ® y)

• Must create storage for local variables (and, maybe, parameters)
– fee needs space for d (and, maybe, a, b, c)

• Must preserve fee’s state while fie executes

Compiler must emit code that causes all this to happen at run-time

UC Santa Barbara

The Procedure as a Name Space

Each procedure creates its own name space (scope)
• Names can be declared locally
• Local names hide identical -- but non-local -- names
• Local names cannot be seen outside the procedure

– Nested procedures are “inside” by definition
• We call this set of rules and conventions “lexical scoping”

Examples
• C has global, static, local, and block scopes

– Blocks can be nested, procedures cannot
• Pascal has nested procedures (CSimple as well)

UC Santa Barbara

Same Names in Programs

• Multiple variables can have the same names in a program

int a = 4;
{

int a = 3;
int b = 3;
print(a, b);

}
print(a);

int add(int x, int y)
{return x + y；}
int subtract(int x, int y)
{return x - y；}

• Multiple functions can have the same names in a program.
– e.g., function overloading in C++

void print(int i) {cout << “ Here is int ” << i << endl; }
void print(double f) { cout << " Here is float " << f << endl;}
void print(char const *c) {cout << " Here is char* " << c << endl;}

UC Santa Barbara

Name Space (Scope)

• The scope of a declaration
– The part of a program where the name of a declaration is visible
– This means it is only legal to refer to the identifier within its scope.

Here, identifier refers to function or variable name.

Any error?

int a = 4;
{

int a = 3;
int b = 3;
print(a, b);

}
print(a, b);

UC Santa Barbara

Nested Block and Inheritance
• Block:

– a syntactic unit with declarations and statements
– may require memory allocation during execution

(once or several times)
• Block structure (nesting):

– a block can have inner blocks (recursively)
– declarations in a block are visible also in the

inner blocks

int a = 4;
{

int b = 3;
print(a, b);

}

int a = 4;
{

int a = 3;
int b = 3;
print(a, b);

}

• Shadowing occurs when an identifier declared within a given scope
has the same name as an identifier declared in an outer scope.

UC Santa Barbara

Lexical Scoping vs. Dynamic Scoping

• Lexical Scoping: Scoping is determined by the program text (static)
– The scope of a declaration in a block B includes B
– If a variable x is not declared in B, then occurrence of x in B is in the scope

of the declaration of x in enclosing block B’ if
• B’ has a declaration of x
• B’ is more closely nested around B then any other block with declaration of x

– Lexical scoping is used in Algol-like languages such as Pascal, C

• Dynamic Scoping: Scoping is determined by the run-time behavior
– A variable that is not declared in the current scope is bound to the variable

by that name that was most recently created at run-time
– Dynamic scoping is used in some forms of LISP

UC Santa Barbara

Example: Lexical vs. Dynamic Scoping
program dynamic(input, output)

var r : real;
procedure show;

begin write(r) end;
procedure small;

var r : real;
begin r := 0.125; show end;

begin
r := 0.25
show; small; writeln;
show; small; writeln

end.

With lexical scoping, the output is:
0.250 0.250
0.250 0.250

If dynamic scoping was used, then the output will be:
0.250 0.125
0.250 0.125

UC Santa Barbara

Scoping Rules for C

• A name can have global scope, all declarations of the same global
name refer to a single instance.

• A name can have file-wide scope (static), such names are visible
to every procedure in the file containing the declaration.

• A name can be declared locally in a procedure, then the scope of
the name is the procedure body.

• A name can be declared within a block (denoted by a pair of curly
braces). Such a variable is only visible inside the declaring block.

UC Santa Barbara

Example in C

static int w; /* level 0 */
int x;
void example (int a, int b); /* level 1 */
{

int c;
{

int b, z; /* level 2a */
...

}
{

int a, x; /* level 2b */
...
{

int c, x; /* level 3 */
b = a + b + c + x;

}
}

}

Level Names
0 w, x, example
1 a, b, c
2a b,z
2b a, x
3 c, x

Level 0

Level 1

Level 2a Level 2b

Level 3At any scope level, a variable is bound to the declaration that
is in that scope level. If there is no declaration at that scope level,
then it is bound to the declaration that is in its closest ancestor Nesting relationships

UC Santa Barbara

Pascal: Scoping

Scope x y z
Main Main.x Main.y Main.z
Fee Fee.x Main.y Main.z
Fie Main.x Fie.y Main.z
Foe Main.x Fie.y Foe.z
Fum Main.x Fum.y Foe.z

Main

Fee Fie

Fum

Nesting relationships Foe

program Main(input, output);
var x, y, z: integer;
procedure Fee;

var x: integer;
begin { Fee }

x := 1;
y := x * 2 + 1

end;
procedure Fie;

var y: real;
procedure Foe;

var z: real;
procedure Fum;

var y: real;
begin { Fum }

x := 1.25 * z;
Fee;

end;
begin { Foe }

z := 1;
Fee;
Fum

end;
begin { Fie }

Foe;
end;

begin { Main }
x := 0;
Fie

end.

UC Santa Barbara

Pascal: Scopingprogram Main(input, output);
var x, y, z: integer;
procedure Fee;

var x: integer;
begin { Fee }

x := 1;
y := x * 2 + 1

end;
procedure Fie;

var y: real;
procedure Foe;

var z: real;
procedure Fum;

var y: real;
begin { Fum }

x := 1.25 * z;
Fee;

end;
begin { Foe }

z := 1;
Fee;
Fum

end;
begin { Fie }

Foe;
end;

begin { Main }
x := 0;
Fie

end.

Main

Fie

Fum

Foe

Activation Tree shows the
transfer of control between
different procedures
(dynamic scoping uses this)

Fee
Fee

Main

Fee Fie

Fum

Nesting relationships
(static, lexical scoping)

Foe

UC Santa Barbara

Scoping Rules

• Java

– public classes are in the global scope

– a class contains fields (data) and methods (procedures),

– methods and fields in public classes can be declared public which
makes them accessible to methods in classes of other packages

– fields and methods in a class are accessible to methods in all other
classes of the same package, unless they are explicitly declared
private

– classes can nest inside other classes

UC Santa Barbara

Scoping Rules

• Fortran

– a global scope that holds procedure names and common block
names (correspond to global variables)

– a series of local scopes, one per procedure

– a local variable has a lifetime that matches the invocation of the
procedure (but programmers can override this rule using save
statement which preserves the value of the variable across
procedure calls)

UC Santa Barbara

Illegal Shadowing

• In most languages, it is illegal to declare two identifiers with the same
name if the are in the same scope. Here identifier refer to a function or
variable name.

• In some languages (e.g., Java), it is illegal to shadow local variables.

• Making this illegal help prevent potential bugs

public static void foo () {
int i ;
for (int i = 0 ; i < 5 ; i ++) // illegal to redeclare i

System . out . p r i n t l n (i) ;
}

UC Santa Barbara

The Procedure as a Name Space

Why introduce lexical scoping?
• Provides a mechanism for binding “free” variables

• Simplifies rules for naming and resolves conflicts

How can the compiler keep track of all those names?

The Problem
• At point p, which declaration of x is current?

• At run-time, where is x found?

• As parser goes in and out of scopes, how does it delete x?

The Answer
• Use lexically-scoped symbol tables

UC Santa Barbara

Symbol Tables

• How can we manage these name spaces at compile-time?
– Symbol Tables

• Symbol table is used to keep information about names
– type, scope, memory location, ...

• We can rediscover this information every time we need it by traversing
the intermediate representation (AST), but using a symbol table is
more efficient

Symbol
Table

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

UC Santa Barbara

Symbol Tables

• What are the entries in the symbol table?
– variable names
– procedure and function names
– defined constants
– labels
– keywords (may also be entered if the lexical analyzer does not

take care of them)

UC Santa Barbara

Symbol Tables

• What information should be kept?
– textual name
– data type
– for arrays dimension, upper and lower bounds for each dimension
– for records or structures list of fields and their information
– for functions and procedures number and type of arguments
– storage information (memory location: base address and offset)
– scope

• Entries are not uniform, different entries may require different
information

• Information is entered as it becomes available during different phases
of the compilation

UC Santa Barbara

Symbol Tables

• Basic symbol table interface:
– Insert names (identifiers) and their attributes to the symbol table

• Insert(name, record)

– Lookup names and their attributes
• LookUp(name)

• A simple (not very efficient) implementation: Unordered list
– use an array or linked list
– enter the names in the order they are encountered
– Insert O(1) complexity if multiple entries are allowed. If we have to

check that an entry was not entered before, then insert will be O(N)
– LookUp O(N) time
– Simple and compact, but too slow in practice

UC Santa Barbara

Hash Tables

• Distribute the entries to S buckets using a hash function on names

• Hash function should be efficient and distribute entries uniformly

• Open hashing: Linked lists for the buckets which have collisions
– Cost for lookup should be O(N / S) assuming that computing the hash

function takes constant time
– If S » N , then cost of lookup is O(1)

• Open addressing: rehash when there is a collision
– Requires more space since it stores every entry in the table, however

rehash chains are short and the lookup is faster if the hash functions
have good distributions

UC Santa Barbara

Lexically-Scoped Symbol Tables

The problem
• The compiler needs a distinct record for each declaration
• Nested lexical scopes allow for duplicate declarations

Solution: store the scope information in the symbol table

The interface
• Insert(name,level) – creates record for name at level
• Lookup(name,level) – returns pointer or index
• OpenScope() – increments the current level and creates a new symbol

table for that level
• CloseScope() – changes current level pointer so that it points at the table

for the scope surrounding the current level, and then decrements the
current level

UC Santa Barbara

Example in C
Generated sequence of calls:

OpenScope()
Insert(a)
Insert(b)
Insert(c)
OpenScope()
Insert(b)
Insert(z)
CloseScope()
OpenScope()
Insert(a)
Insert(x)
OpenScope()
Insert(c)
Insert(x)
Lookup(b)
LookUp(a)
LookUp(b)
LookUp(c)
LookUp(x)

CloseScope()
CloseScope()
CloseScope()

static int w; /* level 0 */
int x;
void example (int a, int b); /* level 1 */
{

int c;
{

int b, z; /* level 2a */
...

}
{

int a, x; /* level 2b */
...
{

int c, x; /* level 3 */
b = a + b + c + x;

}
}

}

UC Santa Barbara

Lexically-Scoped Symbol Tables

High-level idea
• Create a new table for each scope
• Chain them together for lookup

• Insert() inserts at the current level

• LookUp() walks chain of tables and
returns first occurrence of name

• OpenScope() creates a new table,
connects it to the current level and
updates the current level to point to
the new table

• CloseScope() removes the table
which is the top table in the chain

x, ...

c, ...

x, ...

a, ...

b, ...

c, ...

a, ...

•

Level 3
Level 2b

Level 1
Level 0

x, ...

exa, ...

w, ...

b, ...

z, ...

Level 2a
Current
Level

UC Santa Barbara

What about run-time?

• The symbol tables are how we store information about the variables,
scope, procedures at compile-time

• When we are compiling the program we build up a lexically-scoped
symbol table and we use information in the compiler to help use
compile a program
– But when we compile the program, how do we implement procedures?
– How can we track scope at run-time?

• We need to compile a special data structure into the program to help
us keep track of procedures.
– We can then push and pop these data structures when procedure is called
– This data structure is called an activation record

UC Santa Barbara

Control and Data

To deal with procedures we need to keep track of two basic things

• Transfer of control between procedures: What is the return address
– Where is the context for the caller? We need a control link which will

point to the context of the caller
– What is the return address? In languages such as C and Pascal callee

cannot outlive its caller, this means that we can store the return
addresses on a stack

• Where is the data:
– Where is the local data for the procedure? Again we can use a stack
– Where is the non-local data? If we can have nested scopes (as in

Pascal) then we need an access link which will point to the next lexical
scope

• Where do we keep this information: in an Activation Record

UC Santa Barbara

Activation Record Basics

parameters

register
save area

return value

return address

access link

control link

local
variables

Activation
Record

Pointer (ARP)

Space for parameters of the
procedure

Saved register contents (to
restore the machine status
for the caller)

Space for return value

Address to resume caller

Link for non-local access

Stores caller’s ARP to
restore caller’s AR on return

Space for local values &
variables (including
temporaries)

One AR for each invocation of a procedure

(one AR for each node in the activation tree)

UC Santa Barbara

Where Do We Store the Activation Record?

Where do activation records live?
• If lifetime of AR matches lifetime of invocation AND

If code normally executes a “return” (this is the case with C)
Þ Keep ARs on a stack

• If a procedure can outlive its caller OR
If it can return an object that can reference its execution state

Þ ARs must be kept in the heap

• If a procedure makes no calls OR
If language does not allow recursion

Þ AR can be allocated statically

UC Santa Barbara

Variables in the Activation Record

How do we find the variables in the activation record at run-time?
• They are at known offsets from the ARP (activation record pointer)
• Access variables by offset (offset is constant, assume ARP is stored in R0):

Variable-length data
• If AR can be extended, put variable-length data below local variables
• Leave a pointer at a known offset from ARP
• Otherwise, put variable-length data on the heap

Initializing local variables
• Must generate explicit code to store the values which will be executed in

each activation
• Among the procedure’s first actions

MOV offset(R0), R1

MOV R1, offset(R0)

This loads the value of
the variable to register R1

This stores the value of
R1 to the variable

UC Santa Barbara

Classic Organization

Placing Run-time Data Structures

• Code, static, and global data have known size

> Use symbolic labels in the code

• Heap and stack both grow and shrink over time

• This is a virtual address space, it is relocatable

• Better utilization if stack
and heap grow toward
each other

• Uses address space,
not allocated memory

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Single Logical Address Space
0 high

UC Santa Barbara

Memory Allocation
Local to procedure
• keep them in the AR or in a register
• lifetime matches procedure’s lifetime

For static and global variables
• Lifetime is entire execution, can be stored statically
• Generate assembly language labels for the base addresses

(relocatable code)

Static
• Procedure scope Þ mangle procedure name to generate a label
• File scope Þ mangle file name to generate a label

Global
• One or more named global data areas
• One per variable, or per file, or per program, …

UC Santa Barbara

Establishing Addressability

Must create base addresses

• Global and static variables
– Construct a label by mangling names (i.e., &_fee)

• Local variables
– Convert to static distance coordinate and use ARP + offset

– ARP becomes the base address

• Local variables of other procedures
– Convert to static distance coordinate
– Find appropriate ARP
– Use that ARP + offset

{Must find the right AR

Need links to other ARs

UC Santa Barbara

Establishing Addressability

Using access links
• Each AR has a pointer to AR of lexical ancestor
• In some languages lexical ancestor need not be the caller

• Reference to p runs up access link chain until p is found
• Cost of access is proportional to lexical distance

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

ARP

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

Some setup cost
on each call

These are activation
records, NOT symbol tables
symbol tables: compile time
activation records: run time

UC Santa Barbara

Parameter Passing

• Call-by-value (used in C)
– formal parameter has its distinct storage
– caller copies the value of the actual parameter to the appropriate

parameter slot in callee’s AR
– do not restore on return

– arrays, structures, strings are problem

• Call-by-reference (used in PL/I)
– caller stores a pointer in the AR slot for each parameter
– if the actual parameter is a variable caller stores its address
– if the actual parameter is an expression, caller evaluates the

expression, stores its results in its own AR, and stores a pointer to that

results in the appropriate parameter slot in callee’s AR

UC Santa Barbara

Procedure Linkages

How do procedure calls actually work?

• At compile time, caller may not know the callee’s code and vice versa

– Different calls may be in different compilation units (for example
they could be in different files)

– Compiler may not know system code from user code (printf or
my_printf)

– All calls must use the same protocol

Compiler must use a standard sequence of operations
• Enforces control and data abstractions
• Divides responsibility between caller and callee

Usually a system-wide agreement (for interoperability)

UC Santa Barbara

Procedure Linkages

Standard procedure linkage

procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has

• standard prolog

• standard epilog

Each call involves a

• pre-call sequence

• post-return sequence

These operations are
completely predictable
from the call site Þ
depend on the number
and type of the actual
parameters

UC Santa Barbara

Procedure Linkages

Pre-call Sequence
• Sets up callee’s basic AR

• Helps preserve caller’s environment

The details
• Allocate space for the callee’s AR

• Evaluates each parameter and stores value or address
• Saves return address into callee’s AR
• (Possible) Saves caller’s ARP into callee’s AR (control link)

• If access links are used
– Find appropriate lexical ancestor and copy into callee’s AR

• Save any caller-save registers
– Save into space in caller’s AR

• Jump to address of callee’s prolog code

UC Santa Barbara

Procedure Linkages

Post-return Sequence
• Finish restoring caller’s environment
• Place any value back where it belongs

The details
• Copy return value from callee’s AR, if necessary
• Free the callee’s AR
• Restore any caller-save registers
• Restore any call-by-reference parameters to registers, if needed
• Continue execution after the call

UC Santa Barbara

Procedure Linkages

Prolog Code
• Finish setting up the callee’s environment
• Preserve parts of the caller’s environment that will be disturbed

The Details
• Preserve any callee-save registers
• If display is being used

– Save display entry for current lexical level
– Store current AR into display for current lexical level

• Allocate space for local data
– Easiest scenario is to extend the AR

• Find any static data areas referenced in the callee (load the base
address to a register)

• Handle any local variable initializations

With heap allocated AR,
may need to use a
separate heap object for
local variables

UC Santa Barbara

Procedure Linkages

Eplilog Code
• Finish the business of the callee
• Start restoring the caller’s environment

The Details
• Store return value? No, this happens on the return statement
• Restore callee-save registers
• Free space for local data, if necessary
• Load return address from AR
• Restore caller’s ARP
• Jump to the return address

If ARs are stack allocated,
this may not be
necessary. (Caller can
reset top of stack to its
pre-call value.)

